# **Supporting Information**

## Reduced Graphene Oxide based 'Turn-On' Fluorescence Sensor for Highly Reproducible and Sensitive Detection of Small Organic Pollutants

*Reetam Mitra<sup>†</sup> and Arindam Saha*\* <sup>‡</sup>

 † Department of Chemical Engineering, Jadavpur University, 188, Raja S. C. Mallick Road, West Bengal, Kolkata-700032, India
 ‡ Sensor and Actuator Division, CSIR-Central Glass and Ceramic Research Institute,

196, Raja S. C. Mallick Road, West Bengal, Kolkata-700032, India

\*Address correspondence to arindamchemiitkgp@gmail.com

There are totally 15 pages, with 10 Figures and 4 Tables in the Supporting Information.

| Pollutant<br>Detected                     | Materials<br>Used                                                 | Methods of<br>Detection                 | Limit of<br>Detection        | Range of<br>Response                                    | Selectivity                                                                                                        | Reproducibility<br>and stability                                                    | Disadvantages                                                                           | Reference    |
|-------------------------------------------|-------------------------------------------------------------------|-----------------------------------------|------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------|
| BPA                                       | C <sub>8</sub> and C <sub>18</sub><br>column                      | HPLC-ED<br>(Coulometry)                 | ~ 10 <sup>-9</sup> M         | ~ 10 <sup>-10</sup> M<br>to ~ 10 <sup>-7</sup> M        | Not shown                                                                                                          | RSD≤3%<br>Stability not<br>discussed                                                | Complex<br>technique, long<br>pre-processing<br>time                                    | 26           |
| BPA                                       | Au-Pd<br>nanoparticle/<br>graphene<br>composite                   | ED                                      | ~4 X 10 <sup>-9</sup><br>M   | ~ 10 <sup>-8</sup> M<br>to ~ 10 <sup>-6</sup> M         | Selective<br>against ions<br>and few<br>Phenolic<br>compounds<br>tested                                            | RSD = 2.6 %<br>Stable for ~7<br>days with<br>increase in<br>RSD to 3.8 %            | Complex<br>fabrications,<br>long pre-<br>processing time                                | 27           |
| BPA                                       | Cyclodextrin<br>modified<br>ionic liquid<br>based carbon<br>paste | ED<br>(Voltammetry<br>and<br>impedance) | ~ 8 X 10 <sup>-8</sup><br>M  | ~ 10 <sup>-7</sup> M<br>to ~ 10 <sup>-5</sup> M         | Selective<br>against ions<br>and few<br>Phenolic<br>compounds<br>tested                                            | RSD = ~ 5 %<br>Stable for one<br>month with<br>90% activity<br>retained             | Poor sensitivity,<br>complex<br>fabrications                                            | 28           |
| BPA                                       | Graphene-<br>iron oxide<br>composite                              | ED                                      | ~ 10 <sup>-8</sup> M         | ~6 X 10 <sup>-8</sup> M<br>to ~ 10 <sup>-5</sup> M      | Selective<br>against ions<br>and few<br>Phenolic<br>compounds<br>tested.<br>(phenol,<br>naphthol can<br>interfere) | RSD = 2.7 %<br>Stable for two<br>weeks                                              | Poor sensitivity,<br>complex<br>fabrications                                            | 29           |
| BPA                                       | Small<br>fluorophore<br>derivitized<br>column                     | HPLC-<br>fluorescence                   | ~ 10 <sup>-10</sup> M        | ~ 10 <sup>-10</sup> M<br>to ~ 5 X 10 <sup>-9</sup><br>M | Not shown                                                                                                          | RSD = 8.7 %<br>Stability not<br>discussed                                           | Long<br>processing time,<br>complex<br>fabrications<br>and<br>derivitization<br>process | 30           |
| Estriol                                   | Graphene                                                          | 'Turn-On'<br>Fluorescent<br>Sensor      | ~ 10 <sup>-9</sup> M         | ~ 10 <sup>-9</sup> M<br>to ~10 <sup>-8</sup> M          | Selective<br>against few<br>biomolecules                                                                           | Not discussed                                                                       | Poor<br>reproducibility                                                                 | 31           |
| BPA and<br>other<br>Phenolic<br>compounds | Polymer<br>materials                                              | HRGC-MS                                 | ~ 2 X 10 <sup>-14</sup><br>M | Not shown                                               | Not shown                                                                                                          | Not discussed                                                                       | Long<br>processing time,<br>complex<br>fabrications                                     | 32           |
| BPA                                       | Standard<br>HPLC<br>columns                                       | LC-MS                                   | ~ 10 <sup>-9</sup> M         | Not shown                                               | Not shown                                                                                                          | Not discussed                                                                       | Long<br>processing time,<br>complex<br>fabrications,<br>poor sensitivity                | 33           |
| BPA                                       | Graphene-<br>dextran-<br>fluorescein<br>composite                 | 'Turn-On'<br>Fluorescent<br>Sensor      | ~ 8 X 10 <sup>-12</sup><br>M | ~ 10 <sup>-10</sup> M<br>to ~10 <sup>-6</sup> M         | Selective<br>against other<br>molecules,<br>ions and few<br>Phenolic<br>compounds<br>tested                        | RSD ≤ 1%<br>Stable for more<br>than six months<br>with increase in<br>RSD to ~1.5 % |                                                                                         | This<br>Work |

| Table S1: Comparison | of the existing methods | of bisphenol A | (BPA) detection. |
|----------------------|-------------------------|----------------|------------------|
|                      |                         |                |                  |

HPLC: High Performance Liquid Chromatography
ED: Electrochemical Detection
LC-MS: Liquid Chromatography Mass Spectroscopy
HRGC-MS: High Resolution Gas Chromatography Mass Spectroscopy
RSD: Relative Standard Deviation

| Table S2: Comparison of the | e existing methods of | picric acid (PA) detection. |
|-----------------------------|-----------------------|-----------------------------|
|-----------------------------|-----------------------|-----------------------------|

| Pollutant<br>Detected | Materials<br>Used                                     | Methods of<br>Detection                                    | Limit of<br>Detection                                            | Range of<br>Response                            | Selectivity                                                                                 | Reproducibility<br>and stability                                                         | Disadvantages                                                       | Referenc     |
|-----------------------|-------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------|
| Picric Acid           | Fluorescent<br>polymer and<br>metalloles              | 'Turn-Off'<br>Fluorescent<br>Sensor                        | ~ 10 <sup>-5</sup> M                                             | Not shown                                       | Not shown                                                                                   | Not discussed                                                                            | Poor sensitivity,<br>complex<br>synthesis                           | 40           |
| Picric Acid           | Fluorescent<br>polymer                                | 'Turn-Off'<br>Fluorescent<br>Sensor                        | ~ 10 <sup>-5</sup> M                                             | Not shown                                       | Selective<br>towards other<br>nitro<br>aromatics                                            | Not discussed                                                                            | Poor sensitivity,<br>complex<br>synthesis                           | 42           |
| Picric Acid           | Fluorescent<br>polymer                                | 'Turn-Off'<br>Fluorescent<br>Sensor                        | ~ 10 <sup>-5</sup> M                                             | Not shown                                       | Not shown                                                                                   | Not discussed                                                                            | Poor sensitivity,<br>complex<br>synthesis                           | 43           |
| Picric Acid           | Fluorescent<br>polymer                                | 'Turn-Off'<br>Fluorescent<br>Sensor                        | ~10 <sup>-5</sup> M<br>(~10 <sup>-12</sup> M<br>in TLC<br>strip) | Not shown                                       | Selective<br>towards other<br>nitro<br>aromatics                                            | Not discussed                                                                            | Poor sensitivity,<br>complex<br>synthesis                           | 44           |
| Picric Acid           | Eu (III) based<br>metal organic<br>framework<br>(MOF) | 'Turn-Off'<br>Fluorescent<br>Sensor                        | ~ 10 <sup>-7</sup> M                                             | ~ 10 <sup>-5</sup> M<br>to ~10 <sup>-2</sup> M  | Selective<br>towards other<br>nitro<br>aromatics                                            | Not discussed                                                                            | Poor sensitivity<br>and<br>reproducibility,<br>complex<br>chemistry | 45           |
| Picric Acid           | Metallogel<br>based MOF                               | 'Turn-On'<br>Fluorescent<br>and<br>colorimetric<br>sensing | ~ 10 <sup>-5</sup> M                                             | Not shown                                       | Selective<br>towards other<br>nitro<br>aromatics                                            | Not discussed                                                                            | Poor sensitivity,<br>complex<br>synthesis                           | 46           |
| Picric Acid           | Chitosan                                              | 'Turn-Off'<br>Fluorescent<br>Sensor                        | ~ 10 <sup>-8</sup> M                                             | Not shown                                       | Selective<br>towards other<br>nitro<br>aromatics                                            | Stable for six<br>months.<br>Reproducibility<br>not discussed                            | Poor sensitivity<br>and<br>reproducibility,<br>complex<br>synthesis | 47           |
| Picric Acid           | Fluorescent<br>polysiloles                            | 'Turn-Off'<br>Fluorescent<br>Sensor                        | ~ 10 <sup>-7</sup> M                                             | Not shown                                       | Selective<br>towards other<br>nitro<br>aromatics                                            | Not discussed                                                                            | Poor sensitivity<br>and<br>reproducibility                          | 48           |
| Picric Acid           | Small<br>fluorophores                                 | 'Turn-Off'<br>Fluorescent<br>Sensor                        | ~ 10 <sup>-6</sup> M                                             | Not shown                                       | Selective<br>towards other<br>nitro<br>aromatics                                            | Not discussed                                                                            | Poor sensitivity<br>and<br>reproducibility                          | 49           |
| Picric Acid           | Small<br>fluorophores                                 | 'Turn-Off'<br>Fluorescent<br>Sensor                        | ~ 10 <sup>-14</sup> M                                            | Not shown                                       | Selective<br>towards other<br>nitro<br>aromatics                                            | Not discussed                                                                            | Poor<br>reproducibility,<br>complex<br>chemistry                    | 50           |
| Picric Acid           | Small<br>fluorophores                                 | 'Turn-Off'<br>Fluorescent<br>Sensor                        | ~ 10 <sup>-7</sup> M                                             | Not shown                                       | Selective<br>towards other<br>nitro<br>aromatics                                            | Not discussed                                                                            | Poor sensitivity<br>and<br>reproducibility                          | 51           |
| Picric Acid           | Graphene<br>oxide-methyl<br>cellulose<br>hybrid       | 'Turn-Off'<br>Fluorescent<br>Sensor                        | ~ 10 <sup>-6</sup> M                                             | Not shown                                       | Poor<br>Selectivity as<br>tested with<br>other nitro<br>aromatics                           | Not discussed                                                                            | Poor sensitivity                                                    | 52           |
| Picric Acid           | Graphene<br>oxide-<br>pyridine<br>hybrid              | 'Turn-Off'<br>Fluorescent<br>Sensor                        | ~ 10 <sup>-6</sup> M                                             | Not shown                                       | Selective<br>towards other<br>nitro<br>aromatics                                            | Not discussed                                                                            | Poor sensitivity                                                    | 53           |
| Picric Acid           | Carbon<br>nanoparticle                                | 'Turn-Off'<br>Fluorescent<br>Sensor                        | ~ 10 <sup>-6</sup> M                                             | Not shown                                       | Selective<br>towards other<br>nitro<br>aromatics                                            | Not discussed                                                                            | Poor sensitivity                                                    | 55           |
| Picric Acid           | Graphene-<br>dextran-<br>fluorescein<br>composite     | 'Turn-On'<br>Fluorescent<br>Sensor                         | ~ 5 X 10 <sup>-12</sup><br>M                                     | ~ 10 <sup>-11</sup> M<br>to ~10 <sup>-6</sup> M | Selective<br>against other<br>molecules,<br>ions and few<br>Phenolic<br>compounds<br>tested | $RSD \le 1\%$<br>Stable for more<br>than six months<br>with increase in<br>RSD to ~1.5 % |                                                                     | This<br>Work |

Table S3: Comparison of the existing methods of 1-napthol (NP) and phenol (PH) detection.

| Pollutant<br>Detected | Materials<br>Used                                 | Methods of<br>Detection                                | Limit of<br>Detection       | Range of<br>Response                                           | Selectivity                                                                                 | Reproducibility<br>and stability                                                         | Disadvantages                                                           | Reference    |
|-----------------------|---------------------------------------------------|--------------------------------------------------------|-----------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------|
| 1-naphthol            | Beta-<br>Cyclodextrin                             | HPLC-<br>fluorescence                                  | ~ 10 <sup>-9</sup> M        | Not shown                                                      | Not shown<br>although in<br>report it<br>stated as<br>selective                             | Not discussed                                                                            | Long<br>processing time,<br>complex<br>fabrication                      | 17           |
| 1-naphthol            | C <sub>18</sub> column                            | LC-<br>fluorescence                                    | ~ 10 <sup>-9</sup> M        | ~7 X 10 <sup>-8</sup> M<br>to ~ 3 X 10 <sup>-6</sup><br>M      | Not shown                                                                                   | RSD≤5%<br>Stability not<br>discussed                                                     | Long<br>processing time,<br>complex<br>fabrication                      | 24           |
| 1-naphthol            | Graphene-<br>dextran-<br>fluorescein<br>composite | 'Turn-On'<br>Fluorescent<br>Sensor                     | ~ 10 <sup>-11</sup> M       | ~ 10 <sup>-10</sup> M<br>to ~10 <sup>-6</sup> M                | Selective<br>against other<br>molecules,<br>ions and few<br>Phenolic<br>compounds<br>tested | $RSD \le 1\%$<br>Stable for more<br>than six months<br>with increase in<br>RSD to ~1.5 % |                                                                         | This<br>Work |
| Phenol                | Filter paper<br>with MBTH                         | Colorimetric<br>detection via<br>enzymatic<br>reaction | ~ 10 <sup>-6</sup> M        | ~ 10 <sup>-6</sup> M<br>to ~10 <sup>-4</sup> M                 | Not shown                                                                                   | RSD ≤ 6%<br>Stable for three<br>weeks with<br>decrease in<br>activity to 37%             | Poor sensitivity<br>and costly                                          | 34           |
| Phenol                | Copper<br>phosphate-<br>enzyme<br>hybrid          | Colorimetric<br>detection via<br>enzymatic<br>reaction | ~ 10 <sup>-6</sup> M        | ~ 10 <sup>-6</sup> M<br>to ~10 <sup>-4</sup> M                 | Selective<br>against other<br>organic<br>molecules<br>tested                                | RSD ≤ 6%<br>Stable for two<br>weeks as tested<br>for 10 cycles.                          | Poor sensitivity,<br>complex<br>derivitization<br>process and<br>costly | 35           |
| Phenol                | Carbon paste<br>electrode                         | Voltammetric<br>detection                              | ~ 10 <sup>-6</sup> M        | ~ 2.5 X 10 <sup>-6</sup><br>M<br>to ~5 X 10 <sup>-5</sup><br>M | Selective<br>against other<br>phenolic<br>compounds                                         | Not discussed                                                                            | Poor sensitivity,<br>complex<br>fabrication<br>process                  | 36           |
| Phenol                | BPX-5<br>column                                   | GC-MS and<br>HPLC<br>fluorescence                      | Order of<br>microgram       | Not shown                                                      | Not shown<br>although in<br>report it<br>stated as<br>selective                             | RSD ≤ 5%<br>Poor<br>robustness of<br>the system                                          | Poor sensitivity,<br>long processing<br>time, complex<br>fabrication    | 37           |
| Phenol                | Graphene-<br>dextran-<br>fluorescein<br>composite | 'Turn-On'<br>Fluorescent<br>Sensor                     | ~7 X 10 <sup>-12</sup><br>M | ~ 10 <sup>-11</sup> M<br>to ~10 <sup>-6</sup> M                | Selective<br>against other<br>molecules,<br>ions and few<br>Phenolic<br>compounds<br>tested | $RSD \le 1\%$<br>Stable for more<br>than six months<br>with increase in<br>RSD to ~1.5 % |                                                                         | This<br>Work |

HPLC: High Performance Liquid Chromatography LC: Liquid Chromatography

GC-MS: Gas Chromatography Mass Spectroscopy

**Table S4:** List of conventional analytical techniques for quantitative detection of organic pollutants under study.

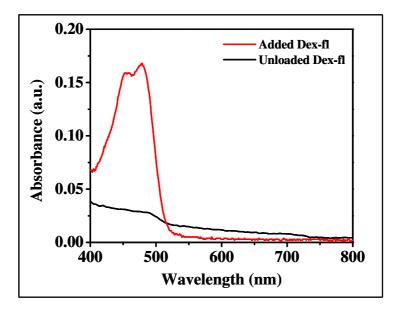
| Name of the pollutant                     | Methods and<br>materials used                                                    | Source                                                                                                                                                                                               | Limit of<br>Detection     | Applications                                                                      |  |
|-------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------------------------------------------------------------------|--|
| BPA                                       | UPLC with PDA<br>or UV detector.<br>C18 column                                   | Methods Development<br>Team,<br>Industrial Hygiene<br>Chemistry Division,<br>OSHA Salt Lake<br>Technical Centre<br>Sandy UT 84070-6406<br>(United States<br>Department of Labor,<br>Method No. 1018) | 0.041<br>nanogram<br>(ng) | Applied in the<br>sample of<br>workplace air<br>from which<br>BPA is<br>extracted |  |
| BPA                                       | LC/Tandem<br>Mass<br>Spectrometry.<br>C8 or C18<br>column                        | ASTM COMPASS<br>Designation: D7574 –<br>16                                                                                                                                                           | 40 ng /L                  | Applied in<br>environmental<br>waters                                             |  |
| BPA                                       | HPLC with UV<br>or FL detector.<br>C18 column                                    | Sigma Aldrich<br>Food and Beverage<br>analysis                                                                                                                                                       | ~ 1 µg/mL                 | Applied in<br>drinking<br>waters                                                  |  |
| Phenol                                    | GLC with<br>hydrogen flame<br>ionization<br>detector.<br>carbowax 20-M<br>column | ASTM COMPASS<br>Designation: D2580 –<br>06                                                                                                                                                           | ~120 mg/L                 | Applied in<br>water samples                                                       |  |
| Phenol                                    | GC/MS<br>Fused silica<br>capillary column                                        | National Exposure<br>Research Laboratory,<br>Office of Research and<br>Development,<br>U.S. Environmental<br>Protection Agency,<br>Cincinnati, Ohio 45268<br>Method: 528                             | ~0.025 g/L                | Applied in<br>drinking<br>waters                                                  |  |
| Phenol                                    | GC with flame<br>ionization<br>detector                                          | United States<br>Environment<br>Protection Agency<br>(EPA)<br>Method: 604                                                                                                                            | ~ 0.14 µg/L               | Applied in<br>industrial<br>waste water                                           |  |
| Picric acid<br>and other<br>nitro phenols | HPLC                                                                             | The National Institute<br>for Occupational Safety<br>and Health (NIOSH),<br>Centers for Disease<br>Control and Prevention<br>Method: S228                                                            | ~ 0.036<br>µg/L           | Applied in<br>particulate<br>picric acid                                          |  |
| Picric acid                               | HPLC                                                                             | U.S. Geological Survey,<br>Open File Report<br>No. 79-207, Menlo<br>Park, CA, 1979                                                                                                                   | NA                        | Applied in<br>water samples                                                       |  |
| 1-naphthol                                | HPLC-Fl<br>detector with<br>post column<br>derivitization                        | United States<br>Environment<br>Protection Agency<br>(EPA)<br>Method: 531.2                                                                                                                          | ~ 0.063<br>µg/L           | Applied in<br>water samples                                                       |  |

GLC: Gas Liquid Chromatography UPLC: Ultra Performance Liquid Chromatography PDA: Photo Diode Array FL: Fluorescence

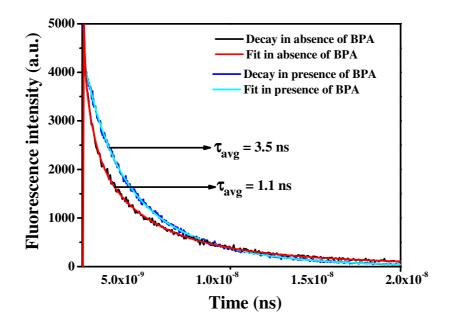
#### **Derivation of Binding constant:**

One site Binding model Equation:

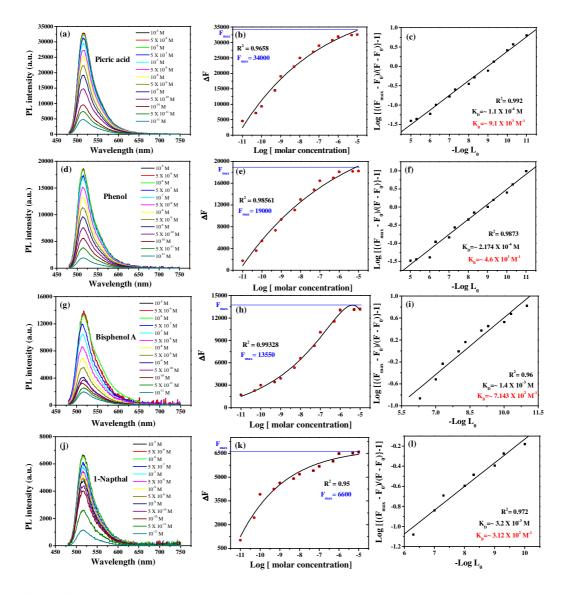
 $F - F_0 = (F_{max} - F_0) X L_0 / (K_D + L_0) \quad .....(1)$ 


Where,

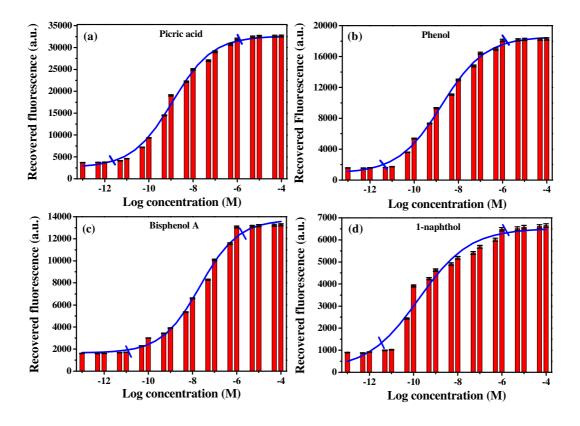
$$\begin{split} F &= \text{Recovered Fluorescence intensity in presence of ligands (organic pollutant)} \\ F_0 &= \text{Fluorescence intensity in the absence of ligands (organic pollutant)} \\ L_0 &= \text{Equilibrium concentration of the ligand (organic pollutant)} \\ F_{max} &= \text{Maximum recovered fluorescence intensity at equilibrium} \\ K_D &= \text{Dissociation constant} \\ K_B &= \text{Binding constant} (= 1/K_D) \end{split}$$


Rearranging equation (1),

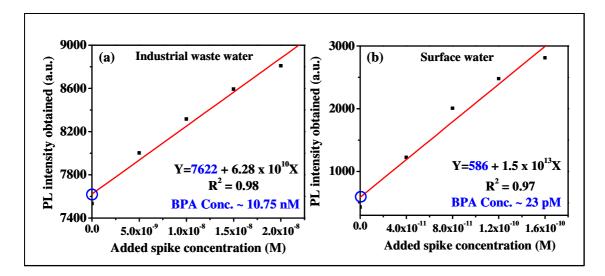
$$\begin{split} (F_{max} - F_0) / (F - F_0) &= K_D / L_0 + 1 \\ &\rightarrow \{ (F_{max} - F_0) / (F - F_0) \} - 1 = K_D / L_0 \\ &\rightarrow Log \left[ \{ (F_{max} - F_0) / (F - F_0) \} - 1 \right] = -Log L_0 + Log K_D \quad (y = mx + c) \end{split}$$


 $F_{max}$  is obtained by plotting Log  $L_0$  against  $\Delta F~(F\mbox{-}F_0)$ 

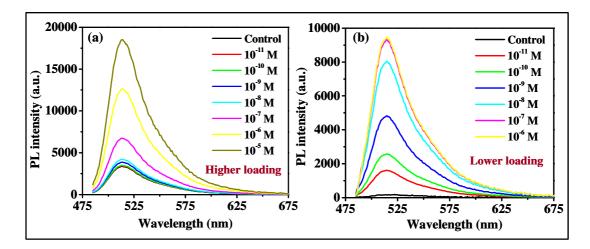



**Figure S1:** UV-Visible spectroscopy has been performed to calculate the loading of dextran-fluorescein. Here, absorbance of the added dextran-fluorescein and unloaded dextran-fluorescein has been measured after appropriate dilution. From the difference in absorbance at 490 nm of the above absorbances loaded dye amount has been calculated.

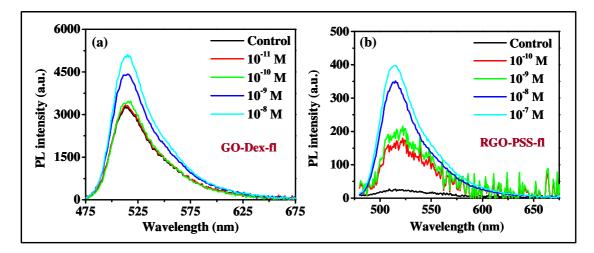



**Figure S2:** Fluorescence lifetime measurement of the composite, before and after addition of organic pollutant bisphenol A (BPA). Excitation wavelength is 405 nm. in the presence of BPA average lifetime increases due to decrease in non-radiative energy transfer.

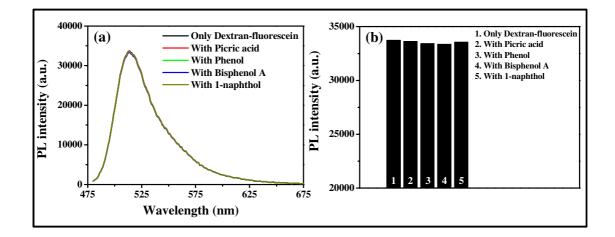



**Figure S3:** Binding constant measurement of picric acid (a-c), phenol (d-f), bisphenol A (g-i) and 1-napthal (j-l). Recovered fluorescence is first plotted for varying concentration of pollutant (a, d, g, j), then difference in fluorescence ( $\Delta$ F) is plotted against Logarithm of molar concentration of pollutant (b, e, h, k) to obtain F<sub>max</sub>, finally K<sub>D</sub> is obtained from the graph according the above mentioned equation (c, f, i, l). Binding constant K<sub>B</sub> is obtained from the value of K<sub>D</sub>. From the measurement it has been observed that picric acid has the highest binding constant, while 1-napthal has the lowest. Error bars are indicated in each data point.

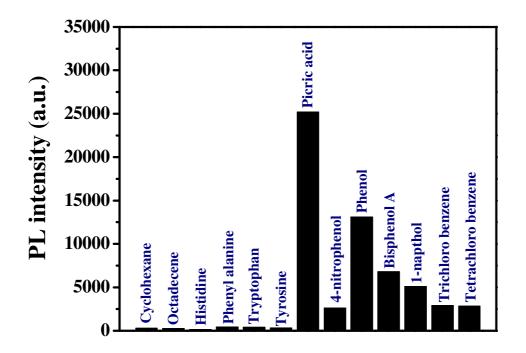



**Figure S4:** To confirm the range of detection and linearity of response all the organic pollutants are tested between  $10^{-4}$  M to  $10^{-13}$  M. The results obtained clearly indicates that practical detection of the pollutants are only possible in the range of detection. The sigmoidal plot shows that above and below the range of linearity there is no significant change in fluorescence.

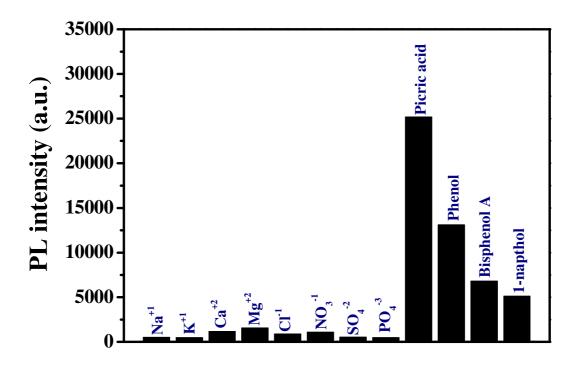



**Figure S5:** Quantitative estimation of bisphenol A in industrial waste water and surface water by standard addition method. In this method, we have used our detection approach and have found ~10.75 nM bisphenol A in industrial waste water and ~23 pM bisphenol A in surface water.




**Figure S6:** To optimize the loading concentration we have tried both higher (~60  $\mu$ M / 5 mg composite) and lower loading conditions (~5  $\mu$ M / 5 mg composite). Bisphenol A has been studied as organic pollutant. In case of higher loading (a) high background signal diminishes its performance especially in the lower range of detection. Lower loading (b) limits its detection sensitivity especially in the upper range of detection.




**Figure S7:** Two control composites have been tested for bisphenol A detection. In graphene oxide-dextran fluorescein composite (GO-Dex-fl) diminished sensitivity has been observed due to high background signal results from inefficient fluorescence quenching of the fluorophore (a). In the other composite (RGO-PSS-fl) also poor sensitivity observed (b). Here the fluorophore strongly binds with the composite surface results in inefficient fluorescence recovery.



**Figure S8:** Control experiments have been performed to test the role of graphene oxide (GO) in the detection approach. The experiments were performed in the absence of GO, keeping all other parameters same. All the organic pollutants tested have 10<sup>-8</sup> M concentration. Without GO, there is no significant quenching of dex-fl was recorded in presence of organic pollutants. PSS also have found negligible effect on the fluorescence of dex-fl. (a) The results are shown in bar diagram for better understanding of the effect of GO in the detection approach.



**Figure S9:** Control experiments have been performed to test the sensitivity of the detection approach. It has been found that common organic solvents or lipophilic amino acids do not respond in this approach. Only the organic pollutants tested respond in this approach. This data also demonstrate different sensitivity of different organic pollutants towards this approach due to varying extent of interaction with the detection probe. Polychloro benzenes (PCBs) and 4-nitrophenol were also tested for interference by this approach since these molecules present in water samples as common organic pollutants. All the samples tested have 10<sup>-8</sup> M concentration.



**Figure S10:** Control experiments have been performed with common ions generally present in water samples. It has been found that these ions do not have any significant interference in the detection approach. All the ions tested have  $10^{-7}$  M concentration.

### **Calculation for the estimation of dye loading:**

5 mg composite sample (RGPD-fl) first dissolved in water (pH ~9.0 with carbonatebicarbonate buffer). Precipitation redispersion method followed to completely precipitate the composite sample. The supernatant containing unloaded dye was collected and absorbance measured by appropriate dilution (B). Known concentration of dye has been added to RGO-PSS composite (A).

Absorbance of total added dye (A): 0.167 (10 times dilute) Absorbance of unloaded dye (B): 0.028 (10 times dilute)

Thus, absorbance of loaded dye: 0.139 Molar extinction coefficient of FITC-Dex: ~75,000 M<sup>-1</sup>cm<sup>-1</sup> (Assuming same as fluorescein dye)

 $A = \varepsilon cl$ 

 $c = A/\epsilon l$ 

A= 0.139 l= 1 cm  $\varepsilon$ = 75,000 M<sup>-1</sup>cm<sup>-1</sup>

 $c= 1.85 \text{ X } 10^{-6} \text{ Molar}$ 

Since, the loading experiment has been done by diluting 10 times of all the solution, the final concentration of loaded dye is ~  $20 \,\mu$ M.

## Standard addition method for quantitative bisphenol A detection:

This method is well known and commonly employed in quantitative detections routinely. We have collected industrial waste water, surface water and packaged drinking water from different sources. The sample waters ware first centrifuged at 10000 rpm (5 minutes) and the supernatant collected followed by filtering with Whatman 40 filter paper to remove dust and agglomerated impurities. Next, the filtrate was concentrated 5 times the original volume by boiling. Next five different batches with 1 ml sample each was prepared followed by addition of spike solution by varying volumes in those batches. Final spike concentration has been calculated since added spike concentration is known. Next the batches were treated with the composite probe (RGPD-fl) and recovered fluorescence was measured. Obtained fluorescence was then plotted with the final spike concentration. From the intercept in the y axis, we calculate the exact concentration of the bisphenol A in the given sample (Figure S2). Packaged drinking water estimation could not be performed in this approach since it is beyond the linearity range of this approach.