1	Supporting Information
2	
3	Uptake, Translocation and Metabolism of 8:2 Fluorotelomer Alcohol
4	in Soybean (<i>Glycine max</i> L. Merrill)
5	
6	Hongna Zhang, ^{†,‡} Bei Wen, ^{*,†} Xiaoyu Hu, [⊥] Yali Wu, ^{†,‡} Ying Pan, ^{†,‡}
7	Honglin Huang, [†] Liu Liu, ^{\perp} Shuzhen Zhang [†]
8	
9	[†] State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
10	Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing
11	100085, China
12	[‡] University of Chinese Academy of Sciences, Beijing 100049, China
13	^{\perp} Beijing Center for Disease Prevention and Control, Beijing 100020, China
14	
15	
16	
17	* Corresponding author (B. Wen)
18	Phone: +86-10-62849329;
19	Fax: +86-10-62923563;
20	E-mail: bwen@rcees.ac.cn
21	

S1

22 This Supporting Information contains 25 pages, 11 tables and 5 figures.

Contents	Page
Enzyme Assays	S3
Extraction and Cleanup of 8:2 FTOH and Its Degradation Products in Plant	G 4
Tissues	84
Extraction and Cleanup of 8:2 FTOH and Its Degradation Products in	0.5
Solution Samples	22
Distribution of 8:2 FTOH in unplanted controls	S6
Effect of Freeze-drying on the Recoveries of 8:2 FTOH and Its Metabolites	56
in Plant Tissues	50
Table S1. Chemical names, acronyms and molecular structures of the poly-	60
and perfluorinated substances described in this paper	29
Table S2. 1/4-strength Hoagland nutrient solution recipe used in the study	S10
Table S3. Instrumental method for the analysis of 8:2 FTOH and 7:2 sFTOH	Q11
by UPLC-MS/MS	511
Table S4. Instrumental method for the analysis of acid degradation products	S12
by UPLC-MS/MS	512
Table S5. Instrumental method for the analysis of GSH conjugated	S12
metabolites by UPLC-MS/MS	515
Table S6. Isotope-labeled compounds used for quantification of analytes	S14
Table S7. Effect of freeze-drying on the recoveries of 8:2 FTOH and its	S 15
metabolites in plant roots, stems and leaves (%)	515
Table S8. Limits of detection (LODs) and quantification (LOQs) in soybean	S 16
tissues and in nutrient solution	510
Table S9. Distribution of 8:2 FTOH in unplanted controls at 144 h	S17
Table S10. Mass composition of 8:2 FTOH and quantified metabolites in	S 18
different samples during exposure time	510
Table S11. Estimates of kinetic parameters for 8:2 FTOH decreases	S20
Figure S1. Scheme of hydroponic exposure reactor and sampling	S21
Figure S2. Soybean biomass on dry weight basis (g) per reactor in whole	522
soybean systems and blank controls during exposure time	522
Figure S3. Comparison of 8:2 FTOH and metabolite concentrations in whole	\$23
soybean systems and ethanol-washed soybean controls at 144 h	525
Figure S4. Time-dependent levels of 8:2 uFTOH-SCysNAcetyl and 8:2	\$24
FTUCA-SCys in different parts of whole soybean.	524
Figure S5. Proposed metabolic pathways of 8:2 FTOH in soybean tissues.	S25

Enzyme Assays. ADH activity was measured according to the method described by Kimmerer et al.¹ The reaction solution contained 50 mM MES-NaOH, 5 mM MgCl₂, 1 mM dithiothreitol, 0.1 mM NADH (β -nicotinamide adenine dinucleotide, reduced form), 4% (v/v) acetaldehyde and 100 μ L of the protein extract in a final volume of 2.0 mL. NADH oxidation was monitored at 340 nm at 25 °C for 5 min.

ALDH activity was measured followed the methodology of Liu et al.² Briefly, 100 μ L of protein extract was added to a reaction mixture containing 1.5 mM NAD (β -nicotinamide adenine dinucleotide, oxidized form) and 0.1 M sodium pyrophosphate buffer (pH 8.5) in a final volume of 1.0 mL. After 30 s of prereaction, 17 mM acetaldehyde was added to the mixture, which was excited at 360 nm, and the emission fluorescence of NADH was recorded at 460 nm at 10 s intervals for up to 2 min.

GST activity was determined based on the method described by Habig et al.³ The reaction mixture contained 1.0 mM 1-chloro-2,4-dinitrobenzne (CDNB), 5.0 mM glutathione (GSH), and 100 μ L of protein extract in phosphate buffered saline (PBS, pH 6.5) in a final volume of 3.0 mL. The change in absorbance of CDNB-GSH conjugate was measured at 25 °C for 5 min at 340 nm. The enzyme activity was calculated using an extinction coefficient of 9.6 mM⁻¹·cm⁻¹.

42 CYP450 activity was determined as following the Plant CYP450 ELISA Kit 43 (Dongge Biotechnology Co. Ltd, Beijing, China). The color change was measured 44 spectrophotometrically at a wavelength of 450 nm. All the enzyme activities are 45 expressed as U·mg⁻¹ protein.

46	Extraction and Cleanup of 8:2 FTOH and Its Degradation Products in Plant
47	Tissues. The analyte extraction and cleanup procedures for the plant samples were as
48	previously described ⁴ with some modifications. In brief, about 0.1-0.3 g of
49	freeze-dried soybean samples were placed in 15 mL polypropylene (PP) centrifuge
50	tubes, and a suite of isotope-labeled surrogate standards (M8:2 FTOH, M8:2 FTCA,
51	M8:2 FTUCA, MPFBA, MPFHxA, MPFOA, MPFNA) was spiked into the samples
52	prior to extraction. Six mL of methanol was added to the samples. After mixing and
53	shaking for 8 h, the solvents were separated by centrifugation (4000 rpm, 20 min) and
54	then transferred to a second PP tube. The samples were extracted twice with $2 \times 6 \text{ mL}$
55	methanol. All organic supernatants of the three extractions were combined and
56	allowed to evaporate under nitrogen to 1.0 mL. Half of the extract (0.5 mL) was
57	placed into a 2 mL disposable PP microcentrifuge tube, which contained 20 mg
58	Envi-Carb graphitized carbon (Supelco, St. Louis, MO) that was treated with 40 μ L of
59	0.1 M NaOH. The tube was capped and vortexed for 1 min, then centrifuged at 12,000
60	rpm for 30 min at 4 °C. The supernatant was gathered before UPLC-MS/MS analysis
61	for FTOHs (8:2 FTOH and 7:2 sFTOH). The other 0.5 mL extract was diluted with
62	Milli-Q water to a final volume of 15 mL and subjected to solid phase extraction (SPE)
63	cleanup. Before SPE cleanup, the samples were filtered using a 0.45 μm nylon filter
64	(Nylon 66, Tianjin Navigation Instrument Ltd, Tianjin, China) and then passed
65	through Oasis $^{\circledast}$ WAX SPE cartridges (3 cm $^{3},$ 60 mg, 30 $\mu m,$ Waters, Milford, MA,
66	USA) pre-conditioned sequentially with 4 mL of 0.1 % ammonium hydroxide in
67	methanol, 4 mL of methanol, and 4 mL of Milli-Q water. The cartridges were then

washed with 25 mM sodium acetate buffer solution (pH 4) and dried completely under vacuum. The target compounds were eluted by 4 mL of 0.1% ammonium hydroxide in methanol. The elution was concentrated to 0.5 mL under a nitrogen stream. The final extraction was centrifuged (12,000 rpm, 4 °C, 30 min) before UPLC-MS/MS analysis for acid degradation products.

73

74 Extraction and Cleanup of 8:2 FTOH and Its Degradation Products in Solution 75 **Samples.** FTOHs and acid degradation products in solution samples were extracted 76 separately. For FTOHs, 25 mL solutions were transferred into 50 mL PP centrifuge 77 tubes, and M8:2 FTOH was added as surrogate standard to the samples. The solutions 78 were extracted three times with 6 mL of ethyl acetate for 8 h. The combined extracts 79 were allowed to evaporate under a gentle stream of nitrogen to 0.5 mL. The 80 concentrated extractions were diluted 1:2 with methanol and centrifuged (12,000 rpm, 81 30 min) before UPLC-MS/MS analysis. For acid degradation products, solution samples were extracted with SPE cartridges. Briefly, 40 mL solutions were 82 83 transferred into 50 mL PP centrifuge tubes, and six isotope-labeled surrogate 84 standards (M8:2 FTCA, M8:2 FTUCA, MPFBA, MPFHxA, MPFOA, MPFNA) were 85 spiked into the samples. The solutions were filtered using a 0.45 µm nylon filter and then passed through Oasis[®] WAX SPE cartridges as described above. The eluate was 86 concentrated to 0.5 mL and centrifuged (12,000 rpm, 30 min) before UPLC-MS/MS 87 analysis. 88

89

S5

90 Distribution of 8:2 FTOH in unplanted controls. Distribution of 8:2 FTOH in unplanted controls sampled at 144 h was determined. Extractions were carried out for 91 92 the reactor and the rubber plug after decanting the culture solution. Thirty mL of methanol was added to each reactor after the reactor was rinsed two times with 93 94 Milli-O water, and re-sealed with a fresh rubber plug. The removed rubber plug was 95 placed in a sealed container, and extracted with 40 mL of methanol. All reactors and containers were kept in a shaker at 50 °C for 48 h. Ten mL of each extract was 96 97 transferred into a 15 mL PP centrifuge tube, concentrated to 1.0 mL and centrifuged (12,000 rpm, 4 °C, 30 min) before determination of 8:2 FTOH and its degradation 98 99 products.

100

101 Effect of Freeze-drying on the Recoveries of 8:2 FTOH and Its Metabolites in 102 Plant Tissues. Six subsamples of homogenized fresh blank soybean tissues (about 1.0 g each) were weighed in 15 mL PP tubes. Three of the subsamples were spiked with 103 50 μ L of 8:2 FTOH and its metabolite mixture solutions (200 ng·mL⁻¹ for each 104 105 analyte in methanol), and aged for 24 h (stored at 4 °C to avoid possible degradation). 106 No analytes were added to the other three subsamples. These subsamples were 107 freeze-dried simultaneously for 48 h. Then 8:2 FTOH and its metabolites in all 108 subsamples were extracted with methanol, cleaned up and determined by 109 UPLC-MS/MS. The results are shown in Table S7. The recoveries of 8:2 FTOH and its metabolites in roots, stems and leaves ranged 78.2-95.5%, 77.2-92.8% and 110 111 75.9-94.3%, respectively, which did not differ significantly from those of the samples

spiked after freeze-drying (Table S6). No 8:2 FTOH or its metabolites were found in
unspiked subsamples (data not shown). These results suggested that compound loss
and cross contamination during freeze-drying was negligible.

115

116 **REFERENCES**

- 117 (1) Kimmerer, T. W. Alcohol-dehydrogenase and pyruvate decarboxylase acitivity in
- 118 leaves and roots of eastern cottonwood (populus detoides bartr.) and soybean (glycine

119 max L.). Plant Physiol. 1987, 84 (4), 1210-1213; DOI 10.1104/pp.84.4.1210.

- 120 (2) Liu, F.; Cui, X. Q.; Horner, H. T.; Weiner, H.; Schnable, P. S. Mitochondrial
- 121 aldehyde dehydrogenase activity is required for male fertility in maize. Plant Cell
- 122 **2001**, 13 (5), 1063-1078; DOI 10.1105/tpc.13.5.1063.
- 123 (3) Habig, W. H.; Pabst, M. J.; Fleischner, G.; Gatmaitan, Z.; Arias, I. M.; Jakoby, W.
- 124 B. The identity of glutathione S-transferase B with ligandin, a major binding protein
- 125 of liver. Proc. Natl. Acad. Sci. U.S.A. 1974, 71 (10), 3879-3882.
- 126 (4) Zhang, H. N.; Wen, B.; Hu, X. Y.; Wu, Y. L.; Luo, L.; Chen, Z. E.; Zhang, S. Z.
- 127 Determination of fluorotelomer alcohols and their degradation products in
- 128 biosolids-amended soils and plants using ultra-high performance liquid
- 129 chromatography tandem mass spectrometry. J. Chromatogr. A 2015, 1404, 72-80; DOI
- 130 10.1016/j.chroma.2015.05.063.

131 Table S1. Chemical names, acronyms and molecular structures of the poly- and perfluorinated substances described in this paper

Acronym	Chemical name	Molecular structure
8:2 FTOH	8:2 Fluorotelomer alcohol	F(CF ₂) ₈ CH ₂ CH ₂ OH
8:2 uFTOH	8:2 Fluorotelomer unsaturated alcohol	F(CF ₂) ₇ CF=CHCH ₂ OH
7:2 sFTOH	7:2 Secondary polyfluorinated alcohol	F(CF ₂) ₇ CHOHCH ₃
8:2 FTAL	8:2 Fluorotelomer aldehyde	F(CF ₂) ₈ CH ₂ CHO
8:2 FTUAL	8:2 Fluorotelomer unsaturated aldehyde	F(CF ₂) ₇ CF=CHCHO
8:2 FTCA	8:2 fluorotelomer saturated carboxylic acid	F(CF ₂) ₈ CH ₂ COOH
8:2 FTUCA	8:2 fluorotelomer unsaturated carboxylic acid	F(CF ₂) ₇ CF=CHCOOH
7:3 FTCA	7:3 polyfluorinated acid	F(CF ₂) ₇ CH ₂ CH ₂ COOH
7:3 FTUCA	7:3 polyfluorinated unsaturated acid	F(CF ₂) ₇ CH=CHCOOH
PFBA	Perfluorobutyric acid	F(CF ₂) ₃ COOH
PFPeA	Perfluoropentanoic acid	F(CF ₂) ₄ COOH
PFHxA	Perfluorohexanoic acid	F(CF ₂) ₅ COOH
PFHpA	Perfluoroheptanoic acid	F(CF ₂) ₆ COOH
PFOA	Perfluorooctanoic acid	F(CF ₂) ₇ COOH
PFNA	Perfluorononanoic acid	F(CF ₂) ₈ COOH
Conjugates		
8:2 FTUAL-GSH	8:2 Fluorotelomer unsaturated aldehyde glutathione	$F(CF_2)_7C-[S-(C_{10}H_{16}N_3O_6)]=CHCHO$
8:2 uFTOH-GSH	8:2 Fluorotelomer unsaturated alcohol glutathione	$F(CF_2)_7C-[S-(C_{10}H_{16}N_3O_6)]=CHCH_2OH$
8:2 uFTOH-SCysGly	8:2 Fluorotelomer unsaturated alcohol cysteinylglycine	$F(CF_2)_7C-[S-(C_5H_9N_2O_3)]=CHCH_2OH$
8:2 uFTOH-SCys	8:2 Fluorotelomer unsaturated alcohol cysteine	$F(CF_2)_7C-[S-(C_3H_6NO_2)]=CHCH_2OH$
8:2 uFTOH-SCysNAcetyl	8:2 Fluorotelomer unsaturated alcohol N-acetylcysteine	$F(CF_2)_7C-[S-(C_5H_8NO_3)]=CHCH_2OH$
8:2 FTUCA-GSH	8:2 Fluorotelomer unsaturated acid glutathione	$F(CF_2)_7C-[S-(C_{10}H_{16}N_3O_6)]=CHCOOH$
8:2 FTUCA-SCysGly	8:2 Fluorotelomer unsaturated acid cysteinylglycine	$F(CF_2)_7C-[S-(C_5H_9N_2O_3)]=CHCOOH$
8:2 FTUCA-SCys	8:2 Fluorotelomer unsaturated acid cysteine	$F(CF_2)_7C-[S-(C_3H_6NO_2)]=CHCOOH$

Isotope-labeled standards		
M8:2 FTOH	[1,1-D ₂ ,1,2- ¹³ C ₂] 8:2 FTOH	F(CF ₂) ₈ ¹³ CH ₂ ¹³ CD ₂ OH
M8:2 FTCA	$[1,2^{-13}C_2]$ 8:2 FTCA	$F(CF_2)_8^{13}CH_2^{13}COOH$
M8:2 FTUCA	$[1,2^{-13}C_2]$ 8:2 FTUCA	$F(CF_2)_7 CF = {}^{13}CH^{13}COOH$
MPFBA	[1,2,3,4- ¹³ C ₄] PFBA	$F(^{13}CF_2)_3^{13}COOH$
MPFHxA	$[1,2^{-13}C_2]$ PFHxA	$F(CF_2)_4^{13}CF_2^{13}COOH$
MPFOA	[1,2,3,4- ¹³ C ₄] PFOA	F(CF ₂) ₄ (¹³ CF ₂) ₃ ¹³ COOH
MPFNA	[1,2,3,4,5- ¹³ C ₅]PFNA	$F(CF_2)_4({}^{13}CF_2)_4{}^{13}COOH$

				Volume of		Final
		Conc.	Conc.	stock		conc. of
Component	Molecular	of stock	of stock	solution per	Element	element in
Component	weight	solution	solution	liter of final	Element	nutrient
		(M)	(g/L)	solution		solution
				(mL)		(ppm)
Macronutrients						
KNO ₃	101.10	0.5	50.6	2.5	Κ	58.7
Ca(NO ₃) ₂ ·4H ₂ O	236.15	0.5	118	2.5	Ca	50
NH ₄ NO ₃	80.04	0.1	8	2.5	Ν	59.5
KH ₂ PO ₄	136.09	0.1	13.6	2.5	Р	7.75
$MgSO_4 \cdot 7H_2O$	246.47	0.2	49.3	2.5	Mg	12
					S	16
Iron (Fe-EDTA)				0.25	Fe	0.28
FeSO ₄ ·7H ₂ O	278.05		5.57			
EDTA · 2Na	372.24		7.45			
Micronutrients				0.25		
H ₃ BO ₃	61.83		2.86		В	0.125
$MnCl_2 \cdot 4H_2O$	197.91		1.81		Mn	0.125
$ZnSO_4 \cdot 7H_2O$	287.56		0.22		Zn	0.0125
CuSO ₄	159.61		0.051		Cu	0.005
$Na_2MoO_4 \cdot 2H_2O$	241.95		0.025		Mo	0.0025

132	Table S2. 1/4-strength Hoagland nutrient solution recipe used in the study (pH =
133	6.0, $Eh = 280 mV)^a$

134 ^{*a*} Eh = oxidation-reduction potential.

Table S3. Instrumental method for the analysis of 8:2 FTOH and 7:2 sFTOH by UPLC-MS/MS

	Waters ultra-performance liquid chromatography system coupled to a				
Instrument	Xevo TQS tandem mass spectrometer with an electrospray ionization				
msuument	interface. The ma	ass spectrometer was	operated in th	ne negative ion	
	multiple reaction-	monitoring mode.			
Analytical	Waters ACQUIT	TY UPLC BEH Shi	eld RP18 col	umn (1.7 μm	
Column	particles, 150 mm	$1 \times 2.1 \text{ mm}$)			
Column	25 °C				
Temperature	55 C				
Mobile Phases	A: methanol	B: 1 mM ethanolamine	e in water		
	Time (min)	Percentage A	(%) Flow I	Rate (mL/min)	
	0.0	50		0.15	
Gradient	1.0	85		0.15	
Profile	6.0	85		0.15	
	6.5	50		0.15	
	10.0			0.15	
Injection	5 uI				
Volume	JμL				
	Analytes	Ion Transitions	Cone	Collision	
Monitored Ion	Analytes	ion manshions	Voltage (V)	Energy (eV)	
Transitions for	8:2 FTOH	462.97 > 355.00	14	18	
Analytes	7:2 sFTOH	393.00 >219.00	20	15	
	M8:2 FTOH	467.03 > 356.02	12	22	
	Capillary Voltage (kV) = 2.6 Desolvation Temperature (°C) =				
MS Parameters	Source Temperatu	ure (°C) = $120 350$			
	Cone Gas Flow $(L/Hr) = 50$ Desolvation Gas Flow $(L/Hr) = 600$				

Table S4. Instrumental method for the analysis of acid degradation products by UPLC-MS/MS

Instrument	Waters ultra-performance liquid chromatography system coupled to a Xevo TQS tandem mass spectrometer with an electrospray ionization							
mstrument	interface. The mass spectrometer was operated in the negative ion							
A 1 / 1	Weters A COLUTY LIDLC DELL C19 solvers (1.7 ver particles 50)							
Analytical	waters ACQUITY UPLC BEH C18 column (1.7 µm particles, 50							
Column	$mm \times 2.1 mm)$							
Column	35 °C							
Temperature								
Mobile Phases	A: acetonitrile	B: 0.15% acetic acid	1 in water					
	Time (min)	Percentage A (%)	Flow Ra	ate (mL/min)				
	0.0	5		0.40				
Gradient	2.5	60		0.40				
Profile	4.0	60		0.40				
	4.5	5		0.40				
	6.0	5		0.40				
Injection	5 uI							
Volume	JμL							
	Analytes Ion Transitions	Ion Transitions	Cone	Collision				
		Voltage (V)	Energy (eV)					
	8:2 FTCA	476.97 > 393.05	14	22				
	8:2 FTUCA	456.97 > 393.02	16	12				
	7:3 FTCA	441.03 > 337.04	22	14				
	PFBA	212.97 > 169.03	16	8				
M 1 T.	PFPeA	262.97 > 219.03	14	6				
Monitored Ion	PFHxA	312.97 > 269.03	12	12				
I ransitions for	PFHpA	362.97 > 319.04	14	12				
8:2 FIOH	PFOA	412.97 > 368.97	16	8				
Degradation	PFNA	462.97 > 419.04	14	8				
	M8:2 FTCA	478.97 > 394.05	14	22				
	M8:2 FTUCA	458.97 > 394.05	18	18				
	MPFBA	216.97 > 172.05	14	8				
	MPFHxA	314.97 > 270.05	14	8				
	MPFOA	416.97 > 372.06	14	10				
	MPFNA	467.97 > 423.00	16	6				
	Capillary Voltage	e(kV) = 3.0 Desol	lvation Tempe	erature (°C) =				
MS Parameters	Source Temperature (°C) = 150 350							
	Cone Gas Flow (I	L/Hr) = 50 Desol	lvation Gas Flo	W(L/Hr) = 600				

141	Table S5. Instrumental method for the analysis of GSH-conjugated metabolites
142	by UPLC-MS/MS

	Waters ultra-performance liquid chromatography system coupled to a Xevo TQS tandem mass spectrometer with an electrospray ionization							
Instrument	interface. The mass spectr	ometer was o	perated in th	e negative ion				
	MS/MS mode (daughter	scan, parent	scan, or mu	Itiple reaction				
	nonitoring).							
Analytical	Waters ACQUITY UPLC F	BEH Shield RP	18 column (1.	7 μm particles,				
Column	150 mm × 2.1 mm)							
Column	25 °C							
Temperature	55 C							
Mobile Phases	A: methanol B: 2 mM a	mmonium acet	ate					
	Time (min)	Percentage A (%) Flow I	Rate (mL/min)				
	0.0	50 0.1		0.15				
Gradient	1.5	85	5 0.15					
Profile	5.0	85		0.15				
	5.5	50 0.1		0.15				
	8.0	50 0.15		0.15				
Injection	5							
Volume	5 μL							
Monitored Ion	Analytas	Ion	Cone	Collision				
Transitions for	Analytes	Transitions	Voltage (V)	Energy (eV)				
Analytes in	lytes in 8:2 uFTOH-SCysNAcetyl		20	15				
MRM mode	8:2 FTUCA-SCys	558 > 471	20	15				
	Capillary Voltage $(kV) = 2$.	6 Desolv	vation Tempe	erature (°C) =				
MS Parameters	Source Temperature ($^{\circ}$ C) = 1	120 350						
	Cone Gas Flow $(L/Hr) = 50$ Desolvation Gas Flow $(L/Hr) = 600$							

	Analyte quantified	Recovery (%)			
Isotope-labeled compound	using specified isotope-labeled	Soybean tissues			Solution
*	compound	roots	stems	leaves	samples
M8:2 FTOH	8:2 FTOH, 7:2 sFTOH	83.8-101.6	86.5-105.4	79.7-107.8	73.9-94.0
M8:2 FTCA	8:2 FTCA, 7:3 FTCA	73.8-86.2	72.1-87.5	68.2-85.7	72.4-90.5
M8:2 FTUCA	8:2 FTUCA	85.4-106.1	79.5-104.3	88.9-102.2	86.2-111.6
MPFBA	PFBA	82.5-94.3	79.4-96.7	72.1-92.2	79.3-105.2
MPFHxA	PFPeA, PFHxA	72.9-91.5	77.2-93.0	78.4-93.6	71.7-96.7
MPFOA	PFHpA, PFOA	86.3-97.4	84.4-100.7	80.8-99.5	83.6-97.6
MPFNA	PFNA	82.1-98.3	80.5-94.4	76.1-92.0	80.3-93.1

Table S6. Isotope-labeled compounds used for quantification of analytes.

-						
Analyta	Spiked freeze-drying tissues					
Analyte	roots	stems	leaves			
8:2 FTOH	91.6 ± 4.8^{a}	90.5 ± 4.9	87.3 ± 3.7			
7:2 sFTOH	88.2 ± 7.2	89.4 ± 3.2	90.4 ± 5.1			
8:2 FTCA	80.2 ± 1.7	77.2 ± 4.7	78.8 ± 3.5			
8:2 FTUCA	95.1 ± 3.0	92.5 ± 7.6	94.3 ± 4.2			
7:3 FTCA	78.2 ± 4.5	78.4 ± 5.1	75.9 ± 8.2			
PFBA	87.1 ± 4.1	83.2 ± 4.0	83.1 ± 4.6			
PFPeA	85.7 ± 3.8	86.6 ± 4.4	83.9 ± 4.9			
PFHxA	84.3 ± 6.8	85.3 ± 5.4	86.8 ± 3.6			
PFHpA	93.9 ± 6.2	92.8 ± 2.5	91.6 ± 4.7			
PFOA	95.5 ± 4.6	91.1 ± 7.4	92.8 ± 6.8			
PFNA	91.9 ± 3.3	85.3 ± 5.0	79.0 ± 7.1			

Table S7. Effect of freeze-drying on the recoveries of 8:2 FTOH and its
metabolites in plant roots, stems and leaves (%)

^{*a*} Standard deviation for triplicate measurements.

Analyta	Soybear	n tissues	Solu	ution
Analyte –	LOD	LOQ	LOD	LOQ
8:2 FTOH	0.44	1.46	2.20	7.33
7:2 sFTOH	0.14	0.44	1.50	5.00
8:2 FTCA	0.22	0.70	1.02	3.40
8:2 FTUCA	0.06	0.20	0.35	1.17
7:3 FTCA	0.08	0.26	0.38	1.25
PFBA	0.24	0.80	0.75	2.50
PFPeA	0.12	0.40	0.65	2.17
PFHxA	0.08	0.26	0.50	1.67
PFHpA	0.08	0.26	0.50	1.67
PFOA	0.12	0.40	0.75	2.50
PFNA	0.18	0.58	0.88	2.93

Table S8. Limits of detection (LODs) and quantification (LOQs) in soybean
tissues and in nutrient solution. Values in ng/g dry weight and ng/L.

somela trea	concentration	mol % of initial	Recovery
sample type	$(nmol \cdot L^{-1})$	mass	(mol %)
Solution	38.5 ± 7.2^{a}	23.1 ± 4.3	
Adsorbed to the reactor	-	0.27 ± 0.10	38.0
Adsorbed to rubber plug	-	14.6 ± 2.7	

153 Table S9. Distribution of 8:2 FTOH in unplanted controls at 144 h

154 ^{*a*} Standard deviation for triplicate measurements.

Samples	Sample	8:2 FTOH	8:2 FTCA	8:2 FTUCA	7:2 sFTOH	7:3 FTCA	PFOA	PFHpA	PFHxA	Recor	very
	type	(mol %)	(mol %)	(mol %)	(mol %)	(mol %)	(mol %)	(mol %)	(mol %)	(mol	%)
Whole soybean	solution	21.95 ± 2.12 ^b	11.21 ± 1.53	1.67 ± 0.23	1.52 ± 0.53	1.65 ± 0.001	0.277 ± 0.052	0.025 ± 0.007	< LOD	38.31	46.3
system (12 h)	root	3.41 ± 0.56	2.75 ± 0.66	0.334 ± 0.053	0.637 ± 0.354	0.621 ± 0.007	0.060 ± 0.037	< LOD	< LOD	7.81	
	stem A	0.085 ± 0.022	0.042 ± 0.014	0.009 ± 0.002	0.010 ± 0.003	0.015 ± 0.007	0.0028 ± 0.00006	< LOD	< LOD	0.164	
	stem B	0.007 ± 0.003	0.0010 ± 0.0003	0.0003 ± 0.00006	0.0015 ± 0.0005	0.0005 ± 0.0003	0.0008 ± 0.0003	< LOD	< LOD	0.011	
	leaf	0.020 ± 0.007	0.0008 ± 0.0003	0.0001 ± 0.00001	0.0037 ± 0.0012	0.0008 ± 0.0003	0.0019 ± 0.0012	< LOD	< LOD	0.027	
Whole soybean	solution	3.89 ± 0.40	18.84 ± 2.78	4.20 ± 0.56	2.73 ± 1.91	2.94 ± 0.54	0.789 ± 0.122	0.037 ± 0.007	0.022 ± 0.004	33.45	44.0
system (24 h)	root	4.41 ± 0.31	3.48 ± 0.28	0.404 ± 0.026	1.09 ± 0.14	0.714 ± 0.104	0.089 ± 0.022	< LOD	< LOD	10.19	
	stem A	0.170 ± 0.035	0.081 ± 0.028	0.012 ± 0.002	0.021 ± 0.003	0.017 ± 0.005	0.0084 ± 0.0004	< LOD	< LOD	0.310	
	stem B	0.009 ± 0.0004	0.0015 ± 0.0010	0.0001 ± 0.00005	0.0019 ± 0.0003	0.0010 ± 0.0001	0.0015 ± 0.0006	< LOD	< LOD	0.015	
	leaf	0.028 ± 0.007	0.0012 ± 0.0001	0.0003 ± 0.00005	0.0061 ± 0.0023	0.0009 ± 0.0005	0.0036 ± 0.0009	< LOD	< LOD	0.040	
Whole soybean	solution	1.25 ± 0.09	9.34 ± 2.64	2.50 ± 0.67	6.47 ± 1.35	4.74 ± 0.44	1.43 ± 0.21	0.231 ± 0.101	0.086 ± 0.005	26.05	32.2
system (48 h)	root	1.88 ± 0.13	0.999 ± 0.380	0.252 ± 0.012	1.80 ± 0.33	0.765 ± 0.039	0.133 ± 0.014	0.0054 ± 0.0021	< LOD	5.83	
	stem A	0.095 ± 0.017	0.027 ± 0.007	0.007 ± 0.001	0.021 ± 0.005	0.042 ± 0.007	0.013 ± 0.002	< LOD	< LOD	0.206	
	stem B	0.014 ± 0.001	0.0049 ± 0.0017	0.0009 ± 0.0001	0.0044 ± 0.0005	0.0051 ± 0.0008	0.005 ± 0.003	< LOD	< LOD	0.035	
	leaf	0.012 ± 0.002	0.0037 ± 0.0004	0.0008 ± 0.0001	0.0075 ± 0.0019	0.0026 ± 0.0006	0.017 ± 0.006	< LOD	< LOD	0.044	
Whole soybean	solution	0.734 ± 0.103	2.99 ± 0.77	2.63 ± 0.23	8.41 ± 1.59	7.23 ± 1.05	2.40 ± 0.05	0.412 ± 0.303	0.137 ± 0.080	24.94	29.3
system (72 h)	root	1.09 ± 0.25	0.262 ± 0.095	0.221 ± 0.011	1.39 ± 0.06	0.833 ± 0.017	0.221 ± 0.012	0.011 ± 0.001	0.0023 ± 0.0013	4.03	
	stem A	0.119 ± 0.018	0.020 ± 0.003	0.009 ± 0.003	0.029 ± 0.005	0.075 ± 0.019	0.020 ± 0.001	< LOD	< LOD	0.272	
	stem B	0.010 ± 0.001	0.0053 ± 0.0010	0.0015 ± 0.0008	0.0049 ± 0.0006	0.010 ± 0.003	0.0054 ± 0.0004	< LOD	< LOD	0.037	
	leaf	0.015 ± 0.005	0.0018 ± 0.0001	0.0005 ± 0.0003	0.0064 ± 0.0024	0.0033 ± 0.0008	0.041 ± 0.009	< LOD	< LOD	0.068	
Whole soybean	solution	0.412 ± 0.142	0.145 ± 0.037	0.662 ± 0.229	5.79 ± 1.92	5.82 ± 1.10	4.01 ± 0.93	0.583 ± 0.207	0.161 ± 0.011	17.58	22.4
system (96 h)	root	0.135 ± 0.003	0.036 ± 0.002	0.121 ± 0.048	1.74 ± 0.16	1.86 ± 0.12	0.500 ± 0.214	0.020 ± 0.006	0.0062 ± 0.0004	4.42	
	stem A	0.043 ± 0.002	0.0062 ± 0.0008	0.0032 ± 0.0003	0.025 ± 0.004	0.119 ± 0.022	0.025 ± 0.0001	< LOD	< LOD	0.221	

155 **Table S10. Mass composition of 8:2 FTOH and quantified metabolites in different samples during exposure time**^{*a*}

		stem B	0.007 ± 0.0003	0.0028 ± 0.0001	0.0012 ± 0.0001	0.0054 ± 0.0013	0.030 ± 0.002	0.0067 ± 0.0015	< LOD	< LOD	0.054	
		leaf	0.014 ± 0.002	0.0018 ± 0.0001	< LOD	0.0068 ± 0.0015	0.0059 ± 0.0008	0.094 ± 0.026	< LOD	< LOD	0.123	
Whole soy	bean	solution	0.064 ± 0.010	0.025 ± 0.008	0.038 ± 0.015	0.746 ± 0.154	3.32 ± 0.79	5.00 ± 1.12	0.656 ± 0.079	0.213 ± 0.051	10.06	15.0
system (14	4 h)	root	0.099 ± 0.040	0.013 ± 0.002	0.017 ± 0.002	1.37 ± 0.06	2.00 ± 0.59	0.808 ± 0.205	0.031 ± 0.012	0.011 ± 0.0004	4.35	
		stem A	0.032 ± 0.010	0.0031 ± 0.0006	0.0019 ± 0.0006	0.022 ± 0.007	0.185 ± 0.048	0.041 ± 0.010	< LOD	< LOD	0.284	
		stem B	0.008 ± 0.002	0.0008 ± 0.00004	0.0008 ± 0.0001	0.0073 ± 0.0009	0.058 ± 0.010	0.012 ± 0.002	< LOD	< LOD	0.086	
		leaf	0.013 ± 0.005	< LOD	< LOD	0.0058 ± 0.0010	0.0091 ± 0.0030	0.147 ± 0.020	< LOD	< LOD	0.175	
Ethanol-wa	ashed	solution	0.501 ± 0.024	0.980 ± 0.488	2.20 ± 0.28	3.05 ± 0.48	2.48 ± 0.18	3.41 ± 0.59	0.187 ± 0.050	0.047 ± 0.028	12.86	17.2
controls (1	44 h)	root	0.322 ± 0.014	0.224 ± 0.074	0.184 ± 0.030	0.924 ± 0.237	0.711 ± 0.157	0.412 ± 0.064	0.0081 ± 0.0022	0.0032 ± 0.0011	2.79	
		stem A	0.122 ± 0.001	0.069 ± 0.028	0.0089 ± 0.0041	0.022 ± 0.004	0.287 ± 0.011	0.142 ± 0.044	< LOD	< LOD	0.65	
		stem B	0.042 ± 0.006	0.062 ± 0.028	0.0091 ± 0.0042	0.022 ± 0.005	0.208 ± 0.006	0.036 ± 0.003	< LOD	< LOD	0.38	
		leaf	0.027 ± 0.007	0.009 ± 0.003	0.0009 ± 0.0004	0.0059 ± 0.0012	0.016 ± 0.009	0.434 ± 0.037	< LOD	< LOD	0.49	
Root	12 h	solution	49.57 ± 3.60	12.13 ± 3.71	2.51 ± 0.10	1.05 ± 0.11	1.91 ± 0.49	0.052 ± 0.004	0.086 ± 0.005	< LOD	67.	3
exudate	24 h	solution	26.52 ± 6.18	18.14 ± 2.17	6.82 ± 1.35	3.16 ± 0.77	4.87 ± 0.83	0.190 ± 0.058	0.431 ± 0.142	0.025 ± 0.007	60.	2
controls	48 h	solution	13.00 ± 3.64	22.87 ± 3.10	9.72 ± 1.97	5.01 ± 1.31	6.30 ± 1.43	0.489 ± 0.131	0.653 ± 0.008	0.104 ± 0.006	58.	1
	72 h	solution	8.06 ± 2.70	8.32 ± 0.97	13.55 ± 2.62	9.74 ± 1.97	9.66 ± 0.83	0.636 ± 0.034	1.28 ± 0.52	0.157 ± 0.043	51.	4
	96 h	solution	3.40 ± 1.16	2.30 ± 0.11	10.98 ± 0.71	12.24 ± 3.82	13.91 ± 1.90	0.733 ± 0.143	2.08 ± 0.65	0.180 ± 0.067	45.	8
	144 h	solution	0.707 ± 0.317	0.240 ± 0.054	8.86 ± 1.74	14.13 ± 1.50	14.37 ± 1.68	1.05 ± 0.27	2.54 ± 0.73	0.246 ± 0.012	42.	1

^a The percentage of 8:2 FTOH and metabolites in the solution and soybean to the initial amount of 8:2 FTOH applied.

157 ^b Standard deviation for triplicate measurements.

Sample type	$k(\mathbf{h}^{-1})$	R^2	P value
Whole soybean systems	0.081 ± 0.012	0.978	0.0002
Root exudate controls	0.033 ± 0.002	0.987	0.0003

Table S11. Estimates of kinetic parameters for 8:2 FTOH decreases

		B	leaf
a tube to replenish			stem B
rubber — plug	1	2	stem A
nutrient	A.	M.	root
solution			8

Figure S1. Scheme of hydroponic exposure reactor and sampling.

165 Figure S2. Soybean biomass on dry weight basis (g) per reactor in whole soybean

166 systems and blank controls during exposure time.

169 **Figure S3.** Comparison of 8:2 FTOH and metabolite concentrations in whole soybean

170 systems and ethanol-washed soybean controls at 144 h.

171

172

Figure S4. Time-dependent levels of 8:2 uFTOH-SCysNAcetyl and 8:2
FTUCA-SCys in different parts of whole soybean. The Y value was the peak area of
8:2 uFTOH-SCysNAcetyl (586 > 457) and 8:2 FTUCA-SCys (558 > 471) divided by
the weight (g) of the extracted tissues.

Figure S5. Proposed metabolic pathways of 8:2 FTOH in soybean tissues.
Compounds inside dashed boxes are predicted and not monitored due to lack of
standard materials or weak signals. The double arrows indicate multiple
transformation steps. N-acetylase (NAT); deacetylase (DA).