Supporting Information

Formation of Nanosilver from Silver Sulfide Nanoparticles in Natural Waters by

Photoinduced Fe(II, III) Redox Cycling

Lingxiangyu Li,[†] Qunfang Zhou,[†] Fanglan Geng,[†] Yawei Wang^{*,†, #,§} and Guibin Jiang[†]

† State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for

Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China

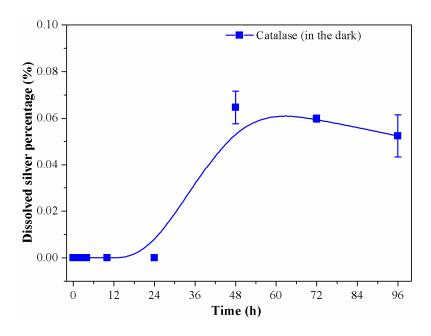
[#] Institute of Environment and Health, Jianghan University, Wuhan 430056, China

§ University of Chinese Academy of Sciences, Beijing 100049, China

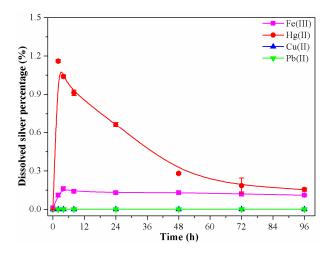
Corresponding Author:

* Prof. Dr. Yawei Wang

E-mail: ywwang@rcees.ac.cn


Tel: +86 10 62849124

Fax: +86 10 62849339


Total pages: 12 pages

11 Figures

S1

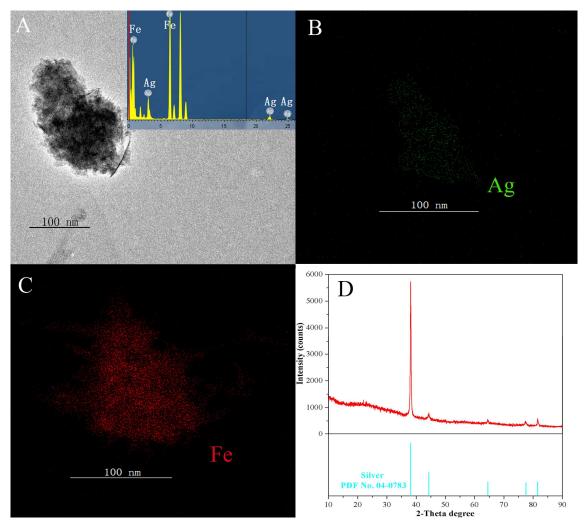

 $\textbf{Figure S1.} \ Effect \ of \ catalase \ on \ the \ dissolution \ kinetic \ of \ Ag_2SNPs \ in \ the \ presence \ of \ Fe(III) \ under \ dark.$

Figure S2. Kinetics of silver ions release from Ag₂SNPs in borate solution with Fe(III) (2 mg/L), Hg(II) (2 mg/L), Cu(II) (2 mg/L) and Pb(II) (2 mg/L), respectively under light condition.

Figure S3. The pseudo-first-order reaction kinetics of Ag_2SNPs dissolution in the presence of an environmentally relevant concentration of Fe(III), and its rate constant of 1.06 h⁻¹.

Figure S4. Characteristic of particles obtained from the reaction between Ag^+ (AgNO₃, 100 mg/L) and Fe^{2+} ((NH₄)₂Fe(SO₄)₂ · 6H₂O, 10 mg/L) solutions in the light for 48 h. This reaction was performed with high concentrations of Ag^+ and Fe^{2+} , to evidently document our proposal that reaction between Ag^+ and Fe^{2+} can form nAg in the light. (A) TEM image of particles, and inlet is EDX spectrum of the particles. (B-C) Elemental mappings of the particles. (D) XRD spectrum of the particles.

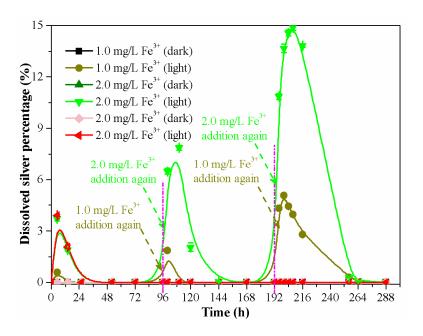


Figure S5. The effect of Fe(III) on the transformation of Ag_2SNPs in water. After 96 and 192 h, a second and third equivalent of Fe(III) was added.

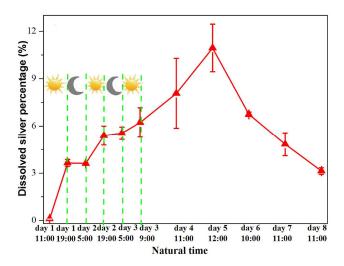
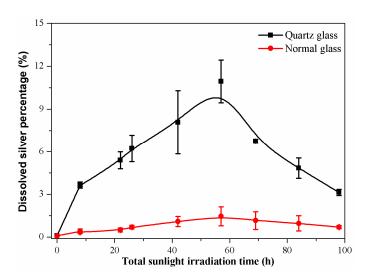
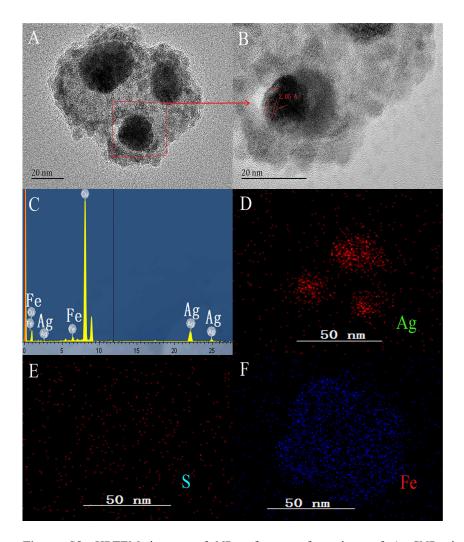




Figure S6. The dissolution kinetics of Ag_2SNPs in borate solution with an environmentally relevant concentration of Fe(III) under natural sunlight (July 1st - 8th, 2015, Beijing, China).

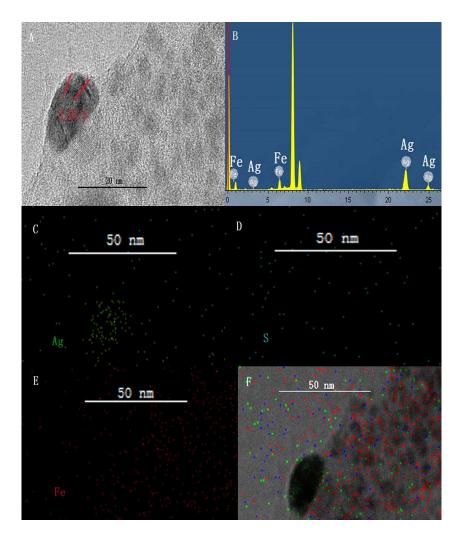


Figure S7. Effect of glass materials (quartz vs. normal) on the Ag₂SNPs dissolution in the presence of Fe(III) under natural sunlight.

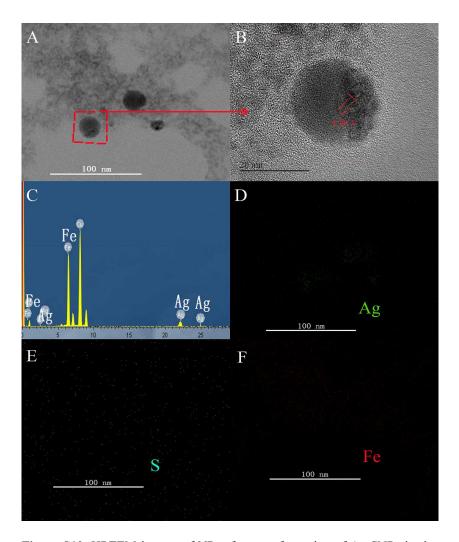


Figure S8. HRTEM images of NPs after transformations of Ag₂SNPs in borate solution with an environmentally relevant concentration of Fe(III) under natural sunlight (July 1st - 8th, 2015, Beijing, China).

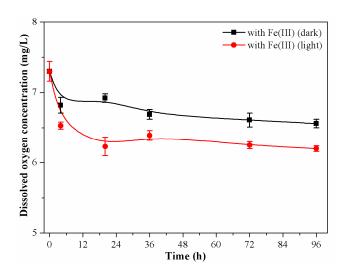

(A) HRTEM image. (B) nAg with a lattice spacing of 2.05 Å. (C) EDS image of the nAg particle in (B). (D-F) EDS elemental mappings of the nAg shown in Figure S7B.

Figure S9. HRTEM images of NPs after transformation of Ag₂SNPs in wastewater treatment plant effluent with Fe(III) under light condition. (A) HRTEM image with a lattice spacing of 2.03 Å. (B) EDX image of the particle of (A). (C-F) Elemental mappings of the NPs after transformation of Ag₂SNPs.

Figure S10. HRTEM images of NPs after transformation of Ag₂SNPs in river water with Fe(III) under light condition. (A) HRTEM image. (B) nAg particles with a lattice spacing of 2.02 Å. (C) EDX image of nAg particle in (B). (D-F) Elemental mappings of the NPs after transformation of Ag₂SNPs.

Figure S11. Kinetics of dissolved oxygen in the Ag_2SNPs solution with an environmentally relevant concentration of Fe(III) under light and in the dark, respectively.