Metal-Free Domino One-pot Decarboxylative-Cyclization of Cinnamic Acid Esters: Synthesis of Functionalized Indanes

Alavala Gopi Krishna Reddy, and Gedu Satyanarayana*

Department of Chemistry, Indian Institute of Technology, Hyderabad Kandi – 502 285, Sangareddy, Telangana, INDIA Phone: (040) 2301 6033; Fax: (040) 2301 6003 /32 E-mail: gvsatya@iith.ac.in

Figures S1-S3: Known compounds from the literature	S2-S3
¹ H & ¹³ C-NMR Spectra of all new compounds	S4-S51

The following esters **1a-k** which have been used as starting materials are reported in literature.¹

Figure S1: Esters known from the literature

Compounds **2a–l** are known from the literature.²

¹ (a) Niharika, P.; Ramulu, B. V.; Satyanarayana, G. *Org. Biomol. Chem.* **2014**, *12*, 4347. (b) Ramulu, B. V.; Niharika, P.; Satyanarayana, G. *Synthesis* **2015**, *47*, 1255.

² (a) Ramulu, B. V.; Satyanarayana, G. *RSC Adv.* **2015**, *5*, 70972. (b) Reeves, J. T.; Fandrick, D. R.; Tan, Z.; Song, J. J.; Yee, N. K.; Senanayake, C. H. *Tetrahedron Lett.* **2009**, *50*, 3077. (c) Satomura, M.; Iwakura, K. *Jpn. Kokai Tokkyo Koho* 1989, JP 01265036 A 19891023. (d) vom Stein, T.; Perez, M.; Dobrovetsky, R.; Winkelhaus, D.; Caputo, C. B.; Stephan, D. W. *Angew. Chem. Int. Ed.* **2015**, *54*, 10178.

Figure S2: Indanes known from the literature

Compounds **3a**, ³**8**, ⁴**10a**⁵ and **101**⁶ are known from the literature.

Figure S3: Compounds known from the literature

³ Zhao, W.; Carreira, E. M. *Org. Lett.* **2011**, *13*, 5084.

⁴ Joseph, J. T.; Sajith, A. M.; Ningegowda, R. C.; Nagaraj, A.; Rangappa, K. S.; Shashikanth, S. *Tetrahedron Lett*. **2015**, *56*, 5106.

⁵ Kamata, R.; Shiraishi, F.; Nishikawa, J.-i.; Yonemoto, J.; Shiraishi, H. *Toxicology in Vitro* **2008**, *22*, 1050.

⁶ Oae, S.; Kita, T.; Kawamura, S. *Tetrahedron*, **1963**, *19*, 1783.

S5

¹H NMR (400 MHz) spectrum of **2h** in CDCl₃

Chloroform-d

 ^1H NMR (400 MHz) spectrum of 2I in CDCl_3

 ^1H NMR (400 MHz) spectrum of 9a in CDCl_3

¹³C NMR (100 MHz) spectrum of **9c'** in CDCl₃

¹H NMR (400 MHz) spectrum of **9d** in CDCl₃

¹³C NMR (100 MHz) spectrum of **9e'** in CDCl₃

7.42 7.22 6.99 6.99 -5.94 3.27 3.25 3.23 [−]2.58 −2.56 −2.22 1.12 1.12 1.17

¹H NMR (400 MHz) spectrum of **9i** in CDCl₃

¹H NMR (400 MHz) spectrum of **9j** in CDCl₃

 ^{13}C NMR (100 MHz) spectrum of 9k in CDCl_3

¹H NMR (400 MHz) spectrum of **9I'** in CDCl₃

 $^{\rm 13}{\rm C}$ NMR (100 MHz) spectrum of ${\rm 10b}$ in CDCl_3

 $^{\rm 13}{\rm C}$ NMR (100 MHz) spectrum of ${\bf 10h}$ in ${\rm CDCI_3}$

--3.81 --3.63 ¹H NMR (400 MHz) spectrum of **10i** and **10i'** in CDCl₃

7.27 7.25 7.7.25 7.7.19 7.115 6.97 6.95 6.75 6.75

−1.67 −2.85 −2.81 −2.83 −2.35 −2.35 −1.67

6.57

 $^{\rm 13}{\rm C}$ NMR (100 MHz) spectrum of 10j in CDCl_3

 ^1H NMR (400 MHz) spectrum of **6** and **6'** in CDCl_3

