Supporting Information for

Carrier Decay Properties of Mixed Cation Formamidinium-Methylammonium Lead Iodide Perovskite [HC(NH₂)₂]_{1-x}[CH₃NH₃]_xPbI₃ Nanorods

Jun Dai,^{*a,b*} Yongping Fu,^{*a*} Lydia H. Manger,^{*a*} Morgan T. Rea,^{*a*} Leekyoung Hwang,^{*a*} Randall H. Goldsmith,^{*a*,*} Song Jin^{*a*,*}

^aDepartment of Chemistry, University of Wisconsin-Madison, Madison, 53705, USA ^bDepartment of Physics, Jiangsu University of Science and Technology, Zhenjiang, 212003, China Email: jin@chem.wisc.edu; rhg@chem.wisc.edu

Experimental Method

The FA_{1-x}MA_xPbI₃ nanorods were synthesized following the solution method. A drop of PbAc₂· 3H₂O solution (50 μ L) with a concentration of 100 mg/mL was dispersed on a glass substrate with area of ~ 1 cm². After dried at 50 °C for 10 min, a thin film formed on the substrate, which served as the Pb precursor source for perovskite growth. The substrate was then placed in a vial with the PbAc₂-coated side facing up together with a mixed MAI/FAI solution (1 mL) with various FA/MA ratios. After a reaction time of 24 h at room temperature, the substrates were taken out and washed with 2-isopropanol for several seconds, and then dried with nitrogen gas.

The SEM images of various samples were examined with a LEO SUPRA 55 VP scanning electron microscope. Powder XRD spectra were measured by a Bruker D8 Advance Powder X-ray Diffractometer with Cu Kα radiation. The ¹H NMR spectra were measured by a Bruker Ascend 400 NMR spectrometer. The photoluminescence (PL) spectra were collected by a Horiba Yobin Yvon FL-1057 spectrometer, the excitation wavelength was 550 nm. The micro-photoluminescence spectra were measured by confocal Raman/PL spectrometer (LabRAM Aramis Horiba Jobin Yvon) with CW 532 nm laser as excitation source. For time-resolved PL study, the as-grown FA_{1-x}MA_xPbI₃ nanorods were dry-transferred and dispersed onto clean glass coverslips. The sample was placed on an inverted microscope (Nikon Eclipse Ti-U) and a 639 nm picosecond diode laser (PicoQuant LDH-D-C640), with a repetition frequency of 125 kHz and pulse duration ~500 ps, was focused on the sample through a CFI Plan Fluor $40\times$ air objective (NA 0.75) (Nikon). The laser was focused to a spot size of ~0.5 μ m², smaller than an individual nanorod. A 635 nm dichroic beamsplitter (Semrock) and a long wavelength pass filter with a cutoff wavelength about 653 nm (Semrock) were used to block the excitation laser in the optical path of photon counting. A 200 µm pinhole was placed in the optical path to block other scattered light. The photoluminescence decay of an individual FA1-xMAxPbI3 nanorod was collected through the same objective, detected on a τ -SPAD avalanche photodiode (PicoQuant) and recorded using a time-correlated single photon counter (PicoHarp 300). Before fitting, the TRPL data was smoothed using the adjacent averaging function in Origin.

Supporting Figures

Figure S1. TRPL spectra of five representative alloyed MAPbI₃ nanorods at the excitation energy density of 1.09×10^{-9} J/cm²/pulse.

Figure S2. TRPL spectra of five representative alloyed $FA_{0.2}MA_{0.8}PbI_3$ nanorods at the excitation energy density of 1.09×10^{-9} J/cm²/pulse.

Figure S3. TRPL spectra of five representative alloyed $FA_{0.4}MA_{0.6}PbI_3$ nanorods at the excitation energy density of 1.09×10^{-9} J/cm²/pulse.

Figure S4. TRPL spectra of five representative alloyed $FA_{0.6}MA_{0.4}PbI_3$ nanorods at the excitation energy density of 1.09×10^{-9} J/cm²/pulse.

Figure S5. TRPL spectra of five representative alloyed $FA_{0.8}MA_{0.2}PbI_3$ nanorods at the excitation energy density of 1.09×10^{-9} J/cm²/pulse.

Figure S6. TRPL spectra of five representative alloyed $FAPbI_3$ nanorods at the excitation energy density of 1.09×10^{-9} J/cm²/pulse.

Figure S7. Comparison of summed single-particle photoluminescence spectra and bulk photoluminescence spectra.