Supporting Information

Design and synthesis of cyclopropane congeners of resolvin E2, an endogenous proresolving lipid mediator, as its stable equivalents

Hayato Fukuda, Ryuta Muromoto, Yuuki Takakura, Kohei Ishimura, Ryutaro Kanada, Daichi Fushihara, Makoto Tanabe, Kotaro Matsubara, Toru Hirao, Koki Hirashima, Hiroshi Abe, Mitsuhiro Arisawa, Tadashi Matsuda, and Satoshi Shuto*
Faculty of Pharmaceutical Science, Hokkaido University, Kita-12, Nishi-6, Kita-Ku, Sapporo 060-0812, Japan
shu@pharm.hokudai.ac.jp

Table of Contents

Synthetic procedures 2
Computational calculation 19
Oxidative stability 25
Murine peritonitis evaluation 26
References 27
NMR spectra 28

General procedures

NMR spectra were measured on JEOL ECX400P (400 MHz), JEOL ECS400 (400 MHz) and JEOL ECA500 $(500 \mathrm{MHz})$. Chemical shifts were reported in the δ scale relative to tetramethylsilane (TMS) as 0.00 ppm for ${ }^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}\right)$ and residual $\mathrm{CHCl}_{3}\left(7.26 \mathrm{ppm}\right.$ for ${ }^{1} \mathrm{H}$ and 77.00 ppm for ${ }^{13} \mathrm{C}$), DMSO (2.49 ppm for ${ }^{1} \mathrm{H}$ and 39.5 ppm for ${ }^{13} \mathrm{C}$) as internal reference. Mass spectra (MS) were measured on Thermo Scientific Exactive (ESI). Silica gel column chromatography and flash column chromatography was carried out with Wakogel 60N (Wako Pure Chemical Industries, Ltd., neutral, 63-212 $\mu \mathrm{m}$) and silica gel (Kishida Chemical Co., Ltd., neutral, 32-63 $\mu \mathrm{m}$), respectively. Elemental analysis (EA) was measured on Yanaco MT-6 and J-Sience JM10. All reactions were carried out under an argon atmosphere using flame-dried or oven-dried glassware, unless otherwise noted, and monitored with analytical TLC (Merck Ltd., TLC Silica gel $60 \mathrm{~F}_{254}$). Purity of all compounds was determined to be $>95 \%$ by EA or HPLC (YMC-Pack SIL, $150 \times 4.6 \mathrm{~mm}$, UV 254 nm).

Experimental Procedures

tert-Butyldiphenyl(((1S,2S)-2-(3-(triisopropylsilyl)prop-2-yn-1-yl)cyclopropyl)methoxy)silane (11a)
To a stirred solution of $\mathbf{7 a}(600 \mathrm{mg}, 1.50 \mathrm{mmol})$ and triisopropylsilylacetylene ($673 \mu \mathrm{~L}, 3.00 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(15 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}(416 \mu \mathrm{~L}, 3.00 \mathrm{mmol}), \mathrm{CuI}(57 \mathrm{mg}, 300 \mu \mathrm{~mol})$ and $\mathrm{PdCl}_{2}(\mathrm{dppf}) \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(123 \mathrm{mg}, 150 \mu \mathrm{~mol})$ at room temperature. The mixture was stirred at the same temperature for 2 h , quenched by addition of sat. $\mathrm{NH}_{4} \mathrm{Cl}$ aq and extracted with AcOEt. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was purified by silica gel column chromatography (hexane) to give crude Sonogashira adduct as a yellow oil.

To a suspension of $\mathrm{Ni}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(182 \mathrm{mg}, 732 \mu \mathrm{~mol})$ in $\mathrm{EtOH}(8 \mathrm{~mL})$ was added $\mathrm{NaBH}_{4}(46 \mathrm{mg}$, 1.22 mmol) and ethylenediamine ($280 \mu \mathrm{~L}, 4.15 \mathrm{mmol}$) at room temperature under Ar atmosphere. To the reaction mixture was added a solution of crude Sonogashira adduct in EtOH (4 mL) and the mixture was stirred at the same temperature under H_{2} atmosphere for 5 h and filtered with Celite. The filtrate was concerned in reduced pressure. The residue was purified by silica gel column chromatography (hexane) to give $\mathbf{1 1 a}(440 \mathrm{mg}, 870 \mu \mathrm{~mol}, 58 \%$ for 2 steps) as a colorless oil.

11a: $[\alpha]_{\mathrm{D}}{ }^{26}-0.6\left(c 1.19, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.68(\mathrm{~m}, 4 \mathrm{H}), 7.39(\mathrm{~m}, 6 \mathrm{H}), 3.75(\mathrm{~m}$, 2 H), 2.42 (dd, $J=18.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{dd}, J=18.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.12-0.98$ (m, 32H), 0.70 (ddd, $J=8.4,8.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.16(\mathrm{ddd}, J=5.6,5.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 135.59$, $135.56,134.03,133.97,129.5,127.60,127.58,108.6,80.3,63.8,26.9,19.4,19.2,18.6,18.0,15.2$, 11.3, 9.3; LRMS (ESI) m/z 527 [M+Na] ${ }^{+}$; Anal. calcd for $\mathrm{C}_{32} \mathrm{H}_{48} \mathrm{OSi}_{2}$: C, 76.12; H, 9.58; found: C, 75.82; H, 9.64.
tert-Butyldiphenyl(((1R,2R)-2-(3-(triisopropylsilyl)prop-2-yn-1-yl)cyclopropyl)methoxy)silane (11b)

To a stirred solution of $\mathbf{7 b}(2.9 \mathrm{~g}, 7.20 \mathrm{mmol})$ and triisopropylsilylacetylene ($3.2 \mathrm{~mL}, 14.4 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(72 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}(2.0 \mathrm{~mL}, 14.4 \mathrm{mmol}), \mathrm{CuI}(274 \mathrm{mg}, 1.44 \mathrm{mmol})$ and
$\mathrm{PdCl}_{2}(\mathrm{dppf}) \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(590 \mathrm{mg}, 720 \mu \mathrm{~mol})$ at room temperature. The mixture was stirred at the same temperature for 2 h , quenched by addition of sat. $\mathrm{NH}_{4} \mathrm{Cl}$ aq and extracted with AcOEt. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was purified by silica gel column chromatography (hexane) to give crude Sonogashira adduct as a yellow oil.
To a suspension of $\mathrm{Ni}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(746 \mathrm{mg}, 3.0 \mathrm{mmol})$ in $\mathrm{EtOH}(42 \mathrm{~mL})$ was added $\mathrm{NaBH}_{4}(189$ $\mathrm{mg}, 5.00 \mathrm{mmol})$ and ethylenediamine ($1.1 \mathrm{~mL}, 16.5 \mathrm{mmol}$) at room temperature under Ar atmosphere. To the reaction mixture was added a solution of crude Sonogashira adduct ($2.5 \mathrm{~g}, 4.98$ $\mathrm{mmol})$ in $\mathrm{EtOH}(8 \mathrm{~mL})$ and the mixture was stirred at the same temperature under H_{2} atmosphere for 5 h and filtered with Celite. The filtrate was concerned in reduced pressure. The residue was purified by silica gel column chromatography (hexane) to give $\mathbf{1 1 b}$ ($1.9 \mathrm{~g}, 3.77 \mathrm{mmol}, 52 \%$ for 2 steps) as a colorless oil.

11b: $[\alpha]_{\mathrm{D}}{ }^{26}+0.6\left(c 1.06, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR spectrum for $\mathbf{1 1 b}$ agreed with that for $\mathbf{1 1 a}$.

((1S,2S)-2-(3-(Triisopropylsilyl)prop-2-yn-1-yl)cyclopropyl)methanol (S1a)

To a stirred solution of $11 \mathrm{a}(1.02 \mathrm{~g}, 2.03 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ and $\mathrm{MeOH}(10 \mathrm{~mL})$ was added $\mathrm{NH}_{4} \mathrm{~F}(750 \mathrm{mg}, 20.3 \mathrm{mmol})$ at room temperature. The mixture was refluxed for 48 h and cooled to room temperature. The solution was concentrated, added $\mathrm{H}_{2} \mathrm{O}$ and extracted with AcOEt. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue purified by silica gel column chromatography (AcOEt-hexane $=1: 20$) to give S1a ($432 \mathrm{mg}, 1.62 \mathrm{~mol}$, 81%) as a colorless oil.

S1a: $[\alpha]_{\mathrm{D}}{ }^{20}+74.6\left(c 0.84, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.89(\mathrm{~m}, 1 \mathrm{H}), 3.42(\mathrm{ddd}, J=12.4$, $9.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{dd}, J=18.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{dd}, J=18.0,10.4$ $\mathrm{Hz}, 1 \mathrm{H}), 1.26$ (m, 2H), 1.12-1.02 (m, 21H), 0.78 (ddd, $J=8.4,8.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.11$ (ddd, $J=5.2$, $5.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 108.5,81.9,63.2,19.3,18.5,17.8,15.6,11.2,9.7$; LRMS (ESI) m/z 289 [M+Na] ${ }^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{ONaSi}[\mathrm{M}+\mathrm{Na}]^{+}$289.1958, found 289.1959

((1R,2R)-2-(3-(Triisopropylsilyl)prop-2-yn-1-yl)cyclopropyl)methanol (S1b)

To a stirred solution of $\mathbf{1 1 b}(607 \mathrm{mg}, 1.20 \mathrm{mmol})$ in THF $(6 \mathrm{~mL})$ and $\mathrm{MeOH}(6 \mathrm{~mL})$ was added $\mathrm{NH}_{4} \mathrm{~F}(669 \mathrm{mg}, 18.1 \mathrm{mmol})$ at room temperature and the mixture was refluxed overnight. Then, additional $\mathrm{NH}_{4} \mathrm{~F}$ ($223 \mathrm{mg}, 6.02 \mathrm{mmol}$) was added to the reaction mixture, which was stirred overnight and cooled to room temperature. The solution was concentrated, added $\mathrm{H}_{2} \mathrm{O}$ and extracted with AcOEt. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue purified by silica gel column chromatography (AcOEt-hexane $=1: 125$ to 1:15) to give $\mathbf{S 1 b}(260 \mathrm{mg}, 978 \mu \mathrm{~mol}, 81 \%)$ as a colorless oil.

S1b: $[\alpha]_{\mathrm{D}}{ }^{25}-81.5\left(c 1.05, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR spectrum for $\mathbf{S 1 b}$ agreed with that for $\mathbf{S 1 a}$.

(1S,2S)-2-(3-(Triisopropylsilyl)prop-2-yn-1-yl)cyclopropanecarbaldehyde (12a)

To a stirred solution of S1a (432 mg, 1.62 mmol) in DCM (10 mL) was added DMP ($1.03 \mathrm{~g}, 2.44$ mmol) at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 30 min , quenched by addition of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ aq and sat. NaHCO_{3} aq and extracted with AcOEt. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was purified by silica gel column chromatography (AcOEt-hexane $=1: 100$ to $1: 20$) to give 12a ($368 \mathrm{mg}, 1.38 \mathrm{mmol}, 85 \%$) as a pale yellow oil.
12a: $[\alpha]_{\mathrm{D}}{ }^{25}+85.6\left(c 0.77, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.59(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{dd}$, $J=18.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{dd}, J=18.0,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{~m}, 1 \mathrm{H}), 1.78(\mathrm{~m}, 1 \mathrm{H}), 1.34(\mathrm{ddd}, J=5.2$, $5.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{ddd}, J=8.4,8.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.08-1.00(\mathrm{~m}, 21 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 200.3,106.4,81.7,27.0,23.7,18.7,18.4,14.5,11.1 ;$ LRMS (APCI) m/z $265[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (APCI) calcd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{OSi}[\mathrm{M}+\mathrm{H}]^{+}$265.1982, found 265.1982.

(1R,2R)-2-(3-(Triisopropylsilyl)prop-2-yn-1-yl)cyclopropanecarbaldehyde (12b)

To a stirred solution of S1b ($447 \mathrm{mg}, 1.68 \mathrm{mmol}$) in DCM (17 mL) was added DMP (1.07 g, 2.52 mmol) at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 1 h , quenched by addition of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \mathrm{aq}$ and sat. $\mathrm{NaHCO}_{3} \mathrm{aq}$ and extracted with AcOEt. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was purified by silica gel column chromatography (AcOEt-hexane $=1: 125)$ to give $\mathbf{1 2 b}(405 \mathrm{mg}, 1.53 \mathrm{mmol}, 91 \%)$ as a pale yellow oil.
12b: $[\alpha]_{\mathrm{D}}{ }^{24}-86.0\left(c 0.84, \mathrm{CHCl}_{3}\right) \cdot{ }^{1} \mathrm{H}$ NMR spectrum for $\mathbf{1 2 b}$ agreed with that for 12a.

2-((1R,2S)-2-(3-(Triisopropylsilyl)prop-2-yn-1-yl)cyclopropyl)ethanol (13a)

To a stirred solution of $\mathrm{MeOCH}_{2} \mathrm{PPh}_{3} \mathrm{Cl}(1.3 \mathrm{~g}, 3.80 \mathrm{mmol})$ in THF $(7 \mathrm{~mL})$ was added KHMDS $(0.5$ M in toluene, $7.59 \mathrm{~mL}, 3.80 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. The resulting solution was stirred at the same temperature for 30 min . After 12a ($334 \mathrm{mg}, 1.27 \mathrm{mmol}$) in THF (3 mL) was added to the reaction mixture, the mixture was stirred at the same temperature for 1 h , quenched by addition of sat. $\mathrm{NH}_{4} \mathrm{Cl}$ aq and extracted with AcOEt. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated to give crude Wittig product. This material was used without further purification.

To a stirred solution of crude Wittig product in THF (10 mL) was added 12 N HCl aq ($3 \mathrm{~mL}, 36$ $\mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at the same temperature for 80 min , quenched by addition of sat. NaHCO_{3} aq and extracted with AcOEt. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated to give crude aldehyde. This material was used without further
purification.
To a stirred solution of crude aldehyde in $\mathrm{EtOH}(10 \mathrm{~mL})$ was added $\mathrm{NaBH}_{4}(72 \mathrm{mg}, 1.91 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at the same temperature for 1 h , quenched by addition of sat. $\mathrm{NH}_{4} \mathrm{Cl}$ aq and extracted with AcOEt. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was purified by silica gel column chromatography (AcOEt-hexane $=$ 1:20 to $1: 8$) to give 13a ($288 \mathrm{mg}, 1.03 \mathrm{mmol}, 81 \%$ for 3 steps) as a colorless oil.
13a: $[\alpha]_{\mathrm{D}}{ }^{25}+36.9\left(c 0.57, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.77(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{dd}$, $J=18.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{dd}, J=18.0,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{~m}, 1 \mathrm{H}), 1.55(\mathrm{~m}, 1 \mathrm{H}), 1.08-1.00(\mathrm{~m}$, $22 \mathrm{H}), 0.86(\mathrm{~m}, 1 \mathrm{H}), 0.72(\mathrm{ddd}, J=8.4,8.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}),-0.02(\mathrm{ddd}, J=5.2,5.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 108.4,80.5,63.3,31.4,19.5,18.6,14.7,12.5,11.2,10.3$; LRMS (ESI) $\mathrm{m} / \mathrm{z} 303[\mathrm{M}+\mathrm{Na}]^{+} ;$HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{ONaSi}[\mathrm{M}+\mathrm{Na}]^{+} 303.2115$, found 303.2115.

2-((1S,2R)-2-(3-(Triisopropylsilyl)prop-2-yn-1-yl)cyclopropyl)ethanol (13b)

To a stirred solution of $\mathrm{MeOCH}_{2} \mathrm{PPh}_{3} \mathrm{Cl}(2.25 \mathrm{~g}, 6.56 \mathrm{mmol})$ in THF (10 mL) was added KHMDS $(0.5 \mathrm{M}$ in toluene, $13.1 \mathrm{~mL}, 6.56 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The resulting solution was stirred at the same temperature for 30 min . After $\mathbf{1 2 b}(577 \mathrm{mg}, 2.19 \mathrm{mmol})$ in THF (7 mL) was added to the reaction mixture, the mixture was stirred at the same temperature for 1 h , quenched by addition of sat. $\mathrm{NH}_{4} \mathrm{Cl}$ aq and extracted with AcOEt. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated to give crude Wittig product. This material was used without further purification.
To a stirred solution of crude Wittig product in THF (17 mL) was added 12 N HCl aq ($5 \mathrm{~mL}, 75$ mmol) at $0^{\circ} \mathrm{C}$. The mixture was stirred at the same temperature for 80 min , quenched by addition of sat. NaHCO_{3} aq and extracted with AcOEt. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated to give crude aldehyde. This material was used without further purification.

To a stirred solution of crude aldehyde in EtOH (17 mL) was added $\mathrm{NaBH}_{4}(124 \mathrm{mg}, 3.29 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at the same temperature for 20 min , quenched by addition of sat. $\mathrm{NH}_{4} \mathrm{Cl}$ aq and extracted with AcOEt. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was purified by silica gel column chromatography (AcOEt-hexane $=1: 10$ to $1: 4$) to give 13b ($558 \mathrm{mg}, 1.99 \mathrm{mmol}, 91 \%$ for 3 steps) as a colorless oil. 13b: $[\alpha]_{\mathrm{D}}{ }^{26}-38.5\left(c 1.17, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR spectrum for $\mathbf{1 3 b}$ agreed with that for 13a.

2-((1R,2S)-2-(Prop-2-yn-1-yl)cyclopropyl)ethanol (5a)

To a stirred solution of 13a ($288 \mathrm{mg}, 1.03 \mathrm{mmol}$) in THF (2 mL) was added TBAF (1.0 M in THF, $8.23 \mathrm{~mL}, 8.23 \mathrm{mmol})$ at room temperature. The mixture was stirred at the same temperature for 30 h , added $\mathrm{H}_{2} \mathrm{O}$ and extracted with ether. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and
concentrated. The residue was purified by silica gel column chromatography (AcOEt-hexane $=1: 4$ to $1: 2$) to give $\mathbf{5 a}(108 \mathrm{mg}, 871 \mu \mathrm{~mol}, 85 \%)$ as a colorless oil.

5a: $[\alpha]_{\mathrm{D}}{ }^{26}+58.0\left(c 0.74, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.72(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.29$ (ddd, $J=17.6,6.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{ddd}, J=17.6,7.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{~s}, 1 \mathrm{H}), 1.99(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $1.69(\mathrm{ddt}, J=14.0,6.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.49(\mathrm{ddt}, J=14.0,6.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.03(\mathrm{~m}, 1 \mathrm{H}), 0.84(\mathrm{~m}$, $1 \mathrm{H}), 0.72(\mathrm{ddd}, J=8.8,8.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}),-0.08(\mathrm{ddd}, J=5.2,5.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 84.1,68.4,63.1,31.4,18.1,14.3,12.4,10.4 ;$ LRMS (APCI) m/z $125[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS (APCI) calcd for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$125.0961, found 125.0961.

2-((1S,2R)-2-(Prop-2-yn-1-yl)cyclopropyl)ethanol (5b)

To a stirred solution of $\mathbf{1 3 b}(558 \mathrm{mg}, 1.99 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ was added TBAF (1.0 M in THF, $7.97 \mathrm{~mL}, 7.97 \mathrm{mmol}$) at room temperature. The mixture was stirred at the same temperature for 6 h , added $\mathrm{H}_{2} \mathrm{O}$ and extracted with ether. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was purified by silica gel column chromatography (AcOEt-hexane $=1: 8$ to $1: 2$) to give $\mathbf{5 b}(213 \mathrm{mg}, 1.72 \mathrm{mmol}, 86 \%)$ as a colorless oil.
$\mathbf{5 b}:[\alpha]_{\mathrm{D}}{ }^{26}-58.2\left(c 1.21, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR spectrum for $\mathbf{5 b}$ agreed with that for $\mathbf{5 a}$.

(S)-7-Methoxy-7-oxohept-1-yn-3-yl benzoate (S 4)

To a stirred solution of $\mathbf{S} 2(3.0 \mathrm{~g}, 13.2 \mathrm{mmol})$ in DMF (45 mL) was added a solution of $\mathrm{KF}(1.53 \mathrm{~g}$, $26.3 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(4.5 \mathrm{~mL})$ at room temperature. The mixture was stirred at the same temperature for 1 h . The resulting solution was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was purified by silica gel column chromatography (AcOEt-hexane $=1: 4)$ to give $\mathbf{S 3}(1.95 \mathrm{~g}, 12.5 \mathrm{mmol}, 95 \%)$ as a colorless oil ${ }^{1}$. To a stirred solution of $\mathbf{S 3}(13 \mathrm{mg}, 83.3 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ were added $\mathrm{Et}_{3} \mathrm{~N}(116 \mu \mathrm{~L}, 833$ $\mu \mathrm{mol}), \mathrm{BzCl}(48 \mu \mathrm{~L}, 417 \mu \mathrm{~mol})$ and DMAP ($10 \mathrm{mg}, 83.3 \mu \mathrm{~mol}$) at room temperature. The mixture was stirred at the same temperature for 5 h . The resulting solution was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. After the residue was added AcOEt and sat. $\mathrm{Na}_{2} \mathrm{CO}_{3} \mathrm{aq}$, the mixture was stirred at room temperature for 1 h . The resulting solution was extracted with AcOEt. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was purified by silica gel column
chromatography (AcOEt-hexane $=1: 2)$ to give $\mathbf{S 4}(21 \mathrm{mg}, 80.8 \mu \mathrm{~mol}, 97 \%, 99 \%$ ee $)$ as a colorless oil.

S3: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07(\mathrm{~m}, 2 \mathrm{H}), 7.58(\mathrm{~m}, 1 \mathrm{H}), 7.46(\mathrm{~m}, 2 \mathrm{H}), 6.65(\mathrm{td}, J=6.2,2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 2.51(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.01-1.88(\mathrm{~m}, 2 \mathrm{H})$.

Optical purity of $\mathbf{S 4}$ was determined by chiral HPLC analysis (HPLC conditions: column; CHIRALCEL AS-H, eluent; hexane- $i-\mathrm{PrOH}=20: 1$, flow rate; $0.5 \mathrm{~mL} / \mathrm{min}$, detection; UV 254 nm , retention time; 12.9 min for $\mathbf{S 4}$)

(S)-Methyl 5-hydroxyhept-6-enoate (S5)

A solution of $\mathbf{S 3}(1.46 \mathrm{~g}, 9.36 \mathrm{mmol})$, quinoline $(5.54 \mathrm{~mL}, 46.8 \mathrm{mmol})$ and Lindlar catalyst (146 mg , $10 \% \mathrm{w} / \mathrm{w}$) in AcOEt (45 mL) was stirred under H_{2} atmosphere at room temperature for 1.5 h . The mixture was filtrated through Celite pad and the filtrate was concentrated. The residue was purified by silica gel column chromatography (AcOEt-hexane $=1: 2)$ to give $\mathbf{S 5}(1.35 \mathrm{~g}, 8.53 \mathrm{mmol}, 91 \%)$ as a colorless oil.
S5: $[\alpha]_{\mathrm{D}}{ }^{25}+8.3\left(c 0.60, \mathrm{CHCl}_{3}\right)$, lit. $[\alpha]_{\mathrm{D}}{ }^{25}+3.2\left(c 0.1, \mathrm{CDCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.87$ (ddd, $J=17.5,10.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{dt}, J=$ $6.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.78-1.67(\mathrm{~m}, 3 \mathrm{H}), 1.57(\mathrm{~m}, 2 \mathrm{H})$. Data for $\mathbf{S 5}$ agreed with previous data ${ }^{1}$.

(S,E)-Methyl 5-((tert-butyldimethylsilyl)oxy)-8-oxooct-6-enoate (3)

A solution of $\mathbf{S 5}(646 \mathrm{mg}, 4.09 \mathrm{mmol})$, acrolein diethyl acetal $(1.25 \mathrm{~mL}, 8.18 \mathrm{mmol})$ and Grubbs $2^{\text {nd }}$ generation catalyst (G II) ($110 \mathrm{mg}, 123 \mu \mathrm{~mol}$) in DCM (20 mL) was stirred at room temperature overnight. Then, additional G II ($36 \mathrm{mg}, 40 \mu \mathrm{~mol}$) and acrolein diethyl acetal ($300 \mu \mathrm{~L}, 1.97 \mathrm{mmol}$) was added and the reaction mixture was stirred at room temperature for further 4 h . To the solution were added imidazole $(1.11 \mathrm{~g}, 16.4 \mathrm{mmol})$ and $\operatorname{TBSCl}(1.23 \mathrm{~g}, 8.18 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at the room temperature for 3 h . To the solution was added $\mathrm{AcOH} / \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(6 \mathrm{~mL} / 6 \mathrm{~mL} / 6$ mL) at room temperature. The mixture was stirred at the same temperature for 6 h , quenched by addition of NaHCO_{3} and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was purified by silica gel column chromatography (AcOEt-hexane $=1: 10)$ to give $3(852 \mathrm{mg}, 2.84 \mathrm{mmol}, 69 \%)$ as a colorless oil.
$[\alpha]_{\mathrm{D}}{ }^{24}+12.2\left(c 0.99, \mathrm{CHCl}_{3}\right)$, lit. $[\alpha]_{\mathrm{D}}{ }^{21}+16\left(c 0.91, \mathrm{CHCl}_{3}\right)^{2} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.58(\mathrm{~d}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{dd}, J=15.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{dd}, J=15.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{dt}, J=4.5,4.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.71-1.61(\mathrm{~m}, 4 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}$, $3 H)$. Data for 3 agreed with previous data ${ }^{2}$.

($\boldsymbol{R}, \boldsymbol{E}$)-1-Iodopent-1-en-3-ol (S7)

To a stirred solution of $\mathbf{S 6}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (c.a. 0.3 M) was added $\mathrm{I}_{2}\left(1.2 \mathrm{eq}\right.$.) at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at the same temperature for several min and quenched by addition of sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ aq and extracted with ether. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was purified by silica gel column chromatography (AcOEt-hexane) to give S7 (75-100\%, >97\% ee) as a light yellow oil.
S7: $[\alpha]_{\mathrm{D}}{ }^{18}+2.0\left(c 0.97, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.58(\mathrm{dd}, J=15.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.36$ $(\mathrm{dd}, J=15.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.54(\mathrm{~m}, 3 \mathrm{H}), 0.94(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$. Data for S 7 agreed with previous data ${ }^{3}$.
Optical purity of $\mathbf{S 7}$ was determined by chiral HPLC analysis (HPLC conditions: column; CHIRALCEL AD-H, eluent; hexane- $i-\mathrm{PrOH}=50: 1$, flow rate; $0.5 \mathrm{~mL} / \mathrm{min}$, detection; UV 250 nm , retention time; 18.0 min for \mathbf{S})

(R, E)-tert-Butyl((1-iodopent-1-en-3-yl)oxy)dimethylsilane (6)

To a stirred solution of $\mathbf{S 7}(414 \mathrm{mg}, 1.95 \mathrm{mmol})$ in DMF (6 mL) was added imidazole ($532 \mathrm{mg}, 7.81$ mmol) and $\mathrm{TBSCl}(589 \mathrm{mg}, 3.91 \mathrm{mmol})$ at room temperature. The mixture was stirred at the same temperature for 1 h and quenched by addition of sat. NaHCO_{3} aq and extracted with ether. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was purified by silica gel column chromatography (AcOEt-hexane $=1: 10$) to give 6 ($629 \mathrm{mg}, 1.93$ mmol, 99%) as a colorless oil.
6: $[\alpha]_{\mathrm{D}}{ }^{20}+39.9\left(c 0.98, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.51(\mathrm{dd}, J=14.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.19$ (dd, $J=14.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{dt}, J=6.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{td}, J=7.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H})$, $0.87(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.0,76.2,75.6$, $30.3,25.8,18.2,9.2,-4.6,-4.9$; LRMS (EI) m/z $326[M]^{+} ;$HRMS (EI) calcd for $\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{IOSi}[\mathrm{M}]^{+}$ 326.0563 , found 326.0565 .

2-((1R,2S)-2-((R,E)-6-((tert-Butyldimethylsilyl)oxy)oct-4-en-2-yn-1-yl)cyclopropyl)ethanol (14a)
To a stirred solution of $\mathbf{5 a}(108 \mathrm{mg}, 871 \mu \mathrm{~mol})$ and $\mathbf{6}(380 \mathrm{mg}, 1.17 \mathrm{mmol})$ in benzene (5 mL) was added $\mathrm{Et}_{2} \mathrm{NH}(0.5 \mathrm{ml}), \mathrm{CuI}(83 \mathrm{mg}, 435 \mu \mathrm{~mol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(101 \mathrm{mg}, 87.1 \mu \mathrm{~mol})$ at room temperature. The mixture was stirred at the same temperature for 1 h , quenched by addition of $\mathrm{H}_{2} \mathrm{O}$ and extracted with AcOEt. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was purified by silica gel column chromatography (AcOEt-hexane $=$ $1: 8$) to give $\mathbf{1 4 a}(235 \mathrm{mg}, 730 \mu \mathrm{~mol}, 84 \%)$ as a yellow oil.

14a: $[\alpha]_{\mathrm{D}}{ }^{26}+56.6\left(c 1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.03(\mathrm{dd}, J=16.0,5.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.63(\mathrm{~m}, 1 \mathrm{H}), 4.08$ (br dt, $J=6.0,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.77$ (m, 2H), 2.45 (ddd, $J=18.0,6.0,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, 2.23 (ddd, $J=18.0,8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.73(\mathrm{ddt}, J=14.4,6.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.58-1.47(\mathrm{~m}, 3 \mathrm{H}), 1.07$ $(\mathrm{m}, 1 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.90-0.83(\mathrm{~m}, 1 \mathrm{H}), 0.87(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.75(\mathrm{ddd}, J=8.8,8.8,4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}),-0.05(\mathrm{ddd}, J=5.6,5.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $144.9,108.9,89.5,78.9,73.6,63.0,31.4,30.6,25.8,19.1,18.1,14.5,12.4,10.5,9.2,-4.6,-5.0$; LRMS (ESI) m/z $345[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{NaSi}[\mathrm{M}+\mathrm{Na}]^{+} 345.2220$, found 345.2225

2-((1S,2R)-2-((R,E)-6-((tert-Butyldimethylsilyl)oxy)oct-4-en-2-yn-1-yl)cyclopropyl)ethanol

 (14b)To a stirred solution of $\mathbf{5 b}(105 \mathrm{mg}, 847 \mu \mathrm{~mol})$ and $\mathbf{6}(359 \mathrm{mg}, 1.10 \mathrm{mmol})$ in benzene $(5 \mathrm{~mL})$ was added $\mathrm{Et}_{2} \mathrm{NH}(0.5 \mathrm{ml})$, $\mathrm{CuI}(81 \mathrm{mg}, 423 \mu \mathrm{~mol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(98 \mathrm{mg}, 84.7 \mu \mathrm{~mol})$ at room temperature. The mixture was stirred at the same temperature for 2 h , quenched by addition of $\mathrm{H}_{2} \mathrm{O}$ and extracted with AcOEt. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was purified by silica gel column chromatography (AcOEt-hexane $=$ 1:8) to give 14b ($206 \mathrm{mg}, 640 \mu \mathrm{~mol}, 76 \%$) as a yellow oil.
14b: $[\alpha]_{\mathrm{D}}{ }^{21}-10.7\left(c 0.99, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.03(\mathrm{dd}, J=16.0,5.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.63(\mathrm{~m}, 1 \mathrm{H}), 4.08(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.45(\mathrm{ddd}, J=18.0,6.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.23$ (ddd, $J=18.0,7.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.73(\mathrm{ddt}, J=13.4,6.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.58-1.47(\mathrm{~m}, 3 \mathrm{H}), 1.07(\mathrm{~m}, 1 \mathrm{H})$, $0.90(\mathrm{~s}, 9 \mathrm{H}), 0.90-0.85(\mathrm{~m}, 1 \mathrm{H}), 0.87(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.75(\mathrm{ddd}, J=8.4,8.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.05(\mathrm{~s}$,
$3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}),-0.05(\mathrm{ddd}, J=5.6,5.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.1,108.9$, 89.6, 79.0, 73.6, 63.3, 31.5, 30.7, 25.8, 19.2, 18.2, 14.5, 12.5, 10.6, 9.3, $-4.5,-4.9$; LRMS (ESI) m/z $345[\mathrm{M}+\mathrm{Na}]^{+} ;$HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{NaSi}[\mathrm{M}+\mathrm{Na}]^{+} 345.2220$, found 345.2221.

2-((1R,2S)-2-((R,2Z,4E)-6-((tert-Butyldimethylsilyl)oxy)octa-2,4-dien-1-yl)cyclopropyl)ethanol (S8a)

To a stirred solution of Zn powder $(9.2 \mathrm{~g}, 141 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(35 \mathrm{~mL})$ was added $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ $(920 \mathrm{mg}, 4.60 \mathrm{mmol})$ at room temperature. The mixture was stirred at the same temperature for 15 min. To the mixture was added $\mathrm{AgNO}_{3}(920 \mathrm{mg}, 5.41 \mathrm{mmol})$ and stirred at the same temperature for 30 min . To the reaction mixture was added $\mathbf{1 4 a}$ ($230 \mathrm{mg}, 714 \mu \mathrm{~mol}$) in $\mathrm{MeOH}(35 \mathrm{~mL})$, stirred at reflux for 2 h , filtrated through Celite pad and the filtrate was concentrated. The residue was purified by silica gel column chromatography (AcOEt-hexane $=1: 4$) to give $\mathbf{S 8 a}(199 \mathrm{mg}, 614 \mu \mathrm{~mol}, 86 \%)$ as a yellow oil.
S8a: $[\alpha]_{\mathrm{D}}{ }^{26}-22.4\left(c 1.24, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.41(\mathrm{dd}, J=15.2,11.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.00(\mathrm{dd}, J=11.2,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{dd}, J=15.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{dt}, J=10.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.09$ (dt, $J=6.0,5.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.73 (br t, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}$), 2.26-2.10 (m, 2H), 1.73 (ddt, $J=12.8,6.0,6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 1.55-1.42(\mathrm{~m}, 4 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.91-0.86(\mathrm{~m}, 1 \mathrm{H}), 0.87(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.81(\mathrm{~m}, 1 \mathrm{H})$, 0.69 (ddd, $J=8.4,8.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}),-0.12(\mathrm{ddd}, J=5.4,5.4,4.4 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.8,130.8,128.0,124.3,74.3,63.3,31.8,31.1,27.0,25.9,18.2$, 15.2, 12.3, 10.4, 9.6, $-4.4,-4.8$; LRMS (ESI) $\mathrm{m} / \mathrm{z} 347[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{36} \mathrm{O}_{2} \mathrm{NaSi}[\mathrm{M}+\mathrm{Na}]^{+}$347.2377, found 347.2381.

2-((1S,2R)-2-((R,2Z,4E)-6-((tert-Butyldimethylsilyl)oxy)octa-2,4-dien-1-yl)cyclopropyl)ethanol (S8b)

To a stirred solution of Zn powder $(8.24 \mathrm{~g}, 126 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ was added $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ $(824 \mathrm{mg}, 4.13 \mathrm{mmol}$) at room temperature. The mixture was stirred at the same temperature for 15 min. To the mixture was added $\mathrm{AgNO}_{3}(824 \mathrm{mg}, 4.85 \mathrm{mmol})$ and stirred at the same temperature for 30 min . To the reaction mixture was added $\mathbf{1 4 b}$ ($206 \mathrm{mg}, 640 \mu \mathrm{~mol}$) in $\mathrm{MeOH}(30 \mathrm{~mL})$, stirred at reflux for 2 h , filtrated through Celite pad and the filtrate was concentrated. The residue was purified by silica gel column chromatography (AcOEt-hexane $=1: 10$) to give $\mathbf{S 8 b}(167 \mathrm{mg}, 515 \mu \mathrm{~mol}, 81 \%)$ as a yellow oil.
S8b: $[\alpha]_{\mathrm{D}}{ }^{20}-3.9\left(c 1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.41(\mathrm{dd}, J=15.4,11.2 \mathrm{~Hz}, 1 \mathrm{H})$, 6.00 (dd, $J=11.2,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{dd}, J=15.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{dt}, J=10.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.10$ (dt, $J=6.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.73(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.26-2.11(\mathrm{~m}, 2 \mathrm{H}), 1.72(\mathrm{ddt}, J=12.8,6.4,6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 1.55-1.44(\mathrm{~m}, 4 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.91-0.86(\mathrm{~m}, 1 \mathrm{H}), 0.88(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.84-0.77(\mathrm{~m}, 1 \mathrm{H})$, $0.69(\mathrm{ddd}, J=8.4,8.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}),-0.13(\mathrm{ddd}, J=5.2,5.2,5.2 \mathrm{~Hz}, 1 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 136.9,130.8,127.9,124.2,74.2,63.4,31.8,31.1,27.0,25.9,18.3$, 15.2, 12.3, 10.4, 9.7, -4.4, -4.8; LRMS (ESI) m/z $347[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{36} \mathrm{O}_{2} \mathrm{NaSi}[\mathrm{M}+\mathrm{Na}]^{+} 347.2377$, found 347.2375.

(2-((1R,2S)-2-((R,2Z,4E)-6-((tert-Butyldimethylsilyl)oxy)octa-2,4-dien-1-yl)cyclopropyl)ethyl)io

 dotriphenylphosphorane (15a)To a stirred solution of S8a ($195 \mathrm{mg}, 602 \mu \mathrm{~mol}$), $\mathrm{PPh}_{3}(1.58 \mathrm{~g}, 6.02 \mathrm{mmol})$, imidazole ($410 \mathrm{mg}, 6.02$ mmol) in DCM (6 mL) was added NIS ($948 \mathrm{mg}, 4.21 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ under dark. The mixture was stirred at the same temperature for 1 h , quenched by addition of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ aq and extracted with DCM. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was purified by silica gel column chromatography (AcOEt-hexane $=1: 30$) to give crude iodide as a yellow oil.

To a stirred solution of crude iodide in $\mathrm{MeCN}(6 \mathrm{~mL})$ was added $\mathrm{PPh}_{3}(316 \mathrm{mg}, 1.20 \mathrm{mmol})$ at room temperature. The mixture was refluxed overnight and cooled to room temperature. The solution was concentrated and purified by silica gel column chromatography ($\mathrm{MeOH}-\mathrm{CHCl}_{3}=0: 1$ to $1: 20$) to give 15 a ($376 \mathrm{mg}, 540 \mu \mathrm{~mol}, 90 \%$ for 2 steps) as an orange amorphous.
15a: $[\alpha]_{\mathrm{D}}{ }^{25}+3.1\left(c 0.89, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.87-7.80(\mathrm{~m}, 9 \mathrm{H}), 7.74-7.70(\mathrm{~m}$, $6 \mathrm{H}), 6.28(\mathrm{dd}, J=15.2,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{dd}, J=11.2,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{dd}, J=15.2,6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.36(\mathrm{dt}, J=11.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{dt}, J=6.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{~m}, 1 \mathrm{H}), 2.09$ (ddd, $J=15.0,7.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 1.89 (ddd, $J=15.0,7.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.80-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.58$ $(\mathrm{m}, 1 \mathrm{H}), 1.53-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.29(\mathrm{~m}, 1 \mathrm{H}), 0.92-0.83(\mathrm{~m}, 1 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, 0.75 (ddd, $J=8.4,8.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.00(\mathrm{~s}, 3 \mathrm{H}),-0.17(\mathrm{ddd}, J=5.6,5.6,4.4 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 137.0,134.98,134.95,133.4,133.3,130.4,130.3,129.8,128.1$, $123.8,118.1,117.3,73.9,30.8,26.4,25.6,23.7,23.2,21.94,21.90,18.0,16.4,16.35,16.25,11.1$, 9.4, -4.6, -5.0; LRMS (ESI) m/z $569[\mathrm{M}-\mathrm{I}]^{+}$; Anal. calcd for $\mathrm{C}_{37} \mathrm{H}_{50} \mathrm{IOPSi}$: C, 63.78; H, 7.23; found: C, 63.59; H, 7.27.

(2-((1S,2R)-2-((R,2Z,4E)-6-((tert-Butyldimethylsilyl)oxy)octa-2,4-dien-1-yl)cyclopropyl)ethyl)io dotriphenylphosphorane (15b)

To a stirred solution of $\mathbf{S 8 b}(167 \mathrm{mg}, 515 \mu \mathrm{~mol}), \mathrm{PPh}_{3}(1.35 \mathrm{~g}, 5.15 \mathrm{mmol}$), imidazole ($351 \mathrm{mg}, 5.15$ mmol) in DCM (5 mL) was added NIS ($812 \mathrm{mg}, 3.61 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$ under dark. The mixture was stirred at the same temperature for 1 h , quenched by addition of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ aq and extracted with DCM. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was purified by silica gel column chromatography (AcOEt-hexane $=1: 30$) to give crude iodide as a yellow oil.

To a stirred solution of crude iodide in $\mathrm{MeCN}(5 \mathrm{~mL})$ was added $\mathrm{PPh}_{3}(270 \mathrm{mg}, 1.03 \mathrm{mmol})$ at room
temperature. The mixture was refluxed overnight and cooled to room temperature. The solution was concentrated and purified by silica gel column chromatography ($\mathrm{MeOH}-\mathrm{CHCl}_{3}=0: 1$ to $1: 10$) to give $\mathbf{1 5 b}$ ($359 \mathrm{mg}, 516 \mu \mathrm{~mol}$, quant for 2 steps) as an orange amorphous.
15b: $[\alpha]_{\mathrm{D}}{ }^{19}-9.5\left(c 0.95, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.85-7.80(\mathrm{~m}, 9 \mathrm{H}), 7.75-7.70(\mathrm{~m}$, $6 \mathrm{H}), 6.31(\mathrm{dd}, J=15.2,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{dd}, J=11.2,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{dd}, J=15.2,6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.37(\mathrm{dt}, J=11.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{dt}, J=6.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{~m}, 1 \mathrm{H}), 2.00$ $(\mathrm{m}, 2 \mathrm{H}), 1.72(\mathrm{~m}, 1 \mathrm{H}), 1.63(\mathrm{~m}, 1 \mathrm{H}), 1.49(\mathrm{dq}, J=7.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.29(\mathrm{~m}, 1 \mathrm{H}), 0.91-0.84(\mathrm{~m}, 1 \mathrm{H})$, $0.87(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.74(\mathrm{ddd}, J=8.4,8.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.00(\mathrm{~s}, 3 \mathrm{H})$, $-0.17(\mathrm{ddd}, J=5.6,5.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.2,135.04,135.02,133.5$, $133.4,130.5,130.4,129.8,128.3,123.7,118.2,117.5,73.8,30.9,26.5,25.7,23.7,23.3,22.07$, $22.04,18.1,16.46,16.44,16.3,11.2,9.6,-4.6,-4.9$; LRMS (ESI) m/z $569[\mathrm{M}-]^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{37} \mathrm{H}_{50} \mathrm{IOPSi}[\mathrm{M}-\mathrm{I}]^{+} 569.3363$, found 569.3355.
(S,6E,8Z)-Methyl 5-((tert-butyldimethylsilyl)oxy)-10-((1R,2S)-2-((R,2Z,4E)-6-((tert-butyl-dimethylsilyl)oxy)octa-2,4-dien-1-yl)cyclopropyl)deca-6,8-dienoate (S9a)

To a stirred solution of $\mathbf{1 5 a}(70 \mathrm{mg}, 101 \mu \mathrm{~mol})$ in THF $(0.2 \mathrm{~mL})$ was added NaHMDS $(1.0 \mathrm{M}$ in toluene, $96 \mu \mathrm{~L}, 96 \mu \mathrm{~mol}$) at $-80^{\circ} \mathrm{C}$. The resulting solution was stirred at $-80^{\circ} \mathrm{C}$ for 1 h . After 3 $(15.1 \mathrm{mg}, 50.3 \mu \mathrm{~mol})$ in THF $(0.3 \mathrm{~mL})$ was added to the reaction mixture, the mixture was stirred at $-80{ }^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was warmed to room temperature overnight, quenched by addition of sat. $\mathrm{NH}_{4} \mathrm{Cl}$ aq and extracted with AcOEt. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was purified by silica gel column chromatography (AcOEt-hexane $=1: 20$) to give $\mathbf{S 9 a}(18.7 \mathrm{mg}, 31.7 \mu \mathrm{~mol}, 63 \%)$ as a colorless oil.
S9a: $[\alpha]_{\mathrm{D}}{ }^{25}-5.2\left(c 0.94, \mathrm{CHCl}_{3}\right) ; 1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.42(\mathrm{dd}, J=15.2,12.0 \mathrm{~Hz}, 2 \mathrm{H})$, $5.99(\mathrm{dd}, J=11.2,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{dd}, J=11.2,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{dd}, J=15.2,6.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.61(\mathrm{dd}, J=15.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{~m}, 2 \mathrm{H}), 4.18(\mathrm{dt}, J=6.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{dt}, J=6.0,6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.28-2.11(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.47(\mathrm{~m}, 4 \mathrm{H})$, $0.90(\mathrm{~s}, 18 \mathrm{H}), 0.87(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.80(\mathrm{~m}, 2 \mathrm{H}), 0.67(\mathrm{ddd}, J=8.4,8.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.05(\mathrm{~s}$, $6 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}),-0.12(\mathrm{ddd}, J=5.2,4.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $174.0,136.8,136.4,131.4,131.0,127.9,127.8,124.7,124.4,74.4,72.8,51.4,37.7,34.0,31.2,27.0$, $25.88,25.86,20.7,18.3,18.2,15.90,15.88,10.7,9.7,-4.3,-4.4,-4.76,-4.80$ LRMS (ESI) m/z 613 $[\mathrm{M}+\mathrm{Na}]^{+} ;$HRMS (ESI) calcd for $\mathrm{C}_{34} \mathrm{H}_{62} \mathrm{O}_{4} \mathrm{NaSi}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$613.4079, found 613.4084.

(S,6E,8Z)-Methyl 5-((tert-butyldimethylsilyl)oxy)-10-((1S,2R)-2-((R,2Z,4E)-6-((tert-butyl-dimethylsilyl)oxy)octa-2,4-dien-1-yl)cyclopropyl)deca-6,8-dienoate (S9b)

To a stirred solution of $\mathbf{1 5 b}(55 \mathrm{mg}, 79 \mu \mathrm{~mol})$ in THF (0.2 mL) was added NaHMDS (2.0 M in toluene, $36 \mu \mathrm{~L}, 74 \mu \mathrm{~mol}$) at $-80^{\circ} \mathrm{C}$. The resulting solution was stirred at $-80^{\circ} \mathrm{C}$ for 1 h . After 3
$(15.8 \mathrm{mg}, 52.7 \mu \mathrm{~mol})$ in THF $(0.3 \mathrm{~mL})$ was added to the reaction mixture, the mixture was stirred at $-80{ }^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was warmed to room temperature overnight, quenched by addition of sat. $\mathrm{NH}_{4} \mathrm{Cl}$ aq and extracted with AcOEt. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was purified by silica gel column chromatography (AcOEt-hexane $=0: 1$ to $1: 50$) to give crude $\mathbf{S 9 b}$ as a colorless oil.

(S,6E,8Z)-5-Hydroxy-10-((1R,2S)-2-((R,2Z,4E)-6-hydroxyocta-2,4-dien-1-yl)cyclopropyl)deca-6

,8-dienoic acid (α-CP-RvE2, α-2)

To a stirred solution of $\mathbf{S 9 a}(4.5 \mathrm{mg}, 7.63 \mu \mathrm{~mol})$ in THF (1 mL) was added TBAF (1.0 M in THF, 61 $\mu \mathrm{L}, 61 \mu \mathrm{~mol})$ at room temperature. The mixture was stirred at the same temperature for 14 h . After the reaction was completed, the mixture was added $\mathrm{H}_{2} \mathrm{O}$ and extracted with ether. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was purified by silica gel column chromatography $\left(\mathrm{MeOH}-\mathrm{CHCl}_{3}=1: 20\right)$ to give $\alpha-\mathrm{CP}-\mathrm{RvE} 2, \alpha-2(2.3 \mathrm{mg}, 6.61 \mu \mathrm{~mol}, 87 \%)$ as a colorless oil.
$\alpha-\mathrm{CP}-\mathrm{RvE} 2, \alpha-2:[\alpha]_{\mathrm{D}}{ }^{19}-4.3$ (c 0.30, MeOH); IR (neat) v 3357, 2961, 2927, 1723, 985, $951 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 6.51(\mathrm{dd}, J=15.3,11.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{dd}, J=15.3,11.3 \mathrm{~Hz}, 1 \mathrm{H})$, $5.98(\mathrm{dd}, J=11.5,11.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.63(\mathrm{dd}, J=15.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{dd}, J=15.0,6.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.52(\mathrm{~m}, 2 \mathrm{H}), 4.10(\mathrm{dt}, J=6.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{dt}, J=6.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$, $2.26-2.17(\mathrm{~m}, 4 \mathrm{H}), 1.72-1.47(\mathrm{~m}, 6 \mathrm{H}), 0.90(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.81(\mathrm{~m}, 2 \mathrm{H}), 0.66(\mathrm{ddd}, J=8.5,8.5$, $4.7 \mathrm{~Hz}, 1 \mathrm{H}),-0.10(\mathrm{ddd}, J=5.3,5.3,4.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 177.5,137.18$, $137.15,132.7,132.5,128.99,128.94,126.7,74.7,73.0,37.8,34.8,31.2,28.0,22.2,17.0,11.2,10.2$; LRMS (ESI) m/z $371[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 371.2193$, found 371.2193.
(S,6E,8Z)-5-Hydroxy-10-((1S,2R)-2-((R,2Z,4E)-6-hydroxyocta-2,4-dien-1-yl)cyclopropyl)deca-6 ,8-dienoic acid ($\boldsymbol{\beta}$-CP-RvE2, $\boldsymbol{\beta}$-2)
To a stirred solution of crude S9b in THF (1 mL) was added TBAF (1.0 M in THF, $132 \mu \mathrm{~L}, 132$ $\mu \mathrm{mol})$ at room temperature. The mixture was stirred at the same temperature for 10 h . Then, additional TBAF (1.0 M in THF, $132 \mu \mathrm{~L}, 132 \mu \mathrm{~mol}$) was added to the reaction mixture, which was stirred overnight. The mixture was added $\mathrm{H}_{2} \mathrm{O}$ and extracted with ether. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was purified by silica gel column chromatography ($\mathrm{MeOH}-\mathrm{CHCl}_{3}=1: 50$ to $1: 10$) to give $\beta-\mathrm{CP}-\mathrm{RvE} 2, \beta-2(9.2 \mathrm{mg}, 26.4 \mu \mathrm{~mol}, 50 \%$ for 2 steps) as a colorless oil.
β-CP-RvE2, $\beta-2:[\alpha]_{\mathrm{D}}{ }^{18}-9.8$ (c 0.46, MeOH); IR (neat) v 3357, 2962, 2927, 1712, 984, $952 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CD $\left.{ }_{3} \mathrm{OD}\right) \delta 6.52(\mathrm{dd}, J=15.6,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{dd}, J=15.6,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.99$ $(\mathrm{dd}, J=11.2,10.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.64(\mathrm{dd}, J=15.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{dd}, J=15.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{~m}$,
$2 \mathrm{H}), 4.10(\mathrm{dt}, J=6.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{dt}, J=6.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.30-2.15$ $(\mathrm{m}, 4 \mathrm{H}), 1.72-1.48(\mathrm{~m}, 6 \mathrm{H}), 0.90(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.81(\mathrm{~m}, 2 \mathrm{H}), 0.66(\mathrm{ddd}, J=8.4,8.4,4.8 \mathrm{~Hz}$, $1 \mathrm{H}),-0.10(\mathrm{ddd}, J=5.4,5.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 177.5,137.19,137.17$, 132.7, 132.5, 129.02, 128.97, 126.6, 74.7, 72.9, 37.8, 34.8, 31.2, 28.0, 22.2, 17.0, 11.2, 10.2; LRMS (ESI) m/z 347 [M-H]; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{O}_{4}[\mathrm{M}-\mathrm{H}]$ 347.2228, found 347.2233.

(Z)-7-(Triethylsilyl)hept-3-en-6-yn-1-ol (S10)

To a stirred solution of $\mathrm{CuI}(3.68 \mathrm{~g}, 19.3 \mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(6.29 \mathrm{~g}, 19.3 \mathrm{mmol})$ and $\mathrm{NaI}(2.89 \mathrm{~g}, 19.3$ mmol) was added $8(1.45 \mathrm{~mL}, 19.3 \mathrm{mmol})$ in DMF (20 mL) at room temperature. The mixture was stirred at the same temperature for 20 min and added the solution of (3-bromo-1-propynyl)triethylsilane ($3.07 \mathrm{~g}, 16.1 \mathrm{mmol}$) in DMF (12 mL). The reaction mixture was stirred overnight. The resulting solution was quenched by addition of sat. $\mathrm{NH}_{4} \mathrm{Cl}$ aq and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was purified by silica gel column chromatography (AcOEt-hexane $=1: 20$) to give 16 $(2.30 \mathrm{~g}, 10.4 \mathrm{mmol}, 64 \%)$ as a colorless oil.

To a suspension of $\mathrm{Ni}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(3.16 \mathrm{~g}, 12.7 \mathrm{mmol})$ in $\mathrm{MeOH}(90 \mathrm{~mL})$ was added $\mathrm{NaBH}_{4}(798$ $\mathrm{mg}, 21.1 \mathrm{mmol}$) and ethylenediamine ($4.8 \mathrm{~mL}, 71.9 \mathrm{mmol}$) at room temperature under Ar atmosphere. To the reaction mixture was added a solution of $\mathbf{1 6}(9.37 \mathrm{~g}, 42.2 \mathrm{mmol})$ in MeOH (16 mL) and the mixture was stirred at the same temperature under H_{2} atmosphere overnight and filtered with Celite. The filtrate was concerned in reduced pressure. The residue was purified by silica gel column chromatography (AcOEt-hexane $=1: 25$ to $1: 4$) to give $\mathbf{S 1 0}(7.87 \mathrm{~g}, 35.5 \mathrm{mmol}, 84 \%)$ as a colorless oil.

S10: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.67-5.61(\mathrm{~m}, 1 \mathrm{H}), 5.53-5.47(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H})$, $2.99(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.36(\mathrm{dt}, J=6.8,6.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.98(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.57(\mathrm{q}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 127.4,127.3,106.0,81.7,62.0,30.7,18.5,7.4,4.4$; LRMS (ESI) $\mathrm{m} / \mathrm{z} 247[\mathrm{M}+\mathrm{Na}]^{+} ;$HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{ONaSi}[\mathrm{M}+\mathrm{Na}]^{+}$247.1489, found 247.1491.

(Z)-Hept-3-en-6-yn-1-ol (5c)

To a stirred solution of $\mathbf{S 9}(703 \mathrm{mg}, 3.14 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ was added TBAF (1.0 M in THF, $1.57 \mathrm{~mL}, 1.57 \mathrm{mmol}$) at room temperature. The mixture was stirred at the same temperature. After the reaction was completed, the mixture was quenched by addition of sat. $\mathrm{NH}_{4} \mathrm{Cl}$ aq and extracted with ether. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was purified by silica gel column chromatography (AcOEt-hexane $=1: 10$) to give 5c $(276 \mathrm{mg}, 2.51 \mathrm{mmol}, 80 \%)$ as a colorless oil.

5c: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.67-5.61(\mathrm{~m}, 1 \mathrm{H}), 5.56-5.50(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H})$, $2.99(\mathrm{br} \mathrm{d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.36(\mathrm{dt}, J=13.8,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.00(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 127.8,126.5,82.5,68.2,61.7,30.6,16.9$; LRMS (EI) m/z $109[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (EI) calcd for $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$109.0653, found 109.0652

($R, 3 Z, 8 E$)-10-((tert-Butyldimethylsilyl)oxy)dodeca-3,8-dien-6-yn-1-ol (S11)

To a stirred solution of $\mathbf{5 c}(66 \mathrm{mg}, 600 \mu \mathrm{~mol})$ and $\mathbf{6}(196 \mathrm{mg}, 600 \mu \mathrm{~mol})$ in benzene $(4 \mathrm{~mL})$ was added $\mathrm{Et}_{2} \mathrm{NH}(0.4 \mathrm{~mL}), \mathrm{CuI}(57 \mathrm{mg}, 300 \mu \mathrm{~mol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(69 \mathrm{mg}, 60 \mu \mathrm{~mol})$ at room temperature. The mixture was stirred at the same temperature for 1.5 h , quenched by addition of $\mathrm{H}_{2} \mathrm{O}$ and extracted with AcOEt. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was purified by silica gel column chromatography (AcOEt-hexane $=1: 10$) to give $\mathbf{S 1 1}(148 \mathrm{mg}, 481 \mu \mathrm{~mol}, 80 \%)$ as a yellow oil.
S11: $[\alpha]_{\mathrm{D}}{ }^{19}+28.2\left(c 0.53, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.03(\mathrm{dd}, J=16.0,5.6 \mathrm{~Hz}, 1 \mathrm{H})$, 5.68-5.59 (m, 2H), 5.54-5.48 (m, 1H), 4.07 (dt, $J=5.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{td}, J=6.4,6.0 \mathrm{~Hz}, 2 \mathrm{H})$, $3.10(\mathrm{br} \mathrm{d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.36(\mathrm{dt}, J=6.8,6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.49(\mathrm{qd}, J=7.6,5.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.41(\mathrm{t}, J=$ $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 145.3,127.3,108.8,87.9,78.8,73.6,61.9,30.7,25.8,18.2,17.9,9.3,-4.6,-4.9$; LRMS (ESI) m/z $331[\mathrm{M}+\mathrm{Na}]^{+} ;$HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{NaSi}[\mathrm{M}+\mathrm{Na}]^{+}$331.2064, found 331.2063.

(R,3Z,6Z,8E)-10-((tert-Butyldimethylsilyl)oxy)dodeca-3,6,8-trien-1-ol (S12)

To a stirred solution of Zn powder $(4.52 \mathrm{~g}, 69.1 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL})$ was added $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ $(452 \mathrm{mg}, 2.26 \mathrm{mmol})$ at room temperature. The mixture was stirred at the same temperature for 15
min. To the mixture was added $\mathrm{AgNO}_{3}(452 \mathrm{mg}, 2.66 \mathrm{mmol})$ and stirred at the same temperature for 30 min . To the reaction mixture was added $\mathbf{S 1 1}(113 \mathrm{mg}, 367 \mu \mathrm{~mol})$ in $\mathrm{MeOH}(25 \mathrm{~mL})$, stirred at $40{ }^{\circ} \mathrm{C}$ for 24 h , filtrated through Celite pad and the filtrate was concentrated. The residue was purified by silica gel column chromatography (AcOEt-hexane $=1: 8$) to give $\mathbf{S 1 2}(82 \mathrm{mg}, 265 \mu \mathrm{~mol}$, $72 \%)$ as a colorless oil and $\mathbf{S 1 1}(12 \mathrm{mg}, 39 \mu \mathrm{~mol}, 11 \%)$ as a colorless oil.
S12: $[\alpha]_{\mathrm{D}}{ }^{19}-16.1\left(c 1.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.46(\mathrm{dd}, J=15.6,11.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.00(\mathrm{dd}, J=11.2,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{dd}, J=15.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.60-5.53(\mathrm{~m}, 1 \mathrm{H}), 5.46-5.40(\mathrm{~m}$, $1 \mathrm{H}), 5.38-5.32(\mathrm{~m}, 1 \mathrm{H}), 4.11(\mathrm{dt}, J=6.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{br} \mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.01-2.92(\mathrm{~m}, 2 \mathrm{H})$, $2.37(\mathrm{dt}, J=7.0,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.56-1.48(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H})$, $0.04(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.3,130.6,128.8,128.3,125.9,124.0,74.2,62.1$, 31.1, 30.8, 26.1, 25.8, 18.2, 9.6, -4.4, -4.8; LRMS (ESI) m/z 333 [M+Na] ${ }^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{NaSi}[\mathrm{M}+\mathrm{Na}]^{+} 333.2220$, found 333.2221.

((R,3Z,6Z,8E)-10-((tert-Butyldimethylsilyl)oxy)dodeca-3,6,8-trien-1-yl)iodotriphenylphosphora ne (4c)

To a stirred solution of $\mathbf{S 1 2}(76 \mathrm{mg}, 245 \mu \mathrm{~mol}), \mathrm{PPh}_{3}(643 \mathrm{mg}, 2.45 \mathrm{mmol})$, imidazole ($167 \mathrm{mg}, 2.45$ mmol) in DCM (2 mL) was added NIS ($386 \mathrm{mg}, 1.72 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$ under dark. The mixture was stirred at room temperature for 1 hr , quenched by addition of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ aq and extracted with CHCl_{3}. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was purified by silica gel column chromatography (AcOEt-hexane $=1: 20$) to give crude iodide as a brown oil.

To a stirred solution of crude iodide in $\mathrm{MeCN}(6 \mathrm{~mL})$ was added $\mathrm{PPh}_{3}(193 \mathrm{mg}, 735 \mu \mathrm{~mol})$ at room temperature. The mixture was refluxed overnight and cooled to room temperature. The solution was concentrated and purified by silica gel column chromatography $\left(\mathrm{MeOH}-\mathrm{CHCl}_{3}=0: 1\right.$ to $\left.1: 6\right)$ to give $4 \mathbf{c}(164 \mathrm{mg}, 240 \mu \mathrm{~mol}, 98 \%$ for 2 steps $)$ as an orange amorphous.

4c: $[\alpha]_{\mathrm{D}}{ }^{21}-6.0\left(c \quad 0.30, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.88-7.80(\mathrm{~m}, 9 \mathrm{H}), 7.74-7.70(\mathrm{~m}, 6 \mathrm{H})$, $6.30(\mathrm{dd}, J=15.6,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{dd}, J=11.2,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.67-5.62(\mathrm{~m}, 2 \mathrm{H}), 5.44-5.37(\mathrm{~m}$, $1 \mathrm{H}), 5.66(\mathrm{dt}, J=10.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{dt}, J=6.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.88-3.81(\mathrm{~m}, 2 \mathrm{H}), 2.71(\mathrm{dd}, J=$ $7.6,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.53-2.45(\mathrm{~m}, 2 \mathrm{H}), 1.50(\mathrm{dq}, J=7.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.00(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.3,134.90,134.86,133.3,133.2$, $130.3,130.2,129.8,128.5,127.5,126.4,126.2,123.3,117.8,117.0,77.2,73.7,30.7,25.51,25.46$, 23.1, 22.6, 20.0, 19.9, 17.8, 9.3, -4.7, -5.1; LRMS (ESI) m/z $555[\mathrm{M}-\mathrm{I}]^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{36} \mathrm{H}_{48} \mathrm{OPSi}[\mathrm{M}-\mathrm{I}]^{+} 555.3212$, found 555.3207 .
(5S,6E,8Z,11Z,14Z,16E,18R)-Methy 15,18-bis((tert-butyldimethylsilyl)oxy)icosa-6,8,11,14,16pentaenoate (S13)
To a stirred solution of $\mathbf{4 c}(37 \mathrm{mg}, 54.3 \mu \mathrm{~mol})$ and DMPU $(44 \mu \mathrm{~L}, 362 \mu \mathrm{~mol})$ in THF $(0.2 \mathrm{~mL})$ was added $\mathrm{NaHMDS}(1.9 \mathrm{M}$ in toluene, $27 \mu \mathrm{~L}, 50.6 \mu \mathrm{~mol})$ at $-80^{\circ} \mathrm{C}$. The resulting solution was stirred at $-80^{\circ} \mathrm{C}$ for 1 h . After $3(10.9 \mathrm{mg}, 36.2 \mu \mathrm{~mol})$ in THF (0.3 mL) was added to the reaction mixture, the mixture was stirred at $-80^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was warmed to room temperature overnight, quenched by addition of sat. $\mathrm{NH}_{4} \mathrm{Cl}$ aq and extracted with AcOEt. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was purified by silica gel column chromatography (AcOEt-hexane $=1: 20$) to give $\mathbf{S 1 3}(15.8 \mathrm{mg}, 27.4 \mu \mathrm{~mol}, 75 \%)$ as a colorless oil.

S13: $[\alpha]_{\mathrm{D}}{ }^{20}-2.4\left(c 0.79, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.45(\mathrm{dd}, J=15.6,11.6 \mathrm{~Hz}, 2 \mathrm{H})$, $6.00(\mathrm{dd}, J=11.6,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{dd}, J=11.6,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{dd}, J=15.6,6.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.64(\mathrm{dd}, J=15.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.41-5.32(\mathrm{~m}, 4 \mathrm{H}), 4.19(\mathrm{dt}, J=6.4,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{dt}, J=6.0$, $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 2.97-2.94(\mathrm{~m}, 4 \mathrm{H}), 2.32(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.72-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.48$ $(\mathrm{m}, 4 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.058(\mathrm{~s}, 3 \mathrm{H}), 0.056(\mathrm{~s}, 3 \mathrm{H}), 0.037(\mathrm{~s}$, $3 \mathrm{H}), 0.031(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.0,137.3,136.9,129.3,128.9,128.4,128.25$, $128.19,128.1,124.4,124.1,74.3,72.7,51.5,37.6,34.0,31.1,26.0,25.88,25.86,20.7,18.3,18.2$, 9.7, $-4.3,-4.4,-4.77,-4.80$; LRMS (ESI) m/z $599[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{33} \mathrm{H}_{60} \mathrm{O}_{4} \mathrm{NaSi}_{2}$ $[\mathrm{M}+\mathrm{Na}]^{+}$599.3922, found 599.3924.

(5S,6E,8Z,11Z,14Z,16E,18R)-5,18-Dihydroxyicosa-6,8,11,14,16-pentaenoic acid (RvE2, 1)

To a stirred solution of $\mathbf{S 1 2}(10 \mathrm{mg}, 17.4 \mu \mathrm{~mol})$ in THF $(1 \mathrm{~mL})$ was added TBAF $(1.0 \mathrm{M}$ in THF, 104 $\mu \mathrm{L}, 104 \mu \mathrm{~mol})$ at room temperature. The mixture was stirred at the same temperature. After the reaction was completed, the mixture was added $\mathrm{H}_{2} \mathrm{O}$ and extracted with ether. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was purified by silica gel column chromatography ($\mathrm{MeOH}-\mathrm{CHCl}_{3}=1: 80$) to give RvE2, $1(4.5 \mathrm{mg}, 13.5 \mu \mathrm{~mol}, 78 \%)$ as a colorless oil. 1: $[\alpha]_{\mathrm{D}}{ }^{18}-6.5(c 0.79, \mathrm{MeOH})$; IR (neat) v 3347, 2962, 2926, 1710, 984, $953 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 6.56(\mathrm{dd}, J=15.0,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{dd}, J=15.0,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{dd}, J=$ $11.0,11.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.66(\mathrm{dd}, J=15.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{dd}, J=15.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.42-5.34(\mathrm{~m}$, $4 \mathrm{H}), 4.12(\mathrm{dt}, J=6.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{dt}, J=6.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.00-2.97(\mathrm{~m}, 4 \mathrm{H}), 2.31(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 2 \mathrm{H}), 1.72-1.48(\mathrm{~m}, 6 \mathrm{H}), 0.91(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 177.5,137.70$, $137.67,130.6,130.5,129.45,129.39,129.10,129.08,126.4,74.7,72.9,37.7,34.8,31.2,27.0,22.2$, 10.2; LRMS (ESI) m/z $357[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 357.2036$, found 357.2039 .

Computational calculation

All geometries were optimized in the gas phase without any constraint by The UB3LYP/6-31G*, followed by the UBHandHLYP/6-311G+(d,p) at final step using Gaussin09W software. Frequency analysis was performed after the optimization to transition states (only one imaginary frequency). Final single point energies in the gas phase were calculated by UBHandHLYP/6-311G+(d,p) method using same basis sets above. All energies in figure 3 were corrected by zero-point energy.

Intermediate A

Electronic Energy $=-426.845589$ a.u.
Zero-point Energy $=0.221513$ a.u.
Lowest Frequency Vibration $=18.9836 \mathrm{~cm}^{-1}$

C
H
C
H
C
H
H
C
H
C
H
C
H
C

H
C
H

H
H
C
H
H
H
O
H

-2.83366900	0.59586700	-0.17503200
-3.76013000	0.68895500	0.37421200
-2.36461100	-0.63599800	-0.35876600
-2.93761100	-1.45490800	0.05476900
-1.09423000	-1.04017700	-1.05665700
-0.61442700	-0.18655300	-1.51925800
-1.34465500	-1.73069400	-1.86476500
-0.16040200	-1.74186800	-0.11035300
-0.55865900	-2.63887900	0.34382200
1.08030700	-1.37922300	0.23233300
1.60623100	-2.00925800	0.93691900
1.82686100	-0.22361800	-0.24285300
1.34747100	0.43840900	-0.94882400
3.06885500	0.05527300	0.15308800
3.54725000	-0.60976100	0.86105300
3.87298300	1.22642100	-0.30215700
3.32023700	1.83923300	-1.00826800
4.15914500	1.85375600	0.54074700
4.79610200	0.90359800	-0.78135800
-2.23921900	1.88957700	-0.63051200
-2.93908000	2.42573800	-1.26933900
-2.03209300	2.52603200	0.22686100
-1.31455400	1.76168700	-1.18237800
-1.19507200	0.48042300	2.30088000
-0.65589800	-0.12826500	1.77423100

Electronic Energy $=-426.834739$ a.u.
Zero-point Energy $=0.217337$ a.u.
Imaginary Frequency Vibration $=-641.0181 \mathrm{~cm}^{-1}$

C
H
C

C

3.30250700	-0.69702600	0.48086900
4.10608000	-1.25406600	0.94289900
2.10903000	-0.75824900	1.06490300
2.01788600	-1.34502700	1.96818100
0.84532100	-0.10171600	0.59989700
1.11237000	0.99367700	0.30143100
0.16128900	0.02859400	1.43148800
0.18733100	-0.74192300	-0.56613000
0.85193300	-1.19902300	-1.28337300
-1.13003300	-0.78135100	-0.81929400
-1.45019600	-1.27891900	-1.72406300
-2.19097600	-0.21900100	-0.00513900
-1.91906000	0.27347900	0.91735500
-3.48213900	-0.27537400	-0.34130100
-3.75338300	-0.76712800	-1.26693900
-4.60433800	0.28915800	0.46291700
-4.24480300	0.76486000	1.37071000
-5.16295800	1.02790500	-0.11014200
-5.31220000	-0.48926000	0.74430600
3.67050000	0.06681700	-0.75070500
4.54161400	0.69070400	-0.56011000
3.94320600	-0.61508200	-1.55591100
2.87255500	0.71290300	-1.09721700
1.20746000	2.40948100	-0.04872700
0.33276500	2.49251300	-0.44490400

	$\begin{aligned} & \text { Electronic Energy }=-426.908424 \text { a.u. } \\ & \text { Zero-point Energy }=0.220711 \text { a.u. } \\ & \text { Lowest Frequency Vibration }=18.5441 \mathrm{~cm}^{-1} \end{aligned}$		
C	-3.10368500	-0.89807500	-0.37504900
H	-4.01087700	-1.08165800	-0.93089600
C	-1.96181100	-0.82442600	-1.11154100
H	-2.08735800	-0.99341200	-2.17167200
C	-0.61174000	-0.57927900	-0.72155800
H	-2.49870100	1.66576400	-0.68527700
H	0.11108500	-0.70187100	-1.51316100
C	-0.13166600	-0.17502300	0.52440500
H	-0.84490800	0.00562700	1.30984200
C	1.19700300	0.04526600	0.85838400
H	1.39676800	0.38195500	1.86519100
C	2.33807100	-0.12838300	0.01731200
H	2.18404500	-0.48020100	-0.99277400
C	3.60158100	0.11922000	0.41551200
H	3.76379400	0.46935100	1.42672300
C	4.81441500	-0.05448500	-0.43372000
H	4.55798300	-0.40863600	-1.42806900
H	5.35812700	0.88380600	-0.53771900
H	5.50605800	-0.76830200	0.01227000
C	-3.25615400	-0.78387500	1.10844700
H	-4.23553200	-1.13557400	1.41624300
H	-2.50796900	-1.37156400	1.63575800
H	-3.16252000	0.24868700	1.44544100
O	-2.42027400	2.53463900	-0.29402200
H	-1.48388300	2.68327200	-0.19287900

Intermediate B

Electronic Energy $=-466.126499$ a.u.
Zero-point Energy $=0.251713$ a.u.
Lowest Frequency Vibration $=13.9091 \mathrm{~cm}^{-1}$

C
C
C

3.34783200	-0.85180200	0.20064000
2.00800400	-0.74025300	-0.47024900
0.86983400	0.07891000	0.10053000
1.26841800	0.97369300	0.57702700
0.36673400	-0.48551300	0.88128100
-0.09342700	0.49528500	-0.96984300
0.34889100	1.04473200	-1.78967300
-1.40650400	0.24427900	-1.03583900
-1.94311200	0.61298900	-1.89980800
-2.21538800	-0.48152700	-0.06645700
-1.72135500	-0.89734600	0.79934600
-3.53134200	-0.65291500	-0.19633700
-4.02433700	-0.23240900	-1.06378700
-4.40070200	-1.38728800	0.76817000
-3.82758200	-1.77731700	1.60427500
-5.17988400	-0.73730800	1.16348800
-4.90439900	-2.22156900	0.28208200
3.67710800	-0.16435400	1.50119300
3.25396000	0.83430000	1.55569300
3.30489300	-0.72990000	2.35320500
4.75441400	-0.06476900	1.61440800
-1.44422500	3.18393400	0.63745400
-1.33348800	2.34982700	0.15238800
3.21174000	-0.07488400	-1.07643600
3.63005700	-0.47740700	-1.98494500
3.27063300	1.00138800	-1.00301100
3.81429200	-1.82139600	0.09924100
1.67272600	-1.63618200	-0.97307100

Electronic Energy $=-466.111658$ a.u.
Zero-point Energy $=0.248182$ a.u.
Imaginary Frequency Vibration $=-503.2186 \mathrm{~cm}^{-1}$

C
H
C
H
C
H
H
C
H
C
H
C
H
C
H
C
H
H
H
C
H
H
H
O
H
C
H
H

-3.21900500	-0.21070000	-0.28405500
-4.05952900	0.02687500	-0.92038500
-1.93153200	-0.42543800	-1.03525500
-2.03620000	-0.32573100	-2.10477200
-0.57440000	0.05237400	-0.56734900
-0.69254000	1.19123000	-0.37643600
0.11426600	0.02718100	-1.40540900
0.04042700	-0.55827600	0.63475400
-0.62499200	-0.92112200	1.40095400
1.35557100	-0.66580800	0.87995100
1.65411100	-1.12035200	1.81434300
2.44284600	-0.22838000	0.02420400
2.19512100	0.22492400	-0.92460400
3.73043000	-0.35159600	0.35552300
3.97758500	-0.80157000	1.30882400
4.87993900	0.08467800	-0.48898600
4.54401200	0.52504900	-1.42323500
5.49146900	0.81938800	0.03297500
5.53206600	-0.75539900	-0.72395500
-3.27578500	0.48074900	1.05374700
-4.20934800	0.24567800	1.56058600
-2.46541800	0.17903700	1.70962500
-3.21242300	1.55898700	0.93435100
-0.69085300	2.66253500	-0.17500200
0.07493400	2.68222000	0.41014100
-2.67279000	-1.59538000	-0.44072200
-3.15927000	-2.28145100	-1.11574200
-2.25122700	-2.06856700	0.43187600

Electronic Energy $=-466.180374$ a.u.
Zero-point Energy $=0.250158$ a.u.
Lowest Frequency Vibration $=17.6480 \mathrm{~cm}^{-1}$

C
H
C

-3.28775200	0.44135900	0.22844600
-4.03404200	1.17318500	-0.04642200
-2.28895500	0.11828400	-0.86603100
-2.46707600	0.66895900	-1.78076300
-0.85188100	-0.10171100	-0.59288400
1.06461800	3.40136200	0.26783600
-0.23611000	0.78602900	-0.60695300
-0.27143800	-1.31490800	-0.35701800
-0.91155600	-2.18526200	-0.38196500
1.09140700	-1.56869000	-0.09019900
1.37591700	-2.60090400	0.05487200
2.12212200	-0.60056900	0.00429300
1.86157000	0.43938500	-0.13285900
3.41897400	-0.90318300	0.25900200
3.69262300	-1.94126200	0.39835900
4.51604200	0.10229200	0.36414800
4.14096300	1.11024300	0.21075100
4.99600300	0.06415800	1.34222200
5.29746700	-0.08499700	-0.37256800
-2.88674900	0.48475800	1.67869800
-3.73950100	0.27228600	2.32055600
-2.11269200	-0.24533200	1.89593700
-2.50030800	1.46511200	1.95105500
1.27009300	2.79643600	-0.44020500
1.44049700	3.33037400	-1.21178800
-3.36087200	-0.86545900	-0.50088200
-3.07122900	-1.74658200	0.04981700
-4.16328100	-1.03128800	-1.20188900

Oxidative stability

$\mathbf{1}, \alpha-\mathbf{2}$, and $\beta-\mathbf{2}$ in ethanol ($1 \mathrm{mg} / \mathrm{mL}$) were sampled and evaporated. Then, the compounds (10-20 $\mu \mathrm{g}$) were stayed while exposing to air in Eppendorf Tubes ${ }^{\circledR}$ and analyzed by HPLC at various time points.

HPLC conditions: column; Mightysil RP-8 GP, eluent; $\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}: \mathrm{AcOH}=65: 35: 0.01$, flow rate; $1.0 \mathrm{~mL} / \mathrm{min}$, detection; UV 250 nm , retention time; 14.2 min for $\mathbf{1}$, 20.3 min for $\alpha-2$, and 20.9 \min for β-2.

Murine peritonitis evaluation

Male BALB/c mice (6-7 weeks; Japan SLC, Shizuoka, Japan) were used. Heat-killed Propionibacterium acnes (P. acnes; 500μ g per mouse) was injected intraperitoneally. At 12 h after P.acnes injection, three different doses ($300 \mathrm{fg}, 30 \mathrm{pg}$ or 3 ng per mouse) of RvE2, $\alpha-\mathrm{CP}-\mathrm{RvE} 2$, β-CP-RvE2 or vehicle alone was administered intraperitoneally. At 24 h after P. acnes injection, peritoneal exudate cells (PECs) were collected and counted. Results were expressed as percentage inhibition of P. acnes-induced increase in the number of PECs compared with vehicle alone. All animal procedures were conducted in accordance with the Hokkaido University animal ethics committee.

References

1. K. Götz, J. C. Liermann, E. Thines, H. Anke, T. Opatz, Org. Biomol. Chem. 2010, 8, 2123-2130.
2. Y. Kosaki, N. Ogawa, Y. Kobayashi, Tetrahedron Lett. 2010, 51, 1856-1859.
3. M. Allard, K. Barnes, X. Chen, Y.-Y. Cheung, B. Duffy, C. Heap, J. Inthavongsay, M. Johnson, R. Krishnamoorthy, C. Manley, S. Steffke, D. Varughese, R. Wang, Y. Wang, C. E. Schwartz, Tetrahedron Lett. 2011, 52, 2623-2626.

200.0	190.0	180.0	170.0	160.0	150.0	140.0	130.0	120.0	110.0	100.0	90.0	80.0	70.0	$6 C .0$	50.0	40.0	30.0	20.0	10.0

(
(

	 WW WV W $\stackrel{8}{8}$			
$\left.111\right\|_{8.0} 111111$	$11\left\|1 \prod_{6.0}^{1} 1\right\| 1\|1\|$		$\pi \prod_{2.0}^{1}\|1\| 1\|1\| \prod_{1.0} 11\|1\|$	

 $150.0 \quad 140.0$
$\begin{array}{llll}130.0 & 120.0 & 110.0 & 103.0\end{array}$ 90.0 70.0 60.0 50.0 30.0 ${ }^{2} .0$ 10.0

(

 $\begin{array}{lllllllllllllllllll}200.0 & 190.0 & 180.0 & 170.0 & 160.0 & 150.0 & 140.0 & 130.0 & 120.0 & 110.0 & 100.0 & 90.0 & 80.0 & 70.0 & 60.0 & 50.0 & 40.0 & 30.0 & 20.0 \\ 10.0 & 0.0\end{array}$

(

(

