
Slide 1 of4

Estimating the derivative coupling 
vector through model 
Hamiltonian parameters
Joshua A Kammeraad and Paul M Zimmerman

Purpose

The purpose of this document is to provide the original medium of the derivation of the derivative cou-
pling in  the model  used for  the accompanying paper as a more detailed,  verifiable,  and extensible
record.

Model Hamiltonian:

$Assumptions = {x, y} ∈ Reals && {g, h} > 0;
Hamiltonian[g_, h_, x_, y_] := {{g * x, h * y}, {h * y, -g * x}}
MatrixForm[Hamiltonian[g, h, x, y]]

 g x h y
h y -g x



As has been previously described in Fdez et. al. in 2016 (see ref in main text), adiabatic energies and
gradients computed using this model Hamiltonian are invariant with respect to the signs and transposi-
tion of x and y(although the actual values of g, h, x, and y and the mapping between model coordi-
nates and original nuclear coordinates will vary with respect to transposition and sign). Our convention
was to choose x as the Davidson eigenvector with the largest eigenvalue and y as the eigenvector with
the second largest eigenvalue.
While the direction and magnitude of the derivative coupling vector are also invariant with respect to
sign and transposition of x and y,  the derivative coupling’s sign is not. In CASSCF, the sign of the
derivative coupling vector is dependent on the choice of sign of the wavefunction. This sign is arbitrary
but must be chosen consistently across time in dynamics simulations to correctly model interference
and population transfer. In our method, equivalent consistency should be acheivable without depen-
dence on the underlying method by consistently choosing the assignment and sign of the Davidson
eigenvectors.  Making the choice that maximizes corresponding eigenvector overlap between nearby
molecular geometries should provide this consistency even when passing through a conical intersection
(as long as only two states are involved). For example, in surface hopping overlap could be maximized
between adjacent time steps.
We  leave  enforcement  of  this  consistency  for  future  work  so  when  benchmarking  our  vectors  we
choose the sign of the Davidson derivative coupling to match that of the benchmark.
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Slide 2of4 Eigenvectors and eigenvalues of the parameterized model 
Hamiltonian

The Hamiltonian  is  diagonalized to  determine the  normalized eigenvectors  and their  corresponding
eigenvalues as a function of the branching plane molecular coordinates. Each eigenvector represents
the coefficients of an adiabat when represented as a linear combination of the 2 diabats. Each eigen-
value represents the energy associated with the corresponding adiabat. Note the distinction between
these eigenpairs  of  the model  Hamiltonian and the eigenpairs  of  the ΔE2  Hessian of  the energies
(Hamiltonian eigenvalues) used to fit the model.

Eigenvalues of the Hamiltonian:

eigenvalues[g_, h_, x_, y_] := Eigenvalues[Hamiltonian[g, h, x, y]]
eigenvalues[g, h, x, y]

- g2 x2 + h2 y2 , g2 x2 + h2 y2 

Corresponding normalized eigenvectors:

normalEigenvecs[g_, h_, x_, y_] :=
SimplifyNormalize /@ Eigenvectors[Hamiltonian[g, h, x, y]]

normalEigenvecs[g, h, x, y]


g x - g2 x2 + h2 y2

h y 1 +
-g x+ g2 x2+h2 y2

2

h2 y2

,
1

1 +
-g x+ g2 x2+h2 y2

2

h2 y2

,


g x + g2 x2 + h2 y2

h y 1 +
g x+ g2 x2+h2 y2

2

h2 y2

,
1

1 +
g x+ g2 x2+h2 y2

2

h2 y2
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Slide 3of4 Analytic difference gradient and derivative coupling vectors 
in the model

Energy difference:

diffEnergy[g_, h_, x_, y_] =
eigenvalues[g, h, x, y][[2]] - eigenvalues[g, h, x, y][[1]]

2 g2 x2 + h2 y2

Difference gradient:

The difference gradient can be evaluated in the model by analytic differentiation of the difference in the
energies (eigenvalues) of the model Hamiltionian with respect to molecular coordinates.

differenceGradient[g_, h_, x_, y_] = D[diffEnergy[g, h, x, y], {{x, y}}]


2 g2 x

g2 x2 + h2 y2
,

2 h2 y

g2 x2 + h2 y2


Derivative coupling:

There is no derivative coupling in the diabatic basis so the derivative coupling can be evaluated in the
model using derivatives with respect to molecular coordinates of the coefficients of the adiabats when
represented in the diabatic basis. Equivalent equations are in methods section of main text.

derivativeCoupling [g_, h_, x_, y_] =
SimplifynormalEigenvecs[g, h, x, y][[1]][[1]] *

D[normalEigenvecs[g, h, x, y][[2]][[1]], {{x, y}}] +
normalEigenvecs[g, h, x, y][[1]][[2]] *
D[normalEigenvecs[g, h, x, y][[2]][[2]], {{x, y}}] *

(*had trouble getting Mathematica to assume g and h are positive*)
Sign[h] * y / Abs[y]

-
g h y

2 g2 x2 + h2 y2
,

g h x

2 g2 x2 + 2 h2 y2
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Angle between the difference gradient and derivative coupling:

angle[g_, h_, x_, y_] =
FullSimplify[VectorAngle[differenceGradient[g, h, x, y] * Sign[g] * Sign[h],

derivativeCoupling[g, h, x, y]]]

ArcCos
-g2 + h2 x y

x2 + y2 g4 x2 + h4 y2
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Slide 4of4 Plot of difference gradient + derivative coupling in the 
branching plane

To visualize the difference gradient and derivative coupling, sample values g=2 and h=1 were chosen.
The corresponding analytic  difference gradient  and derivative coupling in  the model  are printed for
reference.

differenceGradient[2, 1, x, y]


8 x

4 x2 + y2
,

2 y

4 x2 + y2


derivativeCoupling[2, 1, x, y]

-
y

4 x2 + y2
,

2 x

8 x2 + 2 y2
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vecPlot = VectorPlot[
{differenceGradient[2, 1, x, y], derivativeCoupling[2, 1, x, y]}, {x, -1, 1},
{y, -1, 1}, LabelStyle → {Black, FontFamily -> "Georgia", FontSize → 20},
ImageSize → 500, PlotRange → All, PlotLabel →
"Branching plane vector behavior\nnear a conical intersection (top view)",

PlotLegends → Placed[{"Difference gradient", "Derivative coupling"}, Below],
FrameLabel → {x, y}, VectorPoints → 5, VectorScale →
{0.15, Scaled[0.75], If[Abs[#1] < 0.01 && Abs[#2] < 0.01, None, #5^.5] &}];

vecPlot = Show[vecPlot /. Arrow[{p_, q_}] ⧴ Arrow[{p + (q - p) / 2, q + (q - p) / 2}]]
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