Supporting Information

Design and synthesis of cyclopropane congeners of resolvin E2, an endogenous proresolving lipid mediator, as its stable equivalents

Hayato Fukuda, Ryuta Muromoto, Yuuki Takakura, Kohei Ishimura, Ryutaro Kanada, Daichi Fushihara, Makoto Tanabe, Kotaro Matsubara, Toru Hirao, Koki Hirashima, Hiroshi Abe, Mitsuhiro Arisawa, Tadashi Matsuda, and Satoshi Shuto*

> Faculty of Pharmaceutical Science, Hokkaido University, Kita-12, Nishi-6, Kita-Ku, Sapporo 060-0812, Japan <u>shu@pharm.hokudai.ac.jp</u>

Table of Contents

Synthetic procedures	2
Computational calculation	19
Oxidative stability	25
Murine peritonitis evaluation	26
References	27
NMR spectra	28

General procedures

NMR spectra were measured on JEOL ECX400P (400 MHz), JEOL ECS400 (400 MHz) and JEOL ECA500 (500 MHz). Chemical shifts were reported in the δ scale relative to tetramethylsilane (TMS) as 0.00 ppm for ¹H (CDCl₃) and residual CHCl₃ (7.26 ppm for ¹H and 77.00 ppm for ¹³C), DMSO (2.49 ppm for ¹H and 39.5 ppm for ¹³C) as internal reference. Mass spectra (MS) were measured on Thermo Scientific Exactive (ESI). Silica gel column chromatography and flash column chromatography was carried out with Wakogel 60N (Wako Pure Chemical Industries, Ltd., neutral, 63-212 µm) and silica gel (Kishida Chemical Co., Ltd., neutral, 32-63 µm), respectively. Elemental analysis (EA) was measured on Yanaco MT-6 and J-Sience JM10. All reactions were carried out under an argon atmosphere using flame-dried or oven-dried glassware, unless otherwise noted, and monitored with analytical TLC (Merck Ltd., TLC Silica gel 60 F₂₅₄). Purity of all compounds was determined to be >95% by EA or HPLC (YMC-Pack SIL, 150 x 4.6 mm, UV 254 nm).

Experimental Procedures

tert-Butyldiphenyl(((1*S*,2*S*)-2-(3-(triisopropylsilyl)prop-2-yn-1-yl)cyclopropyl)methoxy)silane (11a)

To a stirred solution of **7a** (600 mg, 1.50 mmol) and triisopropylsilylacetylene (673 μ L, 3.00 mmol) in CH₃CN (15 mL) was added Et₃N (416 μ L, 3.00 mmol), CuI (57 mg, 300 μ mol) and PdCl₂(dppf)·CH₂Cl₂ (123 mg, 150 μ mol) at room temperature. The mixture was stirred at the same temperature for 2 h, quenched by addition of sat. NH₄Cl aq and extracted with AcOEt. The combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated. The residue was purified by silica gel column chromatography (hexane) to give crude Sonogashira adduct as a yellow oil.

To a suspension of Ni(OAc)₂·4H₂O (182 mg, 732 µmol) in EtOH (8 mL) was added NaBH₄ (46 mg, 1.22 mmol) and ethylenediamine (280 µL, 4.15 mmol) at room temperature under Ar atmosphere. To the reaction mixture was added a solution of crude Sonogashira adduct in EtOH (4 mL) and the mixture was stirred at the same temperature under H₂ atmosphere for 5 h and filtered with Celite. The filtrate was concerned in reduced pressure. The residue was purified by silica gel column chromatography (hexane) to give **11a** (440 mg, 870 µmol, 58% for 2 steps) as a colorless oil.

11a: $[\alpha]_D^{26}$ –0.6 (*c* 1.19, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.68 (m, 4H), 7.39 (m, 6H), 3.75 (m, 2H), 2.42 (dd, *J* = 18.0, 6.0 Hz, 1H), 2.24 (dd, *J* = 18.0, 6.8 Hz, 1H), 1.12-0.98 (m, 32H), 0.70 (ddd, *J* = 8.4, 8.4, 5.2 Hz, 1H), 0.16 (ddd, *J* = 5.6, 5.6, 5.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 135.59, 135.56, 134.03, 133.97, 129.5, 127.60, 127.58, 108.6, 80.3, 63.8, 26.9, 19.4, 19.2, 18.6, 18.0, 15.2, 11.3, 9.3; LRMS (ESI) m/z 527 [M+Na]⁺; Anal. calcd for C₃₂H₄₈OSi₂: C, 76.12; H, 9.58; found: C, 75.82; H, 9.64.

tert-Butyldiphenyl(((1*R*,2*R*)-2-(3-(triisopropylsilyl)prop-2-yn-1-yl)cyclopropyl)methoxy)silane (11b)

To a stirred solution of **7b** (2.9 g, 7.20 mmol) and triisopropylsilylacetylene (3.2 mL, 14.4 mmol) in CH₃CN (72 mL) was added Et₃N (2.0 mL, 14.4 mmol), CuI (274 mg, 1.44 mmol) and

 $PdCl_2(dppf) \cdot CH_2Cl_2$ (590 mg, 720 µmol) at room temperature. The mixture was stirred at the same temperature for 2 h, quenched by addition of sat. NH₄Cl aq and extracted with AcOEt. The combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated. The residue was purified by silica gel column chromatography (hexane) to give crude Sonogashira adduct as a yellow oil.

To a suspension of Ni(OAc)₂·4H₂O (746 mg, 3.0 mmol) in EtOH (42 mL) was added NaBH₄ (189 mg, 5.00 mmol) and ethylenediamine (1.1 mL, 16.5 mmol) at room temperature under Ar atmosphere. To the reaction mixture was added a solution of crude Sonogashira adduct (2.5 g, 4.98 mmol) in EtOH (8 mL) and the mixture was stirred at the same temperature under H₂ atmosphere for 5 h and filtered with Celite. The filtrate was concerned in reduced pressure. The residue was purified by silica gel column chromatography (hexane) to give **11b** (1.9 g, 3.77 mmol, 52% for 2 steps) as a colorless oil.

11b: $[\alpha]_D^{26}$ +0.6 (*c* 1.06, CHCl₃). ¹H NMR spectrum for **11b** agreed with that for **11a**.

((1S,2S)-2-(3-(Triisopropylsilyl)prop-2-yn-1-yl)cyclopropyl)methanol (S1a)

To a stirred solution of **11a** (1.02 g, 2.03 mmol) in THF (10 mL) and MeOH (10 mL) was added NH₄F (750 mg, 20.3 mmol) at room temperature. The mixture was refluxed for 48 h and cooled to room temperature. The solution was concentrated, added H₂O and extracted with AcOEt. The combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated. The residue purified by silica gel column chromatography (AcOEt-hexane = 1:20) to give **S1a** (432 mg, 1.62 mol, 81%) as a colorless oil.

S1a: $[\alpha]_D^{20}$ +74.6 (*c* 0.84, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 3.89 (m, 1H), 3.42 (ddd, *J* = 12.4, 9.6, 2.4 Hz, 1H), 2.70 (dd, *J* = 18.0, 5.6 Hz, 1H), 2.08 (d, *J* = 5.6 Hz, 1H), 2.05 (dd, *J* = 18.0, 10.4 Hz, 1H), 1.26 (m, 2H), 1.12-1.02 (m, 21H), 0.78 (ddd, *J* = 8.4, 8.4, 5.2 Hz, 1H), 0.11 (ddd, *J* = 5.2, 5.2, 5.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 108.5, 81.9, 63.2, 19.3, 18.5, 17.8, 15.6, 11.2, 9.7; LRMS (ESI) m/z 289 [M+Na]⁺; HRMS (ESI) calcd for C₁₆H₃₀ONaSi [M+Na]⁺ 289.1958, found 289.1959.

((1R,2R)-2-(3-(Triisopropylsilyl)prop-2-yn-1-yl)cyclopropyl)methanol (S1b)

To a stirred solution of **11b** (607 mg, 1.20 mmol) in THF (6 mL) and MeOH (6 mL) was added NH₄F (669 mg, 18.1 mmol) at room temperature and the mixture was refluxed overnight. Then, additional NH₄F (223 mg, 6.02 mmol) was added to the reaction mixture, which was stirred overnight and cooled to room temperature. The solution was concentrated, added H₂O and extracted with AcOEt. The combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated. The residue purified by silica gel column chromatography (AcOEt-hexane = 1:125 to 1:15) to give **S1b** (260 mg, 978 μ mol, 81%) as a colorless oil.

S1b: $[\alpha]_D^{25}$ –81.5 (*c* 1.05, CHCl₃). ¹H NMR spectrum for **S1b** agreed with that for **S1a**.

(1S,2S)-2-(3-(Triisopropylsilyl)prop-2-yn-1-yl)cyclopropanecarbaldehyde (12a)

To a stirred solution of **S1a** (432 mg, 1.62 mmol) in DCM (10 mL) was added DMP (1.03 g, 2.44 mmol) at 0 °C. The mixture was stirred at room temperature for 30 min, quenched by addition of $Na_2S_2O_3$ aq and sat. NaHCO₃ aq and extracted with AcOEt. The combined organic extracts were washed with brine, dried (Na_2SO_4), and concentrated. The residue was purified by silica gel column chromatography (AcOEt-hexane = 1:100 to 1:20) to give **12a** (368 mg, 1.38 mmol, 85%) as a pale yellow oil.

12a: $[\alpha]_D^{25}$ +85.6 (*c* 0.77, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 9.59 (d, *J* = 4.4 Hz, 1H), 2.65 (dd, *J* = 18.0, 6.0 Hz, 1H), 2.42 (dd, *J* = 18.0, 8.4 Hz, 1H), 2.03 (m, 1H), 1.78 (m, 1H), 1.34 (ddd, *J* = 5.2, 5.2, 5.2 Hz, 1H), 1.26 (ddd, *J* = 8.4, 8.4, 5.2 Hz, 1H), 1.08-1.00 (m, 21H); ¹³C NMR (100 MHz, CDCl₃) δ 200.3, 106.4, 81.7, 27.0, 23.7, 18.7, 18.4, 14.5, 11.1; LRMS (APCI) m/z 265 [M+H]⁺; HRMS (APCI) calcd for C₁₆H₂₈OSi [M+H]⁺ 265.1982, found 265.1982.

(1R,2R)-2-(3-(Triisopropylsilyl)prop-2-yn-1-yl)cyclopropanecarbaldehyde (12b)

To a stirred solution of **S1b** (447 mg, 1.68 mmol) in DCM (17 mL) was added DMP (1.07 g, 2.52 mmol) at 0 °C. The mixture was stirred at room temperature for 1 h, quenched by addition of $Na_2S_2O_3$ aq and sat. NaHCO₃ aq and extracted with AcOEt. The combined organic extracts were washed with brine, dried (Na_2SO_4), and concentrated. The residue was purified by silica gel column chromatography (AcOEt-hexane = 1:125) to give **12b** (405 mg, 1.53 mmol, 91%) as a pale yellow oil.

12b: $[\alpha]_D^{24}$ –86.0 (*c* 0.84, CHCl₃). ¹H NMR spectrum for **12b** agreed with that for **12a**.

2-((1R,2S)-2-(3-(Triisopropylsilyl)prop-2-yn-1-yl)cyclopropyl)ethanol (13a)

To a stirred solution of MeOCH₂PPh₃Cl (1.3 g, 3.80 mmol) in THF (7 mL) was added KHMDS (0.5 M in toluene, 7.59 mL, 3.80 mmol) at 0 °C. The resulting solution was stirred at the same temperature for 30 min. After **12a** (334 mg, 1.27 mmol) in THF (3 mL) was added to the reaction mixture, the mixture was stirred at the same temperature for 1 h, quenched by addition of sat. NH₄Cl aq and extracted with AcOEt. The combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated to give crude Wittig product. This material was used without further purification.

To a stirred solution of crude Wittig product in THF (10 mL) was added 12 N HCl aq (3 mL, 36 mmol) at 0 °C. The mixture was stirred at the same temperature for 80 min, quenched by addition of sat. NaHCO₃ aq and extracted with AcOEt. The combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated to give crude aldehyde. This material was used without further

purification.

To a stirred solution of crude aldehyde in EtOH (10 mL) was added NaBH₄ (72 mg, 1.91 mmol) at 0 °C. The mixture was stirred at the same temperature for 1 h, quenched by addition of sat. NH₄Cl aq and extracted with AcOEt. The combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated. The residue was purified by silica gel column chromatography (AcOEt-hexane = 1:20 to 1:8) to give **13a** (288 mg, 1.03 mmol, 81% for 3 steps) as a colorless oil.

13a: $[\alpha]_D^{25}$ +36.9 (*c* 0.57, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 3.77 (t, *J* = 6.8 Hz, 1H), 2.43 (dd, *J* = 18.0, 6.0 Hz, 1H), 2.17 (dd, *J* = 18.0, 8.4 Hz, 1H), 1.74 (m, 1H), 1.55 (m, 1H), 1.08-1.00 (m, 22H), 0.86 (m, 1H), 0.72 (ddd, *J* = 8.4, 8.4, 5.2 Hz, 1H), -0.02 (ddd, *J* = 5.2, 5.2, 5.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 108.4, 80.5, 63.3, 31.4, 19.5, 18.6, 14.7, 12.5, 11.2, 10.3; LRMS (ESI) m/z 303 [M+Na]⁺; HRMS (ESI) calcd for C₁₇H₃₂ONaSi [M+Na]⁺ 303.2115, found 303.2115.

2-((15,2R)-2-(3-(Triisopropylsilyl)prop-2-yn-1-yl)cyclopropyl)ethanol (13b)

To a stirred solution of MeOCH₂PPh₃Cl (2.25 g, 6.56 mmol) in THF (10 mL) was added KHMDS (0.5 M in toluene, 13.1 mL, 6.56 mmol) at 0 °C. The resulting solution was stirred at the same temperature for 30 min. After **12b** (577 mg, 2.19 mmol) in THF (7 mL) was added to the reaction mixture, the mixture was stirred at the same temperature for 1 h, quenched by addition of sat. NH₄Cl aq and extracted with AcOEt. The combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated to give crude Wittig product. This material was used without further purification.

To a stirred solution of crude Wittig product in THF (17 mL) was added 12 N HCl aq (5 mL, 75 mmol) at 0 °C. The mixture was stirred at the same temperature for 80 min, quenched by addition of sat. NaHCO₃ aq and extracted with AcOEt. The combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated to give crude aldehyde. This material was used without further purification.

To a stirred solution of crude aldehyde in EtOH (17 mL) was added NaBH₄ (124 mg, 3.29 mmol) at 0 °C. The mixture was stirred at the same temperature for 20 min, quenched by addition of sat. NH₄Cl aq and extracted with AcOEt. The combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated. The residue was purified by silica gel column chromatography (AcOEt-hexane = 1:10 to 1:4) to give **13b** (558 mg, 1.99 mmol, 91% for 3 steps) as a colorless oil. **13b**: $[\alpha]_D^{26}$ –38.5 (*c* 1.17, CHCl₃). ¹H NMR spectrum for **13b** agreed with that for **13a**.

2-((1R,2S)-2-(Prop-2-yn-1-yl)cyclopropyl)ethanol (5a)

To a stirred solution of **13a** (288 mg, 1.03 mmol) in THF (2 mL) was added TBAF (1.0 M in THF, 8.23 mL, 8.23 mmol) at room temperature. The mixture was stirred at the same temperature for 30 h, added H_2O and extracted with ether. The combined organic extracts were dried (Na₂SO₄), and

concentrated. The residue was purified by silica gel column chromatography (AcOEt-hexane = 1:4 to 1:2) to give **5a** (108 mg, 871 μ mol, 85%) as a colorless oil.

5a: $[\alpha]_D^{26}$ +58.0 (*c* 0.74, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 3.72 (t, *J* = 6.8 Hz, 2H), 2.29 (ddd, *J* = 17.6, 6.4, 2.8 Hz, 1H), 2.10 (ddd, *J* = 17.6, 7.6, 2.8 Hz, 1H), 2.04 (s, 1H), 1.99 (t, *J* = 2.8 Hz, 1H), 1.69 (ddt, *J* = 14.0, 6.8, 6.8 Hz, 1H), 1.49 (ddt, *J* = 14.0, 6.8, 6.8 Hz, 1H), 1.03 (m, 1H), 0.84 (m, 1H), 0.72 (ddd, *J* = 8.8, 8.8, 5.2 Hz, 1H), -0.08 (ddd, *J* = 5.2, 5.2, 5.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 84.1, 68.4, 63.1, 31.4, 18.1, 14.3, 12.4, 10.4; LRMS (APCI) m/z 125 [M+H]⁺; HRMS (APCI) calcd for C₈H₁₃O [M+H]⁺ 125.0961, found 125.0961.

2-((1S,2R)-2-(Prop-2-yn-1-yl)cyclopropyl)ethanol (5b)

To a stirred solution of **13b** (558 mg, 1.99 mmol) in THF (10 mL) was added TBAF (1.0 M in THF, 7.97 mL, 7.97 mmol) at room temperature. The mixture was stirred at the same temperature for 6 h, added H₂O and extracted with ether. The combined organic extracts were dried (Na₂SO₄), and concentrated. The residue was purified by silica gel column chromatography (AcOEt-hexane = 1:8 to 1:2) to give **5b** (213 mg, 1.72 mmol, 86%) as a colorless oil.

5b: $[\alpha]_{D}^{26}$ –58.2 (*c* 1.21, CHCl₃); ¹H NMR spectrum for **5b** agreed with that for **5a**.

(S)-7-Methoxy-7-oxohept-1-yn-3-yl benzoate (S4)

To a stirred solution of **S2** (3.0 g, 13.2 mmol) in DMF (45 mL) was added a solution of KF (1.53 g, 26.3 mmol) in H₂O (4.5 mL) at room temperature. The mixture was stirred at the same temperature for 1 h. The resulting solution was extracted with Et₂O. The combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated. The residue was purified by silica gel column chromatography (AcOEt-hexane = 1:4) to give **S3** (1.95 g, 12.5 mmol, 95%) as a colorless oil¹. To a stirred solution of **S3** (13 mg, 83.3 µmol) in CH₂Cl₂ (1 mL) were added Et₃N (116 µL, 833 µmol), BzCl (48 µL, 417 µmol) and DMAP (10 mg, 83.3 µmol) at room temperature. The mixture was stirred at the same temperature for 5 h. The resulting solution was extracted with Et₂O. The combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated. The resulting solution was extracted with AcOEt. The combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated. The resulting solution was extracted with acOEt. The combined organic extracts were washed with brine, dried organic extracts were washed with AcOEt. The combined organic extracts were washed with brine, dried organic extracts were washed with brine, dried organic extracts were washed with AcOEt. The combined organic extracts were washed with brine, dried organic extracts were washed with AcOEt. The combined organic extracts were washed with brine, dried organic extracts were washed with brine, dried organic extracts were washed with acOEt. The combined organic extracts were washed with brine, dried organic extracts were washed with brine, dried (Na₂SO₄), and concentrated. The residue was purified by silica gel column brine, dried (Na₂SO₄), and concentrated. The residue was purified by silica gel column brine, dried (Na₂SO₄), and concentrated. The residue was purified by silica gel column brine, dried (Na₂SO₄), and concentrated.

chromatography (AcOEt-hexane = 1:2) to give S4 (21 mg, 80.8 μ mol, 97%, 99% ee) as a colorless oil.

S3: ¹H NMR (400 MHz, CDCl₃) δ 8.07 (m, 2H), 7.58 (m, 1H), 7.46 (m, 2H), 6.65 (td, *J* = 6.2, 2.4 Hz, 1H), 3.68 (s, 3H), 2.51 (d, *J* = 2.4 Hz, 1H), 2.42 (t, *J* = 7.4 Hz, 2H), 2.01-1.88 (m, 2H).

Optical purity of **S4** was determined by chiral HPLC analysis (HPLC conditions: column; CHIRALCEL AS-H, eluent; hexane-*i*-PrOH = 20 : 1, flow rate; 0.5 mL/min, detection; UV 254 nm, retention time; 12.9 min for **S4**)

(S)-Methyl 5-hydroxyhept-6-enoate (S5)

A solution of **S3** (1.46 g, 9.36 mmol), quinoline (5.54 mL, 46.8 mmol) and Lindlar catalyst (146 mg, 10% w/w) in AcOEt (45 mL) was stirred under H₂ atmosphere at room temperature for 1.5 h. The mixture was filtrated through Celite pad and the filtrate was concentrated. The residue was purified by silica gel column chromatography (AcOEt-hexane = 1:2) to give **S5** (1.35 g, 8.53 mmol, 91%) as a colorless oil.

S5: $[\alpha]_D^{25}$ +8.3 (*c* 0.60, CHCl₃), lit. $[\alpha]_D^{25}$ +3.2 (*c* 0.1, CDCl₃); ¹H NMR (500 MHz, CDCl₃) δ 5.87 (ddd, *J* = 17.5, 10.5, 6.5 Hz, 1H), 5.24 (d, *J* = 17.5 Hz, 1H), 5.12 (d, *J* = 10.5 Hz, 1H), 4.12 (dt, *J* = 6.5, 6.5 Hz, 1H), 3.68 (s, 3H), 2.36 (t, *J* = 6.0 Hz, 2H), 1.78-1.67 (m, 3H), 1.57 (m, 2H). Data for **S5** agreed with previous data¹.

(S,E)-Methyl 5-((tert-butyldimethylsilyl)oxy)-8-oxooct-6-enoate (3)

A solution of **S5** (646 mg, 4.09 mmol), acrolein diethyl acetal (1.25 mL, 8.18 mmol) and Grubbs 2nd generation catalyst (G II) (110 mg, 123 µmol) in DCM (20 mL) was stirred at room temperature overnight. Then, additional G II (36 mg, 40 µmol) and acrolein diethyl acetal (300 µL, 1.97 mmol) was added and the reaction mixture was stirred at room temperature for further 4 h. To the solution were added imidazole (1.11 g, 16.4 mmol) and TBSCl (1.23 g, 8.18 mmol) at 0 °C. The mixture was stirred at the room temperature for 3 h. To the solution was added AcOH/THF/H₂O (6 mL/6 mL/6 mL) at room temperature. The mixture was stirred at the same temperature for 6 h, quenched by addition of NaHCO₃ and extracted with Et₂O. The combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated. The residue was purified by silica gel column chromatography (AcOEt-hexane = 1:10) to give **3** (852 mg, 2.84 mmol, 69%) as a colorless oil.

 $[\alpha]_D^{24}$ +12.2 (*c* 0.99, CHCl₃), lit. $[\alpha]_D^{21}$ +16 (*c* 0.91, CHCl₃)²; ¹H NMR (500 MHz, CDCl₃) δ 9.58 (d, *J* = 7.5 Hz, 1H), 6.79 (dd, *J* = 15.5, 4.5 Hz, 1H), 6.28 (dd, *J* = 15.5, 7.5 Hz, 1H), 4.45 (dt, *J* = 4.5, 4.5 Hz, 1H), 3.67 (s, 3H), 2.34 (t, *J* = 7.0 Hz, 2H), 1.71-1.61 (m, 4H), 0.91 (s, 9H), 0.07 (s, 3H), 0.03 (s, 3H). Data for **3** agreed with previous data².

(*R*,*E*)-1-Iodopent-1-en-3-ol (S7)

To a stirred solution of **S6** in CH₂Cl₂ (c.a. 0.3 M) was added I₂ (1.2 eq.) at 0 °C. The mixture was stirred at the same temperature for several min and quenched by addition of sat. Na₂S₂O₃ aq and extracted with ether. The combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated. The residue was purified by silica gel column chromatography (AcOEt-hexane) to give **S7** (75-100%, >97% ee) as a light yellow oil.

S7: $[\alpha]_D^{18}$ +2.0 (*c* 0.97, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.58 (dd, *J* = 15.0, 6.6 Hz, 1H), 6.36 (dd, *J* = 15.0, 1.0 Hz, 1H), 4.04 (m, 1H), 1.61-1.54 (m, 3H), 0.94 (t, *J* = 7.4 Hz, 3H). Data for S7 agreed with previous data³.

Optical purity of **S7** was determined by chiral HPLC analysis (HPLC conditions: column; CHIRALCEL AD-H, eluent; hexane-*i*-PrOH = 50:1, flow rate; 0.5 mL/min, detection; UV 250 nm, retention time; 18.0 min for **S7**)

(R,E)-tert-Butyl((1-iodopent-1-en-3-yl)oxy)dimethylsilane (6)

To a stirred solution of **S7** (414 mg, 1.95 mmol) in DMF (6 mL) was added imidazole (532 mg, 7.81 mmol) and TBSCl (589 mg, 3.91 mmol) at room temperature. The mixture was stirred at the same temperature for 1 h and quenched by addition of sat. NaHCO₃ aq and extracted with ether. The combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated. The residue was purified by silica gel column chromatography (AcOEt-hexane = 1:10) to give **6** (629 mg, 1.93 mmol, 99%) as a colorless oil.

6: $[\alpha]_D^{20}$ +39.9 (*c* 0.98, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.51 (dd, *J* = 14.8, 6.0 Hz, 1H), 6.19 (dd, *J* = 14.8, 1.4 Hz, 1H), 4.02 (dt, *J* = 6.0, 6.0 Hz, 1H), 1.50 (td, *J* = 7.6, 6.0 Hz, 1H), 0.89 (s, 9H), 0.87 (t, *J* = 7.6 Hz, 3H), 0.05 (s, 3H), 0.03 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 149.0, 76.2, 75.6, 30.3, 25.8, 18.2, 9.2, -4.6, -4.9; LRMS (EI) m/z 326 [M]⁺; HRMS (EI) calcd for C₁₁H₂₃IOSi [M]⁺ 326.0563, found 326.0565.

2-((1R,2S)-2-((R,E)-6-((tert-Butyldimethylsilyl)oxy)oct-4-en-2-yn-1-yl)cyclopropyl)ethanol (14a)

To a stirred solution of **5a** (108 mg, 871 μ mol) and **6** (380 mg, 1.17 mmol) in benzene (5 mL) was added Et₂NH (0.5 ml), CuI (83 mg, 435 μ mol) and Pd(PPh₃)₄ (101 mg, 87.1 μ mol) at room temperature. The mixture was stirred at the same temperature for 1 h, quenched by addition of H₂O and extracted with AcOEt. The combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated. The residue was purified by silica gel column chromatography (AcOEt-hexane = 1:8) to give **14a** (235 mg, 730 μ mol, 84%) as a yellow oil.

14a: $[α]_D^{26}$ +56.6 (*c* 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.03 (dd, *J* = 16.0, 5.2 Hz, 1H), 5.63 (m, 1H), 4.08 (br dt, *J* = 6.0, 5.2 Hz, 1H), 3.77 (m, 2H), 2.45 (ddd, *J* = 18.0, 6.0, 2.0 Hz, 1H), 2.23 (ddd, *J* = 18.0, 8.4, 2.0 Hz, 1H), 1.73 (ddt, *J* = 14.4, 6.8, 6.8 Hz, 1H), 1.58-1.47 (m, 3H), 1.07 (m, 1H), 0.90 (s, 9H), 0.90-0.83 (m, 1H), 0.87 (t, *J* = 7.2 Hz, 3H), 0.75 (ddd, *J* = 8.8, 8.8, 4.8 Hz, 1H), 0.05 (s, 3H), 0.04 (s, 3H), -0.05 (ddd, *J* = 5.6, 5.6, 4.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 144.9, 108.9, 89.5, 78.9, 73.6, 63.0, 31.4, 30.6, 25.8, 19.1, 18.1, 14.5, 12.4, 10.5, 9.2, -4.6, -5.0; LRMS (ESI) m/z 345 [M+Na]⁺; HRMS (ESI) calcd for C₁₉H₃₄O₂NaSi [M+Na]⁺ 345.2220, found 345.2225.

2-((1*S*,2*R*)-2-((*R*,*E*)-6-((*tert*-Butyldimethylsilyl)oxy)oct-4-en-2-yn-1-yl)cyclopropyl)ethanol (14b)

To a stirred solution of **5b** (105 mg, 847 μ mol) and **6** (359 mg, 1.10 mmol) in benzene (5 mL) was added Et₂NH (0.5 ml), CuI (81 mg, 423 μ mol) and Pd(PPh₃)₄ (98 mg, 84.7 μ mol) at room temperature. The mixture was stirred at the same temperature for 2 h, quenched by addition of H₂O and extracted with AcOEt. The combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated. The residue was purified by silica gel column chromatography (AcOEt-hexane = 1:8) to give **14b** (206 mg, 640 μ mol, 76%) as a yellow oil.

14b: $[\alpha]_D^{21}$ -10.7 (*c* 0.99, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.03 (dd, *J* = 16.0, 5.6 Hz, 1H), 5.63 (m, 1H), 4.08 (m, 1H), 3.77 (t, *J* = 6.4 Hz, 2H), 2.45 (ddd, *J* = 18.0, 6.4, 2.4 Hz, 1H), 2.23 (ddd, *J* = 18.0, 7.6, 2.1 Hz, 1H), 1.73 (ddt, *J* = 13.4, 6.8, 6.8 Hz, 1H), 1.58-1.47 (m, 3H), 1.07 (m, 1H), 0.90 (s, 9H), 0.90-0.85 (m, 1H), 0.87 (t, *J* = 7.6 Hz, 3H), 0.75 (ddd, *J* = 8.4, 8.4, 4.8 Hz, 1H), 0.05 (s, 9H), 0.90-0.85 (m, 1H), 0.87 (t, *J* = 7.6 Hz, 3H), 0.75 (ddd, *J* = 8.4, 8.4, 4.8 Hz, 1H), 0.05 (s, 9H), 0.90-0.85 (m, 1H), 0.87 (t, *J* = 7.6 Hz, 3H), 0.75 (ddd, *J* = 8.4, 8.4, 4.8 Hz, 1H), 0.05 (s, 9H), 0.90-0.85 (m, 1H), 0.87 (t, *J* = 7.6 Hz, 3H), 0.75 (ddd, *J* = 8.4, 8.4, 4.8 Hz, 1H), 0.95 (s, 9H), 0.90-0.85 (m, 1H), 0.87 (t, *J* = 7.6 Hz, 3H), 0.75 (ddd, *J* = 8.4, 8.4, 4.8 Hz, 1H), 0.95 (s, 9H), 0.90-0.85 (m, 1H), 0.87 (t, *J* = 7.6 Hz, 3H), 0.75 (ddd, *J* = 8.4, 8.4, 4.8 Hz, 1H), 0.95 (s, 9H), 0.90-0.85 (m, 1H), 0.87 (t, *J* = 7.6 Hz, 3H), 0.75 (ddd, *J* = 8.4, 8.4, 4.8 Hz, 1H), 0.95 (s, 9H), 0.90-0.85 (m, 1H), 0.87 (t, *J* = 7.6 Hz, 3H), 0.75 (ddd, *J* = 8.4, 8.4, 4.8 Hz, 1H), 0.95 (s, 9H), 0.90-0.85 (m, 1H), 0.87 (t, *J* = 7.6 Hz, 3H), 0.75 (ddd, *J* = 8.4, 8.4, 4.8 Hz, 1H), 0.95 (s, 9H), 0.90-0.85 (m, 1H), 0.87 (t, *J* = 7.6 Hz, 3H), 0.75 (ddd, *J* = 8.4, 8.4, 4.8 Hz, 1H), 0.95 (s, 9H), 0.90 (s,

3H), 0.04 (s, 3H), -0.05 (ddd, J = 5.6, 5.6, 4.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 145.1, 108.9, 89.6, 79.0, 73.6, 63.3, 31.5, 30.7, 25.8, 19.2, 18.2, 14.5, 12.5, 10.6, 9.3, -4.5, -4.9; LRMS (ESI) m/z 345 [M+Na]⁺; HRMS (ESI) calcd for C₁₉H₃₄O₂NaSi [M+Na]⁺ 345.2220, found 345.2221.

2-((1R,2S)-2-((R,2Z,4E)-6-((tert-Butyldimethylsilyl)oxy)octa-2,4-dien-1-yl)cyclopropyl)ethanol (S8a)

To a stirred solution of Zn powder (9.2 g, 141 mmol) in H₂O (35 mL) was added Cu(OAc)₂·H₂O (920 mg, 4.60 mmol) at room temperature. The mixture was stirred at the same temperature for 15 min. To the mixture was added AgNO₃ (920 mg, 5.41 mmol) and stirred at the same temperature for 30 min. To the reaction mixture was added **14a** (230 mg, 714 μ mol) in MeOH (35 mL), stirred at reflux for 2 h, filtrated through Celite pad and the filtrate was concentrated. The residue was purified by silica gel column chromatography (AcOEt-hexane = 1:4) to give **S8a** (199 mg, 614 μ mol, 86%) as a yellow oil.

S8a: $[\alpha]_D^{26}$ –22.4 (*c* 1.24, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.41 (dd, *J* = 15.2, 11.2 Hz, 1H), 6.00 (dd, *J* = 11.2, 10.8 Hz, 1H), 5.64 (dd, *J* = 15.2, 6.0 Hz, 1H), 5.50 (dt, *J* = 10.8, 7.2 Hz, 1H), 4.09 (dt, *J* = 6.0, 5.8 Hz, 1H), 3.73 (br t, *J* = 6.6 Hz, 2H), 2.26-2.10 (m, 2H), 1.73 (ddt, *J* = 12.8, 6.0, 6.0 Hz, 1H), 1.55-1.42 (m, 4H), 0.91 (s, 9H), 0.91-0.86 (m, 1H), 0.87 (t, *J* = 7.2 Hz, 3H), 0.81 (m, 1H), 0.69 (ddd, *J* = 8.4, 8.4, 4.4 Hz, 1H), 0.06 (s, 3H), 0.03 (s, 3H), -0.12 (ddd, *J* = 5.4, 5.4, 4.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 136.8, 130.8, 128.0, 124.3, 74.3, 63.3, 31.8, 31.1, 27.0, 25.9, 18.2, 15.2, 12.3, 10.4, 9.6, -4.4, -4.8; LRMS (ESI) m/z 347 [M+Na]⁺; HRMS (ESI) calcd for C₁₉H₃₆O₂NaSi [M+Na]⁺ 347.2377, found 347.2381.

$\label{eq:2-(15,2R)-2-((R,2Z,4E)-6-((tert-Butyldimethylsilyl)oxy)octa-2,4-dien-1-yl)cyclopropyl) ethanol (S8b)$

To a stirred solution of Zn powder (8.24 g, 126 mmol) in H₂O (30 mL) was added Cu(OAc)₂·H₂O (824 mg, 4.13 mmol) at room temperature. The mixture was stirred at the same temperature for 15 min. To the mixture was added AgNO₃ (824 mg, 4.85 mmol) and stirred at the same temperature for 30 min. To the reaction mixture was added **14b** (206 mg, 640 μ mol) in MeOH (30 mL), stirred at reflux for 2 h, filtrated through Celite pad and the filtrate was concentrated. The residue was purified by silica gel column chromatography (AcOEt-hexane = 1:10) to give **S8b** (167 mg, 515 μ mol, 81%) as a yellow oil.

S8b: $[\alpha]_D^{20}$ –3.9 (*c* 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.41 (dd, *J* = 15.4, 11.2 Hz, 1H), 6.00 (dd, *J* = 11.2, 10.8 Hz, 1H), 5.65 (dd, *J* = 15.4, 6.0 Hz, 1H), 5.50 (dt, *J* = 10.8, 7.2 Hz, 1H), 4.10 (dt, *J* = 6.0, 6.0 Hz, 1H), 3.73 (t, *J* = 6.6 Hz, 2H), 2.26-2.11 (m, 2H), 1.72 (ddt, *J* = 12.8, 6.4, 6.4 Hz, 1H), 1.55-1.44 (m, 4H), 0.91 (s, 9H), 0.91-0.86 (m, 1H), 0.88 (t, *J* = 7.6 Hz, 3H), 0.84-0.77 (m, 1H), 0.69 (ddd, *J* = 8.4, 8.4, 4.4 Hz, 1H), 0.06 (s, 3H), 0.03 (s, 3H), -0.13 (ddd, *J* = 5.2, 5.2, 5.2 Hz, 1H);

¹³C NMR (100 MHz, CDCl₃) δ 136.9, 130.8, 127.9, 124.2, 74.2, 63.4, 31.8, 31.1, 27.0, 25.9, 18.3, 15.2, 12.3, 10.4, 9.7, -4.4, -4.8; LRMS (ESI) m/z 347 [M+Na]⁺; HRMS (ESI) calcd for $C_{19}H_{36}O_2NaSi$ [M+Na]⁺ 347.2377, found 347.2375.

(2-((1*R*,2*S*)-2-((*R*,2*Z*,4*E*)-6-((*tert*-Butyldimethylsilyl)oxy)octa-2,4-dien-1-yl)cyclopropyl)ethyl)io dotriphenylphosphorane (15a)

To a stirred solution of **S8a** (195 mg, 602 μ mol), PPh₃ (1.58 g, 6.02 mmol), imidazole (410 mg, 6.02 mmol) in DCM (6 mL) was added NIS (948 mg, 4.21 mmol) at 0 °C under dark. The mixture was stirred at the same temperature for 1 h, quenched by addition of Na₂S₂O₃ aq and extracted with DCM. The combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated. The residue was purified by silica gel column chromatography (AcOEt-hexane = 1:30) to give crude iodide as a yellow oil.

To a stirred solution of crude iodide in MeCN (6 mL) was added PPh₃ (316 mg, 1.20 mmol) at room temperature. The mixture was refluxed overnight and cooled to room temperature. The solution was concentrated and purified by silica gel column chromatography (MeOH-CHCl₃ = 0:1 to 1:20) to give **15a** (376 mg, 540 μ mol, 90% for 2 steps) as an orange amorphous.

15a: $[\alpha]_D^{25}$ +3.1 (*c* 0.89, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.87-7.80 (m, 9H), 7.74-7.70 (m, 6H), 6.28 (dd, *J* = 15.2, 11.2 Hz, 1H), 5.94 (dd, *J* = 11.2, 11.2 Hz, 1H), 5.63 (dd, *J* = 15.2, 6.0 Hz, 1H), 5.36 (dt, *J* = 11.2, 7.2 Hz, 1H), 4.09 (dt, *J* = 6.0, 6.0 Hz, 1H), 3.93 (m, 1H), 3.76 (m, 1H), 2.09 (ddd, *J* = 15.0, 7.6, 7.2 Hz, 1H), 1.89 (ddd, *J* = 15.0, 7.8, 7.2 Hz, 1H), 1.80-1.72 (m, 1H), 1.66-1.58 (m, 1H), 1.53-1.46 (m, 2H), 1.29 (m, 1H), 0.92-0.83 (m, 1H), 0.87 (s, 9H), 0.87 (t, *J* = 7.2 Hz, 3H), 0.75 (ddd, *J* = 8.4, 8.4, 4.4 Hz, 1H), 0.04 (s, 3H), 0.00 (s, 3H), -0.17 (ddd, *J* = 5.6, 5.6, 4.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 137.0, 134.98, 134.95, 133.4, 133.3, 130.4, 130.3, 129.8, 128.1, 123.8, 118.1, 117.3, 73.9, 30.8, 26.4, 25.6, 23.7, 23.2, 21.94, 21.90, 18.0, 16.4, 16.35, 16.25, 11.1, 9.4, -4.6, -5.0; LRMS (ESI) m/z 569 [M-I]⁺; Anal. calcd for C₃₇H₅₀IOPSi: C, 63.78; H, 7.23; found: C, 63.59; H, 7.27.

(2-((1*S*,2*R*)-2-((*R*,2*Z*,4*E*)-6-((*tert*-Butyldimethylsilyl)oxy)octa-2,4-dien-1-yl)cyclopropyl)ethyl)io dotriphenylphosphorane (15b)

To a stirred solution of **S8b** (167 mg, 515 μ mol), PPh₃ (1.35 g, 5.15 mmol), imidazole (351 mg, 5.15 mmol) in DCM (5 mL) was added NIS (812 mg, 3.61 mmol) at 0 °C under dark. The mixture was stirred at the same temperature for 1 h, quenched by addition of Na₂S₂O₃ aq and extracted with DCM. The combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated. The residue was purified by silica gel column chromatography (AcOEt-hexane = 1:30) to give crude iodide as a yellow oil.

To a stirred solution of crude iodide in MeCN (5 mL) was added PPh₃ (270 mg, 1.03 mmol) at room

temperature. The mixture was refluxed overnight and cooled to room temperature. The solution was concentrated and purified by silica gel column chromatography (MeOH-CHCl₃ = 0:1 to 1:10) to give **15b** (359 mg, 516 μ mol, quant for 2 steps) as an orange amorphous.

15b: $[\alpha]_D^{19}$ –9.5 (*c* 0.95, CHCl₃); ¹H NMR (500 MHz, CDCl₃) & 7.85-7.80 (m, 9H), 7.75-7.70 (m, 6H), 6.31 (dd, *J* = 15.2, 11.2 Hz, 1H), 5.95 (dd, *J* = 11.2, 11.2 Hz, 1H), 5.64 (dd, *J* = 15.2, 6.0 Hz, 1H), 5.37 (dt, *J* = 11.2, 6.8 Hz, 1H), 4.09 (dt, *J* = 6.0, 6.0 Hz, 1H), 3.90 (m, 1H), 3.71 (m, 1H), 2.00 (m, 2H), 1.72 (m, 1H), 1.63 (m, 1H), 1.49 (dq, *J* = 7.2, 7.2 Hz, 2H), 1.29 (m, 1H), 0.91-0.84 (m, 1H), 0.87 (s, 9H), 0.87 (t, *J* = 7.2 Hz, 3H), 0.74 (ddd, *J* = 8.4, 8.4, 5.2 Hz, 1H), 0.05 (s, 3H), 0.00 (s, 3H), -0.17 (ddd, *J* = 5.6, 5.6, 5.2 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) & 137.2, 135.04, 135.02, 133.5, 133.4, 130.5, 130.4, 129.8, 128.3, 123.7, 118.2, 117.5, 73.8, 30.9, 26.5, 25.7, 23.7, 23.3, 22.07, 22.04, 18.1, 16.46, 16.44, 16.3, 11.2, 9.6, -4.6, -4.9; LRMS (ESI) m/z 569 [M-I]⁺; HRMS (ESI) calcd for C₃₇H₅₀IOPSi [M-I]⁺ 569.3363, found 569.3355.

(*S*,6*E*,8*Z*)-Methyl 5-((*tert*-butyldimethylsilyl)oxy)-10-((1*R*,2*S*)-2-((*R*,2*Z*,4*E*)-6-((*tert*-butyl-dimethylsilyl)oxy)octa-2,4-dien-1-yl)cyclopropyl)deca-6,8-dienoate (S9a)

To a stirred solution of 15a (70 mg, 101 µmol) in THF (0.2 mL) was added NaHMDS (1.0 M in toluene, 96 μ L, 96 μ mol) at -80 °C. The resulting solution was stirred at -80 °C for 1 h. After 3 (15.1 mg, 50.3 µmol) in THF (0.3 mL) was added to the reaction mixture, the mixture was stirred at -80 °C for 1 h. The reaction mixture was warmed to room temperature overnight, quenched by addition of sat. NH₄Cl aq and extracted with AcOEt. The combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated. The residue was purified by silica gel column chromatography (AcOEt-hexane = 1:20) to give **S9a** (18.7 mg, 31.7 µmol, 63%) as a colorless oil. **S9a**: $[\alpha]_D^{25}$ -5.2 (c 0.94, CHCl₃); 1H-NMR (400 MHz, CDCl₃) δ 6.42 (dd, J = 15.2, 12.0 Hz, 2H), 5.99 (dd, J = 11.2, 10.8 Hz, 1H), 5.98 (dd, J = 11.2, 11.2 Hz, 1H), 5.63 (dd, J = 15.2, 6.4 Hz, 1H), 5.61 (dd, J = 15.2, 6.4 Hz, 1H), 5.51 (m, 2H), 4.18 (dt, J = 6.0, 6.0 Hz, 1H), 4.09 (dt, J = 6.0, 6.0 Hz, 1H), 3.66 (s, 3H), 2.31 (t, J = 7.6 Hz, 2H), 2.28-2.11 (m, 2H), 1.72-1.56 (m, 2H), 1.54-1.47 (m, 4H), 0.90 (s, 18H), 0.87 (t, J = 7.6 Hz, 3H), 0.80 (m, 2H), 0.67 (ddd, J = 8.4, 8.4, 4.8 Hz, 1H), 0.05 (s, 6H), 0.03 (s, 3H), 0.02 (s, 3H), -0.12 (ddd, J = 5.2, 4.8, 4.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 174.0, 136.8, 136.4, 131.4, 131.0, 127.9, 127.8, 124.7, 124.4, 74.4, 72.8, 51.4, 37.7, 34.0, 31.2, 27.0, 25.88, 25.86, 20.7, 18.3, 18.2, 15.90, 15.88, 10.7, 9.7, -4.3, -4.4, -4.76, -4.80; LRMS (ESI) m/z 613 $[M+Na]^+$; HRMS (ESI) calcd for $C_{34}H_{62}O_4NaSi_2 [M+Na]^+ 613.4079$, found 613.4084.

(*S*,6*E*,8*Z*)-Methyl 5-((*tert*-butyldimethylsilyl)oxy)-10-((1*S*,2*R*)-2-((*R*,2*Z*,4*E*)-6-((*tert*-butyl-dimethylsilyl)oxy)octa-2,4-dien-1-yl)cyclopropyl)deca-6,8-dienoate (S9b)

To a stirred solution of **15b** (55 mg, 79 μ mol) in THF (0.2 mL) was added NaHMDS (2.0 M in toluene, 36 μ L, 74 μ mol) at -80 °C. The resulting solution was stirred at -80 °C for 1 h. After **3**

(15.8 mg, 52.7 μ mol) in THF (0.3 mL) was added to the reaction mixture, the mixture was stirred at -80 °C for 1 h. The reaction mixture was warmed to room temperature overnight, quenched by addition of sat. NH₄Cl aq and extracted with AcOEt. The combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated. The residue was purified by silica gel column chromatography (AcOEt-hexane = 0:1 to 1:50) to give crude **S9b** as a colorless oil.

(*S*,6*E*,8*Z*)-5-Hydroxy-10-((1*R*,2*S*)-2-((*R*,2*Z*,4*E*)-6-hydroxyocta-2,4-dien-1-yl)cyclopropyl)deca-6 ,8-dienoic acid (α-CP-RvE2, α-2)

To a stirred solution of **S9a** (4.5 mg, 7.63 μ mol) in THF (1 mL) was added TBAF (1.0 M in THF, 61 μ L, 61 μ mol) at room temperature. The mixture was stirred at the same temperature for 14 h. After the reaction was completed, the mixture was added H₂O and extracted with ether. The combined organic extracts were dried (Na₂SO₄), and concentrated. The residue was purified by silica gel column chromatography (MeOH-CHCl₃ = 1:20) to give α -CP-RvE2, α -**2** (2.3 mg, 6.61 μ mol, 87%) as a colorless oil.

α-CP-RvE2, α-**2**: $[α]_D^{19}$ –4.3 (*c* 0.30, MeOH); IR (neat) v 3357, 2961, 2927, 1723, 985, 951 cm⁻¹; ¹H-NMR (500 MHz, CD₃OD) δ 6.51 (dd, *J* = 15.3, 11.3 Hz, 1H), 6.50 (dd, *J* = 15.3, 11.3 Hz, 1H), 5.98 (dd, *J* = 11.5, 11.0 Hz, 2H), 5.63 (dd, *J* = 15.0, 6.5 Hz, 1H), 5.62 (dd, *J* = 15.0, 6.5 Hz, 1H), 5.52 (m, 2H), 4.10 (dt, *J* = 6.5, 6.5 Hz, 1H), 4.00 (dt, *J* = 6.5, 6.5 Hz, 1H), 2.30 (t, *J* = 7.3 Hz, 2H), 2.26-2.17 (m, 4H), 1.72-1.47 (m, 6H), 0.90 (t, *J* = 7.5 Hz, 3H), 0.81 (m, 2H), 0.66 (ddd, *J* = 8.5, 8.5, 4.7 Hz, 1H), -0.10 (ddd, *J* = 5.3, 5.3, 4.7 Hz, 1H); ¹³C NMR (125 MHz, CD₃OD) δ 177.5, 137.18, 137.15, 132.7, 132.5, 128.99, 128.94, 126.7, 74.7, 73.0, 37.8, 34.8, 31.2, 28.0, 22.2, 17.0, 11.2, 10.2; LRMS (ESI) m/z 371 [M+Na]⁺; HRMS (ESI) calcd for C₂₁H₃₂O₄Na [M+Na]⁺ 371.2193, found 371.2193.

(*S*,6*E*,8*Z*)-5-Hydroxy-10-((1*S*,2*R*)-2-((*R*,2*Z*,4*E*)-6-hydroxyocta-2,4-dien-1-yl)cyclopropyl)deca-6 ,8-dienoic acid (β-CP-RvE2, β-2)

To a stirred solution of crude **S9b** in THF (1 mL) was added TBAF (1.0 M in THF, 132 μ L, 132 μ mol) at room temperature. The mixture was stirred at the same temperature for 10 h. Then, additional TBAF (1.0 M in THF, 132 μ L, 132 μ mol) was added to the reaction mixture, which was stirred overnight. The mixture was added H₂O and extracted with ether. The combined organic extracts were dried (Na₂SO₄), and concentrated. The residue was purified by silica gel column chromatography (MeOH-CHCl₃ = 1:50 to 1:10) to give β-CP-RvE2, β-**2** (9.2 mg, 26.4 μ mol, 50% for 2 steps) as a colorless oil.

β-CP-RvE2, β-**2**: $[α]_D^{18}$ –9.8 (*c* 0.46, MeOH); IR (neat) v 3357, 2962, 2927, 1712, 984, 952 cm⁻¹; ¹H NMR (400 MHz, CD₃OD) δ 6.52 (dd, *J* = 15.6, 10.8 Hz, 1H), 6.50 (dd, *J* = 15.6, 10.8 Hz, 1H), 5.99 (dd, *J* = 11.2, 10.8 Hz, 2H), 5.64 (dd, *J* = 15.6, 6.6 Hz, 1H), 5.63 (dd, *J* = 15.6, 6.6 Hz, 1H), 5.52 (m,

2H), 4.10 (dt, J = 6.4, 6.4 Hz, 1H), 4.01 (dt, J = 6.4, 6.4 Hz, 1H), 2.30 (t, J = 7.4 Hz, 2H), 2.30-2.15 (m, 4H), 1.72-1.48 (m, 6H), 0.90 (t, J = 7.6 Hz, 3H), 0.81 (m, 2H), 0.66 (ddd, J = 8.4, 8.4, 4.8 Hz, 1H), -0.10 (ddd, J = 5.4, 5.4, 4.8 Hz, 1H); ¹³C NMR (100 MHz, CD₃OD) δ 177.5, 137.19, 137.17, 132.7, 132.5, 129.02, 128.97, 126.6, 74.7, 72.9, 37.8, 34.8, 31.2, 28.0, 22.2, 17.0, 11.2, 10.2; LRMS (ESI) m/z 347 [M-H]; HRMS (ESI) calcd for C₂₁H₃₁O₄ [M-H] 347.2228, found 347.2233.

(Z)-7-(Triethylsilyl)hept-3-en-6-yn-1-ol (S10)

To a stirred solution of CuI (3.68 g, 19.3 mmol), Cs₂CO₃ (6.29 g, 19.3 mmol) and NaI (2.89 g, 19.3 mmol) was added 8 (1.45 mL, 19.3 mmol) in DMF (20 mL) at room temperature. The mixture was stirred at the same temperature for 20 min and added the solution of (3-bromo-1-propynyl)triethylsilane (3.07 g, 16.1 mmol) in DMF (12 mL). The reaction mixture was stirred overnight. The resulting solution was quenched by addition of sat. NH₄Cl aq and extracted with Et₂O. The combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated. The residue was purified by silica gel column chromatography (AcOEt-hexane = 1:20) to give 16 (2.30 g, 10.4 mmol, 64%) as a colorless oil.

To a suspension of Ni(OAc)₂·4H₂O (3.16 g, 12.7 mmol) in MeOH (90 mL) was added NaBH₄ (798 mg, 21.1 mmol) and ethylenediamine (4.8 mL, 71.9 mmol) at room temperature under Ar atmosphere. To the reaction mixture was added a solution of **16** (9.37 g, 42.2 mmol) in MeOH (16 mL) and the mixture was stirred at the same temperature under H₂ atmosphere overnight and filtered with Celite. The filtrate was concerned in reduced pressure. The residue was purified by silica gel column chromatography (AcOEt-hexane = 1:25 to 1:4) to give **S10** (7.87 g, 35.5 mmol, 84%) as a colorless oil.

S10: ¹H NMR (400 MHz, CDCl₃) δ 5.67-5.61 (m, 1H), 5.53-5.47 (m, 1H), 3.68 (t, *J* = 6.4 Hz, 2H), 2.99 (d, *J* = 7.2 Hz, 2H), 2.36 (dt, *J* = 6.8, 6.4 Hz, 2H), 0.98 (t, *J* = 8.0 Hz, 1H), 0.57 (q, *J* = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 127.4, 127.3, 106.0, 81.7, 62.0, 30.7, 18.5, 7.4, 4.4; LRMS (ESI) m/z 247 [M+Na]⁺; HRMS (ESI) calcd for C₁₃H₂₄ONaSi [M+Na]⁺ 247.1489, found 247.1491.

(Z)-Hept-3-en-6-yn-1-ol (5c)

To a stirred solution of **S9** (703 mg, 3.14 mmol) in THF (10 mL) was added TBAF (1.0 M in THF, 1.57 mL, 1.57 mmol) at room temperature. The mixture was stirred at the same temperature. After the reaction was completed, the mixture was quenched by addition of sat. NH₄Cl aq and extracted with ether. The combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated. The residue was purified by silica gel column chromatography (AcOEt-hexane = 1:10) to give **5c** (276 mg, 2.51 mmol, 80%) as a colorless oil.

5c: ¹H NMR (400 MHz, CDCl₃) δ 5.67-5.61 (m, 1H), 5.56-5.50 (m, 1H), 3.68 (t, *J* = 6.4 Hz, 2H), 2.99 (br d, *J* = 6.8 Hz, 2H), 2.36 (dt, *J* = 13.8, 6.8 Hz, 2H), 2.00 (t, *J* = 2.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 127.8, 126.5, 82.5, 68.2, 61.7, 30.6, 16.9; LRMS (EI) m/z 109 [M+H]⁺; HRMS (EI) calcd for C₇H₉O [M+H]⁺ 109.0653, found 109.0652.

(R,3Z,8E)-10-((tert-Butyldimethylsilyl)oxy)dodeca-3,8-dien-6-yn-1-ol (S11)

To a stirred solution of **5c** (66 mg, 600 μ mol) and **6** (196 mg, 600 μ mol) in benzene (4 mL) was added Et₂NH (0.4 mL), CuI (57 mg, 300 μ mol) and Pd(PPh₃)₄ (69 mg, 60 μ mol) at room temperature. The mixture was stirred at the same temperature for 1.5 h, quenched by addition of H₂O and extracted with AcOEt. The combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated. The residue was purified by silica gel column chromatography (AcOEt-hexane = 1:10) to give **S11** (148 mg, 481 μ mol, 80%) as a yellow oil.

S11: $[\alpha]_D^{19}$ +28.2 (*c* 0.53, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.03 (dd, *J* = 16.0, 5.6 Hz, 1H), 5.68-5.59 (m, 2H), 5.54-5.48 (m, 1H), 4.07 (dt, *J* = 5.6, 5.6 Hz, 1H), 3.68 (td, *J* = 6.4, 6.0 Hz, 2H), 3.10 (br d, *J* = 6.8 Hz, 2H), 2.36 (dt, *J* = 6.8, 6.4 Hz, 2H), 1.49 (qd, *J* = 7.6, 5.6 Hz, 2H), 1.41 (t, *J* = 6.0 Hz, 1H), 0.90 (s, 9H), 0.86 (t, *J* = 7.6 Hz, 3H), 0.04 (s, 3H), 0.03 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 145.3, 127.3, 108.8, 87.9, 78.8, 73.6, 61.9, 30.7, 25.8, 18.2, 17.9, 9.3, -4.6, -4.9; LRMS (ESI) m/z 331 [M+Na]⁺; HRMS (ESI) calcd for C₁₈H₃₂O₂NaSi [M+Na]⁺ 331.2064, found 331.2063.

(R,3Z,6Z,8E)-10-((tert-Butyldimethylsilyl)oxy)dodeca-3,6,8-trien-1-ol (S12)

To a stirred solution of Zn powder (4.52 g, 69.1 mmol) in H_2O (25 mL) was added $Cu(OAc)_2 \cdot H_2O$ (452 mg, 2.26 mmol) at room temperature. The mixture was stirred at the same temperature for 15

min. To the mixture was added AgNO₃ (452 mg, 2.66 mmol) and stirred at the same temperature for 30 min. To the reaction mixture was added **S11** (113 mg, 367 μ mol) in MeOH (25 mL), stirred at 40 °C for 24 h, filtrated through Celite pad and the filtrate was concentrated. The residue was purified by silica gel column chromatography (AcOEt-hexane = 1:8) to give **S12** (82 mg, 265 μ mol, 72%) as a colorless oil and **S11** (12 mg, 39 μ mol, 11%) as a colorless oil.

S12: $[\alpha]_D^{19}$ –16.1 (*c* 1.2, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.46 (dd, *J* = 15.6, 11.6 Hz, 1H), 6.00 (dd, *J* = 11.2, 11.2 Hz, 1H), 5.66 (dd, *J* = 15.6, 6.0 Hz, 1H), 5.60-5.53 (m, 1H), 5.46-5.40 (m, 1H), 5.38-5.32 (m, 1H), 4.11 (dt, *J* = 6.4, 6.0 Hz, 1H), 3.66 (br t, *J* = 6.8 Hz, 2H), 3.01-2.92 (m, 2H), 2.37 (dt, *J* = 7.0, 6.8 Hz, 2H), 1.56-1.48 (m, 2H), 0.91 (s, 9H), 0.88 (t, *J* = 7.6 Hz, 3H), 0.06 (s, 3H), 0.04 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 137.3, 130.6, 128.8, 128.3, 125.9, 124.0, 74.2, 62.1, 31.1, 30.8, 26.1, 25.8, 18.2, 9.6, –4.4, –4.8; LRMS (ESI) m/z 333 [M+Na]⁺; HRMS (ESI) calcd for C₁₈H₃₄O₂NaSi [M+Na]⁺ 333.2220, found 333.2221.

((*R*,3*Z*,6*Z*,8*E*)-10-((*tert*-Butyldimethylsilyl)oxy)dodeca-3,6,8-trien-1-yl)iodotriphenylphosphora ne (4c)

To a stirred solution of **S12** (76 mg, 245 μ mol), PPh₃ (643 mg, 2.45 mmol), imidazole (167 mg, 2.45 mmol) in DCM (2 mL) was added NIS (386 mg, 1.72 mmol) at 0 °C under dark. The mixture was stirred at room temperature for 1 hr, quenched by addition of Na₂S₂O₃ aq and extracted with CHCl₃. The combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated. The residue was purified by silica gel column chromatography (AcOEt-hexane = 1:20) to give crude iodide as a brown oil.

To a stirred solution of crude iodide in MeCN (6 mL) was added PPh₃ (193 mg, 735 μ mol) at room temperature. The mixture was refluxed overnight and cooled to room temperature. The solution was concentrated and purified by silica gel column chromatography (MeOH-CHCl₃ = 0:1 to 1:6) to give **4c** (164 mg, 240 μ mol, 98% for 2 steps) as an orange amorphous.

4c: $[α]_D^{21}$ –6.0 (*c* 0.30, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.88-7.80 (m, 9H), 7.74-7.70 (m, 6H), 6.30 (dd, *J* = 15.6, 11.6 Hz, 1H), 5.94 (dd, *J* = 11.2, 10.8 Hz, 1H), 5.67-5.62 (m, 2H), 5.44-5.37 (m, 1H), 5.66 (dt, *J* = 10.8, 7.6 Hz, 1H), 4.08 (dt, *J* = 6.0, 6.0 Hz, 1H), 3.88-3.81 (m, 2H), 2.71 (dd, *J* = 7.6, 7.2 Hz, 2H), 2.53-2.45 (m, 2H), 1.50 (dq, *J* = 7.2, 7.2 Hz, 1H), 0.88 (s, 9H), 0.87 (t, *J* = 7.2 Hz, 3H), 0.04 (s, 3H), 0.00 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 137.3, 134.90, 134.86, 133.3, 133.2, 130.3, 130.2, 129.8, 128.5, 127.5, 126.4, 126.2, 123.3, 117.8, 117.0, 77.2, 73.7, 30.7, 25.51, 25.46, 23.1, 22.6, 20.0, 19.9, 17.8, 9.3, -4.7, -5.1; LRMS (ESI) m/z 555 [M-I]⁺; HRMS (ESI) calcd for C₃₆H₄₈OPSi [M-I]⁺ 555.3212, found 555.3207.

(5*S*,6*E*,8*Z*,11*Z*,14*Z*,16*E*,18*R*)-Methy l5,18-bis((*tert*-butyldimethylsilyl)oxy)icosa-6,8,11,14,16-pentaenoate (S13)

To a stirred solution of **4c** (37 mg, 54.3 µmol) and DMPU (44 µL, 362 µmol) in THF (0.2 mL) was added NaHMDS (1.9 M in toluene, 27 µL, 50.6 µmol) at -80 °C. The resulting solution was stirred at -80 °C for 1 h. After **3** (10.9 mg, 36.2 µmol) in THF (0.3 mL) was added to the reaction mixture, the mixture was stirred at -80 °C for 1 h. The reaction mixture was warmed to room temperature overnight, quenched by addition of sat. NH₄Cl aq and extracted with AcOEt. The combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated. The residue was purified by silica gel column chromatography (AcOEt-hexane = 1:20) to give **S13** (15.8 mg, 27.4 µmol, 75%) as a colorless oil.

S13: $[\alpha]_D^{20}$ –2.4 (*c* 0.79, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.45 (dd, *J* = 15.6, 11.6 Hz, 2H), 6.00 (dd, *J* = 11.6, 11.2 Hz, 1H), 5.99 (dd, *J* = 11.6, 11.2 Hz, 1H), 5.65 (dd, *J* = 15.6, 6.8 Hz, 1H), 5.64 (dd, *J* = 15.6, 6.8 Hz, 1H), 5.41-5.32 (m, 4H), 4.19 (dt, *J* = 6.4, 5.8 Hz, 1H), 4.10 (dt, *J* = 6.0, 6.0 Hz, 1H), 3.66 (s, 3H), 2.97-2.94 (m, 4H), 2.32 (t, *J* = 7.6 Hz, 2H), 1.72-1.61 (m, 2H), 1.55-1.48 (m, 4H), 0.91 (s, 9H), 0.90 (s, 9H), 0.88 (t, *J* = 8.0 Hz, 3H), 0.058 (s, 3H), 0.056 (s, 3H), 0.037 (s, 3H), 0.031 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 174.0, 137.3, 136.9, 129.3, 128.9, 128.4, 128.25, 128.19, 128.1, 124.4, 124.1, 74.3, 72.7, 51.5, 37.6, 34.0, 31.1, 26.0, 25.88, 25.86, 20.7, 18.3, 18.2, 9.7, -4.3, -4.4, -4.77, -4.80; LRMS (ESI) m/z 599 [M+Na]⁺; HRMS (ESI) calcd for C₃₃H₆₀O₄NaSi₂ [M+Na]⁺ 599.3922, found 599.3924.

(5*S*,6*E*,8*Z*,11*Z*,14*Z*,16*E*,18*R*)-5,18-Dihydroxyicosa-6,8,11,14,16-pentaenoic acid (RvE2, 1)

To a stirred solution of **S12** (10 mg, 17.4 µmol) in THF (1 mL) was added TBAF (1.0 M in THF, 104 µL, 104 µmol) at room temperature. The mixture was stirred at the same temperature. After the reaction was completed, the mixture was added H₂O and extracted with ether. The combined organic extracts were dried (Na₂SO₄), and concentrated. The residue was purified by silica gel column chromatography (MeOH-CHCl₃ = 1:80) to give RvE2, **1** (4.5 mg, 13.5 µmol, 78%) as a colorless oil. **1**: $[\alpha]_D^{18}$ -6.5 (*c* 0.79, MeOH); IR (neat) v 3347, 2962, 2926, 1710, 984, 953 cm⁻¹; ¹H NMR (500 MHz, CD₃OD) δ 6.56 (dd, *J* = 15.0, 11.0 Hz, 1H), 6.55 (dd, *J* = 15.0, 11.0 Hz, 1H), 6.00 (dd, *J* = 11.0, 11.0 Hz, 2H), 5.66 (dd, *J* = 15.0, 6.5 Hz, 1H), 5.65 (dd, *J* = 15.0, 6.5 Hz, 1H), 5.42-5.34 (m, 4H), 4.12 (dt, *J* = 6.5, 6.5 Hz, 1H), 4.02 (dt, *J* = 6.5, 6.5 Hz, 1H), 3.00-2.97 (m, 4H), 2.31 (t, *J* = 7.3 Hz, 2H), 1.72-1.48 (m, 6H), 0.91 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (125 MHz, CD₃OD) δ 177.5, 137.70, 137.67, 130.6, 130.5, 129.45, 129.39, 129.10, 129.08, 126.4, 74.7, 72.9, 37.7, 34.8, 31.2, 27.0, 22.2, 10.2; LRMS (ESI) m/z 357 [M+Na]⁺; HRMS (ESI) calcd for C₂₀H₃₀O₄Na [M+Na]⁺ 357.2036, found 357.2039.

Computational calculation

All geometries were optimized in the gas phase without any constraint by The UB3LYP/6-31G*, followed by the UBHandHLYP/6-311G+(d,p) at final step using Gaussin09W software. Frequency analysis was performed after the optimization to transition states (only one imaginary frequency). Final single point energies in the gas phase were calculated by UBHandHLYP/6-311G+(d,p) method using same basis sets above. All energies in figure 3 were corrected by zero-point energy.

Intermediate A

•OH

Electronic Energy = -426.845589 a.u. Zero-point Energy = 0.221513 a.u. Lowest Frequency Vibration = 18.9836 cm⁻¹

С	-2.83366900	0.59586700	-0.17503200
Н	-3.76013000	0.68895500	0.37421200
С	-2.36461100	-0.63599800	-0.35876600
Н	-2.93761100	-1.45490800	0.05476900
С	-1.09423000	-1.04017700	-1.05665700
Н	-0.61442700	-0.18655300	-1.51925800
Н	-1.34465500	-1.73069400	-1.86476500
С	-0.16040200	-1.74186800	-0.11035300
Н	-0.55865900	-2.63887900	0.34382200
С	1.08030700	-1.37922300	0.23233300
Н	1.60623100	-2.00925800	0.93691900
С	1.82686100	-0.22361800	-0.24285300
Н	1.34747100	0.43840900	-0.94882400
С	3.06885500	0.05527300	0.15308800
Н	3.54725000	-0.60976100	0.86105300
С	3.87298300	1.22642100	-0.30215700
Н	3.32023700	1.83923300	-1.00826800
Н	4.15914500	1.85375600	0.54074700
Н	4.79610200	0.90359800	-0.78135800
С	-2.23921900	1.88957700	-0.63051200
Н	-2.93908000	2.42573800	-1.26933900
Н	-2.03209300	2.52603200	0.22686100
Н	-1.31455400	1.76168700	-1.18237800
0	-1.19507200	0.48042300	2.30088000
Н	-0.65589800	-0.12826500	1.77423100

H_OH

Electronic Energy = -426.834739 a.u. Zero-point Energy = 0.217337 a.u. Imaginary Frequency Vibration = -641.0181 cm⁻¹

С	3.30250700	-0.69702600	0.48086900
Н	4.10608000	-1.25406600	0.94289900
С	2.10903000	-0.75824900	1.06490300
Н	2.01788600	-1.34502700	1.96818100
С	0.84532100	-0.10171600	0.59989700
Н	1.11237000	0.99367700	0.30143100
Н	0.16128900	0.02859400	1.43148800
С	0.18733100	-0.74192300	-0.56613000
Н	0.85193300	-1.19902300	-1.28337300
С	-1.13003300	-0.78135100	-0.81929400
Н	-1.45019600	-1.27891900	-1.72406300
С	-2.19097600	-0.21900100	-0.00513900
Н	-1.91906000	0.27347900	0.91735500
С	-3.48213900	-0.27537400	-0.34130100
Н	-3.75338300	-0.76712800	-1.26693900
С	-4.60433800	0.28915800	0.46291700
Н	-4.24480300	0.76486000	1.37071000
Н	-5.16295800	1.02790500	-0.11014200
Н	-5.31220000	-0.48926000	0.74430600
С	3.67050000	0.06681700	-0.75070500
Н	4.54161400	0.69070400	-0.56011000
Н	3.94320600	-0.61508200	-1.55591100
Н	2.87255500	0.71290300	-1.09721700
0	1.20746000	2.40948100	-0.04872700
Н	0.33276500	2.49251300	-0.44490400

H₂O

Electronic Energy = -426.908424 a.u. Zero-point Energy = 0.220711 a.u. Lowest Frequency Vibration = 18.5441 cm⁻¹

С	-3.10368500	-0.89807500	-0.37504900
Н	-4.01087700	-1.08165800	-0.93089600
С	-1.96181100	-0.82442600	-1.11154100
Н	-2.08735800	-0.99341200	-2.17167200
С	-0.61174000	-0.57927900	-0.72155800
Н	-2.49870100	1.66576400	-0.68527700
Н	0.11108500	-0.70187100	-1.51316100
С	-0.13166600	-0.17502300	0.52440500
Н	-0.84490800	0.00562700	1.30984200
С	1.19700300	0.04526600	0.85838400
Н	1.39676800	0.38195500	1.86519100
С	2.33807100	-0.12838300	0.01731200
Н	2.18404500	-0.48020100	-0.99277400
С	3.60158100	0.11922000	0.41551200
Н	3.76379400	0.46935100	1.42672300
С	4.81441500	-0.05448500	-0.43372000
Н	4.55798300	-0.40863600	-1.42806900
Н	5.35812700	0.88380600	-0.53771900
Н	5.50605800	-0.76830200	0.01227000
С	-3.25615400	-0.78387500	1.10844700
Н	-4.23553200	-1.13557400	1.41624300
Н	-2.50796900	-1.37156400	1.63575800
Н	-3.16252000	0.24868700	1.44544100
0	-2.42027400	2.53463900	-0.29402200
Н	-1.48388300	2.68327200	-0.19287900

Electronic Energy = -466.126499 a.u. Zero-point Energy = 0.251713 a.u. Lowest Frequency Vibration = 13.9091 cm⁻¹

С	3.34783200	-0.85180200	0.20064000
С	2.00800400	-0.74025300	-0.47024900
С	0.86983400	0.07891000	0.10053000
Н	1.26841800	0.97369300	0.57702700
Н	0.36673400	-0.48551300	0.88128100
С	-0.09342700	0.49528500	-0.96984300
Н	0.34889100	1.04473200	-1.78967300
С	-1.40650400	0.24427900	-1.03583900
Н	-1.94311200	0.61298900	-1.89980800
С	-2.21538800	-0.48152700	-0.06645700
Н	-1.72135500	-0.89734600	0.79934600
С	-3.53134200	-0.65291500	-0.19633700
Н	-4.02433700	-0.23240900	-1.06378700
С	-4.40070200	-1.38728800	0.76817000
Н	-3.82758200	-1.77731700	1.60427500
Н	-5.17988400	-0.73730800	1.16348800
Н	-4.90439900	-2.22156900	0.28208200
С	3.67710800	-0.16435400	1.50119300
Н	3.25396000	0.83430000	1.55569300
Н	3.30489300	-0.72990000	2.35320500
Н	4.75441400	-0.06476900	1.61440800
0	-1.44422500	3.18393400	0.63745400
Н	-1.33348800	2.34982700	0.15238800
С	3.21174000	-0.07488400	-1.07643600
Н	3.63005700	-0.47740700	-1.98494500
Н	3.27063300	1.00138800	-1.00301100
Н	3.81429200	-1.82139600	0.09924100
Н	1.67272600	-1.63618200	-0.97307100

Electronic Energy = -466.111658 a.u. Zero-point Energy = 0.248182 a.u. Imaginary Frequency Vibration = -503.2186 cm⁻¹

С	-3.21900500	-0.21070000	-0.28405500
Н	-4.05952900	0.02687500	-0.92038500
С	-1.93153200	-0.42543800	-1.03525500
Н	-2.03620000	-0.32573100	-2.10477200
С	-0.57440000	0.05237400	-0.56734900
Н	-0.69254000	1.19123000	-0.37643600
Н	0.11426600	0.02718100	-1.40540900
С	0.04042700	-0.55827600	0.63475400
Н	-0.62499200	-0.92112200	1.40095400
С	1.35557100	-0.66580800	0.87995100
Н	1.65411100	-1.12035200	1.81434300
С	2.44284600	-0.22838000	0.02420400
Н	2.19512100	0.22492400	-0.92460400
С	3.73043000	-0.35159600	0.35552300
Н	3.97758500	-0.80157000	1.30882400
С	4.87993900	0.08467800	-0.48898600
Н	4.54401200	0.52504900	-1.42323500
Н	5.49146900	0.81938800	0.03297500
Н	5.53206600	-0.75539900	-0.72395500
С	-3.27578500	0.48074900	1.05374700
Н	-4.20934800	0.24567800	1.56058600
Н	-2.46541800	0.17903700	1.70962500
Н	-3.21242300	1.55898700	0.93435100
0	-0.69085300	2.66253500	-0.17500200
Н	0.07493400	2.68222000	0.41014100
С	-2.67279000	-1.59538000	-0.44072200
Н	-3.15927000	-2.28145100	-1.11574200
Н	-2.25122700	-2.06856700	0.43187600

Electronic Energy = -466.180374 a.u. Zero-point Energy = 0.250158 a.u. Lowest Frequency Vibration = 17.6480 cm⁻¹

			"···
	<u>``</u>		
	പപ്പം പ		ectronic Energy =
		Zei	ro-point Energy =
	3 Jag 8	Lo	west Frequency V
С	-3.28775200	0.44135900	0.22844600
Н	-4.03404200	1.17318500	-0.04642200
С	-2.28895500	0.11828400	-0.86603100
Н	-2.46707600	0.66895900	-1.78076300
С	-0.85188100	-0.10171100	-0.59288400
Н	1.06461800	3.40136200	0.26783600
Н	-0.23611000	0.78602900	-0.60695300
С	-0.27143800	-1.31490800	-0.35701800
Н	-0.91155600	-2.18526200	-0.38196500
С	1.09140700	-1.56869000	-0.09019900
Н	1.37591700	-2.60090400	0.05487200
С	2.12212200	-0.60056900	0.00429300
Н	1.86157000	0.43938500	-0.13285900
С	3.41897400	-0.90318300	0.25900200
Н	3.69262300	-1.94126200	0.39835900
С	4.51604200	0.10229200	0.36414800
Н	4.14096300	1.11024300	0.21075100
Н	4.99600300	0.06415800	1.34222200
Н	5.29746700	-0.08499700	-0.37256800
С	-2.88674900	0.48475800	1.67869800
Н	-3.73950100	0.27228600	2.32055600
Н	-2.11269200	-0.24533200	1.89593700
Н	-2.50030800	1.46511200	1.95105500
0	1.27009300	2.79643600	-0.44020500
Н	1.44049700	3.33037400	-1.21178800
С	-3.36087200	-0.86545900	-0.50088200
Н	-3.07122900	-1.74658200	0.04981700
Н	-4.16328100	-1.03128800	-1.20188900

Oxidative stability

1, α -2, and β -2 in ethanol (1 mg/mL) were sampled and evaporated. Then, the compounds (10-20 μ g) were stayed while exposing to air in Eppendorf Tubes[®] and analyzed by HPLC at various time points.

HPLC conditions: column; Mightysil RP-8 GP, eluent; MeOH : H_2O : AcOH = 65 : 35 : 0.01, flow rate; 1.0 mL/min, detection; UV 250 nm, retention time; 14.2 min for 1, 20.3 min for α -2, and 20.9 min for β -2.

Murine peritonitis evaluation

Male BALB/c mice (6–7 weeks; Japan SLC, Shizuoka, Japan) were used. Heat-killed *Propionibacterium acnes* (*P. acnes*; 500 µg per mouse) was injected intraperitoneally. At 12 h after *P.acnes* injection, three different doses (300 fg, 30 pg or 3 ng per mouse) of RvE2, α -CP-RvE2, β -CP-RvE2 or vehicle alone was administered intraperitoneally. At 24 h after *P. acnes* injection, peritoneal exudate cells (PECs) were collected and counted. Results were expressed as percentage inhibition of *P. acnes*-induced increase in the number of PECs compared with vehicle alone. All animal procedures were conducted in accordance with the Hokkaido University animal ethics committee.

References

- 1. K. Götz, J. C. Liermann, E. Thines, H. Anke, T. Opatz, Org. Biomol. Chem. 2010, 8, 2123-2130.
- 2. Y. Kosaki, N. Ogawa, Y. Kobayashi, Tetrahedron Lett. 2010, 51, 1856-1859.
- M. Allard, K. Barnes, X. Chen, Y.-Y. Cheung, B. Duffy, C. Heap, J. Inthavongsay, M. Johnson, R. Krishnamoorthy, C. Manley, S. Steffke, D. Varughese, R. Wang, Y. Wang, C. E. Schwartz, *Tetrahedron Lett.* 2011, *52*, 2623-2626.

