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S1 Energy spectrum and optical transitions in a molecular

chain

We consider an aggregate of N molecules electronically coupled. Restricting the dynamics

to a maximum of 2-excitations, the Hamiltonian describing the purely electronic degrees of

freedom can be written as

Hel = H
(0)
el +H

(1exc)
el +H

(2exc)
el (S.1)

(S.2)

where H(0)
el , H

(1exc)
el and H(2exc)

el stand for the ground, single-exciton and two-exciton Hamil-

tonian respectively and are given by

H
(0)
el = e0|0〉〈0| (S.3)

H
(1exc)
el =

N∑
m

em|m〉〈m|+
N∑

n>m

Jmn|m〉〈n| (S.4)

H
(2exc)
el =

N∑
m=1

N∑
n>m

(em + en)|mn〉〈mn|+ Jmn(
N∑

k 6=m,n

|mk〉〈nk|+ h.c.). (S.5)

|0〉 denotes the state with all molecules in the ground electronic state, {|m〉} are the single-

exciton states denoting the state with molecule m excited and all others in the ground state

and {|mn〉} are the two-exciton states that represent the states with molecules m and n

excited and all others in the ground state. For the case of an homogeneous linear chain

em ≡ E with nearest neighbour coupling Jmn ≡ J(δm,n+1 + δm,n−1), the energy spectrum in

the single-exciton subspace of H(1exc)
el is given by (F.C. Spano et al, Phys. Rev. Lett., 1991,

67, 3424)
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Ek = E + 2Jcos
( πk

N + 1

)
, k = 1 . . . N (S.6)

Assuming equal transition dipole moments for each molecule such that µ =
∑

m µm|Ψm(g)〉〈Ψm(e)|+

h.c.) with Ψm(g(e)) the ground (first-excited) electronic state of molecule m, optical transi-

tions in the aggregate are only allowed to eigenstates with odd k numbers and the transition

dipole strength rapidly decreases with k, such that most of the oscillator strength is carried

by the k = 1 transition. The eigenenergies of the two-exciton Hamiltonian H(2exc)
el are given

by Ek,k′ = Ek + Ek′ with k 6= k′ = 1 . . . N . The strongest dipole transition from the k = 1

single-exciton state is to the lowest two-exciton state k, k′ = 1, 2 with energy E1+E2. Notice

then that the excited-state absorption happens at an energy which is lower than the sum of

the two lowest optically bright single-exciton states E1 + E3.

Estimation of single-exciton energy gaps: From Eq. S.6 we can relate the single-exciton

energy gaps with J and N as

Ek − Ek′ = 2J
{

cos
( πk

N + 1

)
− cos

( πk′

N + 1

)}
. (S.7)

The above model applies to a purely electronic system. In real aggregates, coupling to

vibrations will give rise to vibronic states of mixed vibrational and electronic origin. However

if the vibronic coupling is weak and there are no particular resonant conditions between

exciton gaps and vibrational frequencies, as in our case (see model and parameters below),

the vibronic coupling will only weakly mix different exciton states and the vibronic states

will have predominantly a single k electronic character, with the strongest transitions having

energies close to those of the excitonic system. Under this condition, we are allowed, as

described in the main text, to estimate the E2−E1 ∼ ∆ω3 ≈ 180 cm−1 exciton gap through

the 2Q2D experiment, which allows us in turn, through Eq. S.7, to estimate the electronic
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coupling J as a function of the total number of molecules over which the excitation delocalizes

N . Using again Eq. S.7 we can obtain all other single-exciton energy gaps, and in particular

E3 − E1, as a function of N. Since the approximate value of E1 is also known (through

the linear spectra and conventional 2DES experiments), this leads to the estimate of the

monomer energy E as a function of N (Eq. S.6). The monomer transition energy should be

close to the maximum in the absorption of the monomer (at ≈ 23800 cm−1) which allows us

to estimate the value of N and therefore also E3. An exciton gap in the range of E2 −E1 ≈

160-200 cm−1 leads to J ≈ −(1170-1400) cm−1, N ≈ 12-14 monomers and E3−E1 ≈ 416-520

cm−1. This is consistent with assigning the frequency of 445 cm−1 found in the conventional

2D measures to the 1-3 coherence.

S2 Minimal model and decoherence

S2.1 Minimal Model

We are interested in understanding the vibrational, electronic and possibly vibronic features

in the spectra of the J-aggregate. Since calculating the 2D spectra for an aggregate of

N ≈ 12 molecules each coupled to two vibrational modes (or even if only 2 effective modes

are considered) is very demanding computationally, we use a minimal model that involves the

most probable optical transitions in the system. We consider a four level electronic system,

consisting of the ground state |0〉, the k = 1, |1〉 and k = 3, |3〉 exciton states, and the lowest

two-exciton state with k, k′ = 1, 2, |1, 2〉. The vibronic coupling in this minimal model

is included by considering the coupling of the electronic states to two effective vibrational

modes. The total Hamiltonian for the system is written as

Hs = Hel +Hel,vib +Hvib. (S.8)
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The electronic, electronic-vibrational (vibronic) coupling and vibrational Hamiltonians are

given by

Hel = E1|1〉〈1|+ E3|3〉〈3|+ E12|1, 2〉〈1, 2| (S.9)

Hel,vib =
∑
i=α,β

gi(a
†
i + ai)(|1〉〈3|+ |3〉〈1|)

Hvib = ~ωαa†αaα + ~ωβa†βaβ. (S.10)

The operators a†α(β) and aα(β) denote the creation and annihilation operators of phonon

modes respectively and ωα(β) is the vibrational frequency. The vibronic coupling will give

rise to vibronic states in the single-exciton subspace with energies that will be a function

of E1(3), gi and ωi. In particular, the g parameter in our model is related to an effective

Huang-Rhys factor S by g = ωvib
√
S, where S is expected to be reduced with respect to the

molecular Huang-Rhys factor due to exciton delocalization (J. Lim et al, Nat. Commun.

2015, 6, 7755).

S2.2 Decoherence

We assume that the electronic transitions couple weakly to a thermal bath in equilibrium

such that decoherence due to the bath is modeled by a Markovian dissipator Del obtained

within the Born-Markov and rotating wave (secular) approximations (H.-P. Breuer and F.

Petruccione, The Theory of Open Quantum Systems 2002, Oxford University Press: New

York).

Before going into the full decoherence model used in our calculations, we first illustrate

the effect of correlated fluctuations in exciton dephasing, which we will show to be relevant

in our system. For this, we write the microscopic form of the terms in the dissipator that

lead to dephasing in the single and one-exciton manifolds (F. Fassioli et al, J. Phys. Chem.

Lett. 2010, 1, 2139-2143):
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D(1)
el =

N∑
m,m′=1

∑
ω

γmm′(ω)(Am′(ω)ρ(t)A†m(ω)− 1

2
{A†m(ω)Am′(ω), ρ(t)}). (S.11)

m and m′ label all molecular sites while ω = EK′ − EK ≡ ωK′K labels all possible single-

exciton energy differences withK,K ′ denoting exciton states. Am(ω) = 〈m|K〉〈K ′|m〉|K〉〈K ′|

for ω 6= 0 and Am(0) =
∑

K |cm(K)|2|K〉〈K| for ω = 0. The operators with ω 6= 0 induce

transfer between single exciton states while those associated to ω = 0 induce pure-dephasing.

The dissipator D(1)
el induces dephasing between single exciton states K and K ′ at a rate ΓKK′

and between the ground state and the one-exciton states at a rate Γ0K given by

ΓKK′ =
∑
mm′

γmm′(0)(
1

2
|〈m|K〉|2|〈m′|K〉|2 +

1

2
|〈m|K ′〉|2|〈m′|K ′〉|2 − |〈m|K ′〉|2|〈m′|K〉|2)

+
∑
K′′

1

2
γmm′(ωKK′′)〈m|K ′′〉〈K|m〉〈K ′′|m′〉〈m′|K〉

+
1

2
γmm′(ωK′K′′)〈m|K ′′〉〈K ′|M〉〈K ′′|m′〉〈m′|K ′〉

(S.12)

Γ0K =
∑
mm′

1

2
γmm′(0)|〈m|K〉|2|〈m′|K〉|2

+
∑
K′′

1

2
γmm′(ωKK′′)〈m|K ′′〉〈K|m〉〈K ′′|m′〉〈m′|K〉 (S.13)

Notice then that the single exciton dephasing rates are related to the ground-single exciton

dephasing rates by

ΓKK′ = Γ0K + Γ0K′ −
∑
mm′

γmm′(0)|〈m′|K〉|2|〈m|K ′〉|2 (S.14)

= Γ0K + Γ0K′ −
∑
m

γmm(0)|〈m|K〉|2|〈m|K ′〉|2 −
∑
m 6=m′

γmm′(0)|〈m′|K〉|2|〈m|K ′〉|2

(S.15)

≤ Γ0K + Γ0K′ (S.16)
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The negative terms on the right hand side of Eq. S.15 have the effect of lowering the single-

exciton dephasing rate due to correlated fluctuations between excitons. The first negative

term describes correlated fluctuations due to exciton delocalization since it is non-zero as

long as the excitons are delocalized over common molecular sites (|〈m|K〉|2|〈m|K ′〉|2 6= 0).

Instead, the second negative term is non-zero as long as the different molecular sites over

which the excitons delocalize are under the effect of correlated fluctuations (sites share a

common bath: γmm′(0) 6= 0 for m 6= m′).

For our minimal model we adopt an effective dissipator of Lindblad form where only

exciton dephasing (and not population transfer) are included. The dissipator can be recast

in the form

Del =
∑
i=1,3

Γ0i(2AiρA
†
i − {A

†
iAi, ρ}) + γc13(A1ρA

†
3 + A3ρA

†
1)

+Γ0f (2AfρA
†
f − {A

†
fAf , ρ}) +

∑
i=1,3

γci,f (AiρA
†
f + AfρA

†
i ),

(S.17)

where the Lindblad operators are defined as Ak = |k〉〈k|. The first and third terms in Eq.

S.17 (proportional to Γ0i and Γ0f ) induce dephasing between states in the absence of corre-

lations, while the second and last terms (proportional to γc13 and γci,f ) account for correlated

fluctuations of single-exciton states and of single- and the two-exciton states respectively.

As explained, correlated dephasing can be due to excitons sharing the same pigments even

when the environment-induced fluctuations at each molecule are uncorrelated (local baths:

γmm′(0) ∝ δmm′) as well as molecules experiencing correlated fluctuations (shared bath). The

exciton coherences evolve due to the dissipator according to
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〈0|Del|1(3)〉 = −Γ01(3)〈0|ρ|1(3)〉 (S.18)

〈0|Del|f〉 = −Γ0f〈0|ρ|f〉 (S.19)

〈1|Del|3〉 = −Γ13〈1|ρ|3〉 (S.20)

〈1(3)|Del|f〉 = −Γ1(3)f〈1(3)|ρ|f〉 (S.21)

(S.22)

where Γ13 = Γ01 + Γ03 − γc13, Γ1(3)f = Γ01(3) + Γ0f − γc1(3),f . As can be seen, the effect of

correlated fluctuations is to lower the effective dephasing rate between the single-exciton

states |1〉 and |3〉 and between the the single exciton |1(3)〉 and the two-exciton |f〉 states.

The time evolution of the system’s density matrix is dictated by:

dρ(t)

dt
= −i[Hs, ρ(t)] +Del(ρ(t)), (S.23)

which can be expressed in terms of a Liovillian L that propagates the initial state ρ0 of the

system:

~ρ(t) = eLt~ρ0 (S.24)

where ~ρ is the vectorial representation of the density matrix ~ρ = {ρ11, ρ12, . . . , ρ1n, ρ21 . . . ρnn}.

Parameters: The linear absorption reveals that the absorption maximum of the aggre-

gate is centered around Eabs ≈ 20380 cm−1. 2DES spectra reveals the presence of oscillatory

dynamics at frequencies 445 cm−1 with a decay time of 265 fs which we ascribe as of predom-

inantly electronic character, and long lived oscillations (> 1 ps) at frequencies of 258 and 334

cm−1 which are close to the vibrational frequencies revealed in Raman spectra and which we

therefore assign as of predominantly vibrational origin. To incorporate vibrational coherence

in our model, we set ωα = 258 and ωβ = 334 cm−1 (S.10). We explored a range of weak
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to moderate values for the vibronic coupling gi to fit the dynamics of rephasing and non-

rephasing as a function of t2. We varied E1(3) such that the strongest optical transition from

the ground state matched the linear absorption maximum Eabs ≈ 20380 cm−1, and such that

the energy gap between the strongest (vibronic state of k1 character) and second strongest

(vibronic state of k3 character) optical transition matched 445 cm−1. The best match to ex-

periment was found for gα = 0.24ωα and gβ = 0.2ωβ (334 oscillation was less intense than 258

oscillation) which led to a value of E1 = 20400 and E3 = 20780 cm−1. The double-exciton

energy is set to E12 = 2E1 + 170. To match the linear absorption we set Γ01 = 26 ps−1 and

Γ03 = 40 ps−1 and to match the k1-k3 dephasing time we set Γ13 = (0.265ps)−1 = 3.8 ps−1.

This dephasing rate is much slower than that predicted for uncorrelated exciton fluctuations

Γ13 << Γ01 + Γ03 = 66 ps−1 suggesting that correlated fluctuations is a fundamental mech-

anism in such strongly coupled aggregates. The other dephasing rates are set to Γ0f = 40

ps−1, Γ1f = Γ01 and Γ3f = 2Γ03.

S3 2D spectroscopy

In a non-linear experiment, the radiated signal is proportional to the polarisation of the

sample: ~Esignal ∝ i ~P , where the polarisation can be expanded as a sum of the n-th order

polarisation ~P =
∑

n P
n. The third-order polarization is given by (Bránczyk et al, Ann.

Phys. 2014 526, 31-49)

P (3)(t) =
( i
~

)3 ∫ ∞
0

dt′3

∫ ∞
0

dt′2

∫ ∞
0

dt′1E(t− t′3)E(t− t′3 − t′2)E(t− t′3 − t′2 − t′1)×

Tr

{[[
[µ(t), µ(t− t′3)], µ(t− t′3 − t′2)

]
, µ(t− t′3 − t′2 − t′1)

]
ρ(0)

}
. (S.25)
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We can decompose the electric field by its forward (+) and backward (-) directions of prop-

agation

E(t) =
∑
i

E+
i (t) + E−i (t) (S.26)

where

E±i (t) = εi(t)e
±i(~ki·~r−ωi(t−Ti)). (S.27)

The index i labels all pulses that make up the total electric field that interacts with the

system, εi(t) is a non-oscillatory function that describes the envelope of the pulse, ~ki and ωi

are the direction of propagation and the central frequency of the pulse respectively and Ti is

the central time of the pulse. The transition dipole moment operator on the other hand, will

oscillate with a frequency determined by the optical transitions of the system. For a closed

two level system for example, we have that

µ(t) = µ−(t)|g〉〈e|+ µ+(t)|e〉〈g| (S.28)

where

µ±(t) = µe±iωSt. (S.29)

Products of the type E±i (t)µ±(t) inside the integral in Eq.S.25 will carry a phase e±i(−ω0+ωS)t

while products of the type E±i (t)µ∓(t) will carry a phase e∓i(ω0+ωS)t. In an experiment, the

central frequency of the pulse ωi, which we assume equal for all pulses, i.e. ωi ≡ ω0, is

typically chosen to be comparable to the characteristic optical transition frequency ωS of the

system under study, ω0 ≈ ωS. Therefore, the latter products oscillate very fast and average

to zero in the integral Eq.S.25 and can then be safely neglected. Only the E±i (t)µ±(t) prod-

ucts are taken into account. This is known as the rotating wave approximation (RWA). As

an example, we notice that due to the RWA, the product Ei(t− t′3)−E+
i′ (t− t′3 − t′2)E+

i′′(t−

t′3 − t′2 − t′1) will only be multiplied by the product of transition dipole moments given by

Tr

{[[
[µ(t), µ−(t− t′3)], µ+(t− t′3 − t′2)

]
, µ+(t− t′3 − t′2 − t′1)

]
ρ(0)

}
.
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Due to the fact that ρ(0) does not evolve under the Liouvillian that evolves the operator

µ, it can be shown that the time-argument in the transition dipole operators in Eq. S.25

can be shifted by t′1 + t′2 + t′3 − t according to

Tr

{[[
[µ(t), µ(t− t′3)], µ(t− t′3 − t′2)

]
, µ(t− t′3 − t′2 − t′1)

]
ρ(0)

}
=

Tr

{[[
[µ(t′1 + t′2 + t′3), µ(t′2 + t′3)], µ(t′1)

]
, µ(0)

]
ρ(0)

}
. (S.30)

The third-order polarization Eq. S.25 now reads

P (3)(t) =

∫ ∞
0

dt′3

∫ ∞
0

dt′2

∫ ∞
0

dt′1E(t− t′3)E(t− t′3 − t′2)E(t− t′3 − t′2 − t′1)R(3)(t′1, t
′
2, t
′
3)(S.31)

where the response function R has been defined as

R(3)(t′1, t
′
2, t
′
3) =

( i
~

)3
Tr

{[[
[µ(t′1 + t′2 + t′3), µ(t′2 + t′3)], µ(t′1)

]
, µ(0)

]
ρ(0)

}
(S.32)

Notice that due to the shift by t′1 + t′2 + t′3 − t in the time-argument in the transition dipole

moments, the RWA implies now that only the products involving E±i (t − t′3)µ
±(t′1 + t′2),

E±i (t− t′3 − t′2)µ±(t′1) and E±i (t− t′3 − t′2 − t′1)µ±(0) survive in the integral Eq.S.31.

In a typical 2DES experiment, the sample interacts with three light pulses that arrive at

times T1, T2 and T3. The total electric field is given by the sum of all pulses E(t) = E1(t) +

E2(t)+E3(t). If we are interested in the direction of propagation ~ks = p1~k1+p2~k2+p3~k3, where

pi = ±, and assuming that all the ~ki directions are different, the only terms contributing to
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the third-order polarization in the RWA are

P (3)
p1p2p3

(t) =

∫ ∞
0

dt′3

∫ ∞
0

dt′2

∫ ∞
0

dt′1 ×
{

Ep3
3 (t− t′3)E

p2
2 (t− t′3 − t′2)E

p1
1 (t− t′3 − t′2 − t′1)R(3)

p1p2p3
(t′1, t

′
2, t
′
3) +

Ep2
2 (t− t′3)E

p3
3 (t− t′3 − t′2)E

p1
1 (t− t′3 − t′2 − t′1)R(3)

p1p3p2
(t′1, t

′
2, t
′
3) +

Ep3
3 (t− t′3)E

p1
1 (t− t′3 − t′2)E

p2
2 (t− t′3 − t′2 − t′1)R(3)

p2p1p3
(t′1, t

′
2, t
′
3) +

Ep2
2 (t− t′3)E

p1
1 (t− t′3 − t′2)E

p3
3 (t− t′3 − t′2 − t′1)R(3)

p3p1p2
(t′1, t

′
2, t
′
3) +

Ep1
1 (t− t′3)E

p2
2 (t− t′3 − t′2)E

p3
3 (t− t′3 − t′2 − t′1)R(3)

p3p2p1
(t′1, t

′
2, t
′
3) +

Ep1
1 (t− t′3)E

p3
3 (t− t′3 − t′2)E

p2
2 (t− t′3 − t′2 − t′1)R(3)

p2p3p1
(t′1, t

′
2, t
′
3)
}
. (S.33)

with

R(3)
p1p2p3

(t′1, t
′
2, t
′
3) =

( i
~

)3
Tr

{[[
[µ(t′1 + t′2 + t′3), µ

p3(t′2 + t′3)], µ
p2(t′1)

]
, µp1(0)

]
ρ(0)

}
(S.34)

If strict time-ordering T1 < T2 < T3 is enforced and the light pulses are assumed to be delta-

pulses, i.e Ei(t) = δ(t − Ti), then only the first term in the integral in Eq.S.33 contributes

to the third-order polarization and we get

P (3)
p1p2p3

(t) =

∫ ∞
0

dt′3

∫ ∞
0

dt′2

∫ ∞
0

dt′1E
p1
3 (t− t′3)E

p2
2 (t− t′3 − t′2)E

p3
1 (t− t′3 − t′2 − t′1)R(3)

p1p2p3
(t′1, t

′
2, t
′
3)

(S.35)

= ei
~kS ·~rR(3)

p1p2p3
(t1, t2, t3) (S.36)

where the ti are the time-delays t3 = t − T3, t2 = T3 − T2 and t1 = T2 − T1. As we can

see, after the RWA and impulsive limit approximations, the third-order polarization in the

~ks = p1~k1 + p2~k2 + p3~k3 direction is proportional to the response function. Furthermore, the

p1~k1 direction is associated to the ± component of the transition dipole moment acting at
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t = 0, µp1(0), ~p2 = ±~k2 is associated to µp2(t1) and ~p3 = ±~k3 is associated to µp3(t1 + t2).

This leads to the pictorial Feynmann diagram representation of the response function and

its relation to the direction of propagation of the signal, where a µp1 acting at t = 0, µp2

acting at time t = t1 and µp3 acting at t = t1 + t2 is associated to the direction of detection

~ks = p1~k1+p2~k2+p3~k3. We can see then that if the pulses are not delta pulses and overlap in

time, such that other terms besides the first one in the integral Eq. S.33 contribute, the di-

rection of detection will be different than that predicted by the standard Feynmann diagram

interpretation. As an example, let’s consider the case in which the third term in the integral

Eq.S.33, which involves R(3)
p2p1p3 contributes to the polarization in the ~ks = p1~k1 + p2~k2 + p3~k3

direction. Now p2 and p1 are exchanged, so the Feynmann diagram that would be asso-

ciated to the ~ks = p2~k1 + p1~k2 + p3~k3 direction under the RWA and semi-impulsive limit

also contributes. For the polarization in a rephasing experiment ~kreph = −~k1 + ~k2 + ~k3,

this means that also terms normally associated to the non-rephasing direction of detection

~knon−reph = ~k1 − ~k2 + ~k3 will contribute.

To visualise the 2D spectra in a rephasing or non-rephasing scheme it is convenient to

Fourier transform with respect to t1 and t3:

P 3(ω1, t2, ω3) =

∫ ∞
0

∫ ∞
0

dt1dt3e
−iω1t1e−iω3t3P 3(t1, t2, t3). (S.37)

S3.1 Pulse overlap

When light pulses are not close to delta-pulses and overlap in time, the simplified expressions

in Eqs.S.35 and S.36 are no longer valid and all possible contributions in Eq.S.33 need to be

considered. The polarization in the rephasing direction of detection ~kreph = −~k1 +~k2 +~k3 is

given by (V. Butkus et al, Lithuanian Journal of Physics 2010, 50, 267-303)
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P
(3)
−++(t) =

∫ ∞
0

dt′3

∫ ∞
0

dt′2

∫ ∞
0

dt′1 ×
{

R
(3)
−++(t′1, t

′
2, t
′
3)×

(
E−(t3+t2+t1−t′3−t′2−t′1)E

+(t3+t2−t′3−t′2)E
+(t3−t′3)

+E−(t3+t2+t1−t′3−t′2−t′1)E
+(t3+t2−t′3)E

+
t3−t′3−t′2)

)
+R

(3)
+−+(t′1, t

′
2, t
′
3)×

(
E−(t3+t2+t1−t′3−t′2)E

+(t3+t2−t′3−t′2−t′1)E
+(t3−t′3)

+E−(t3+t2+t1−t′3−t′2)E
+(t3+t2−t′3)E

+(t3−t′3−t′2−t′1)
)

+R
(3)
++−(t′1, t

′
2, t
′
3)×

(
E−(t3+t2+t1−t′3)E

+(t3+t2−t′3−t′2−t′1)E
+(t3−t′3−t′2)

+E−(t3+t2+t1−t′3)E
+(t3+t2−t′3−t′2)E

+(t3−t′3−t′2−t′1)
)}

(S.38)

(S.39)

The first two terms, are interactions that are associated to the standard (i.e. those relevant

under the RWA and semi-impulsive limit) Feynmann diagrams for a rephasing experiment,

while the second two terms arise from the interactions normally associated to non-rephasing

experiments and the last two terms correspond to contributions associated to 2Q2D experi-

ments.

In the non-rephasing direction ~kreph = ~k1 − ~k2 + ~k3

P
(3)
+−+(t) =

∫ ∞
0

dt′3

∫ ∞
0

dt′2

∫ ∞
0

dt′1 ×
{

R
(3)
−++(t′1, t

′
2, t
′
3)×

(
E+(t3+t2+t1−t′3−t′2)E

−(t3+t2−t′3−t′2−t′1)E
+(t3−t′3)

+E+(t3+t2+t1−t′3)E
−(t3+t2−t′3−t′2−t′1)E

+(t3−t′3−t′2)
)

+R
(3)
+−+(t′1, t

′
2, t
′
3)×

(
E+(t3+t2+t1−t′3−t′2−t′1)E

−(t3+t2−t′3−t′2)E
+(t3−t′3)

+E+(t3+t2+t1−t′3)E
−(t3+t2−t′3−t′2)E

+(t3−t′3−t′2−t′1)
)

+R
(3)
++−(t′1, t

′
2, t
′
3)×

(
E+(t3+t2+t1−t′3−t′2−t′1)E

−(t3+t2−t′3)E
+(t3−t′3−t′2)

+E+(t3+t2+t1−t′3−t′2)E
−(t3+t2−t′3)E

+(t3−t′3−t′2−t′1)
)}

(S.40)
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and the 2Q2D direction ~kreph = ~k1 + ~k2 − ~k3

P
(3)
++−(t) =

∫ ∞
0

dt′3

∫ ∞
0

dt′2

∫ ∞
0

dt′1 ×
{

R
(3)
−++(t′1, t

′
2, t
′
3)×

(
E+(t3+t2+t1−t′3−t′2)E

+(t3+t2−t′3)E
−(t3−t′3−t′2−t′1)

+E+(t3+t2+t1−t′3)E
+(t3+t2−t′3−t′2)E

−
t3−t′3−t′2−t′1)

)
+R

(3)
+−+(t′1, t

′
2, t
′
3)×

(
E+(t3+t2+t1−t′3−t′2−t′1)E

+(t3+t2−t′3)E
−(t3−t′3−t′2−)

+E+(t3+t2+t1−t′3)E
+(t3+t2−t′3−t′2−t′1)E

−(t3−t′3−t′2)
)

+R
(3)
++−(t′1, t

′
2, t
′
3)×

(
E+(t3+t2+t1−t′3−t′2−t′1)E

+(t3+t2−t′3−t′2)E
−(t3−t′3)

+E+(t3+t2+t1−t′3−t′2)E
+(t3+t2−t′3−t′2−t′1)E

−(t3−t′3)
)}

(S.41)

The R(3)
−++ response function is given by

R
(3)
−++(t′1, t

′
2, t
′
3) = R−++,2 +R−++,3 −R∗−++,4 (S.42)

where

R−++,2(t
′
1, t
′
2, t
′
3) = Tr

{
µeLt

′
3

(
eLt

′
2
(
µ+eLt

′
1( ~ρ0µ

−)
)
µ+
)}

(S.43)

R−++,3(t
′
1, t
′
2, t
′
3) = Tr

{
µeLt

′
3

(
µ+eLt

′
2
(
eLt

′
1( ~ρ0µ

−)µ+
) )}

(S.44)

R∗−++,4(t
′
1, t
′
2, t
′
3) = Tr

{
µeLt

′
3

(
µ+eLt

′
2µ+
(
eLt

′
1( ~ρ0µ

−)
) )}

. (S.45)

(S.46)

The R(3)
+−+ response function is given by

R
(3)
+−+(t′1, t

′
2, t
′
3) = R+−+,1 +R∗+−+,2 −R+−+,4 (S.47)
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where

R+−+,1(t
′
1, t
′
2, t
′
3) = Tr

{
µeLt

′
3

(
µ+eLt

′
2
(
µ−eLt

′
1(µ+~ρ0)

) )}
(S.48)

R∗+−+,2(t
′
1, t
′
2, t
′
3) = Tr

{
µeLt

′
3

(
µ+eLt

′
2
(
eLt

′
1(µ+~ρ0)µ

−) )} (S.49)

R+−+,4(t
′
1, t
′
2, t
′
3) = Tr

{
µeLt

′
3

(
eLt

′
2
(
eLt

′
1(µ+~ρ0)µ

−)µ+
)}

. (S.50)

(S.51)

and finally the R(3)
++− contribution is

R
(3)
++−(t′1, t

′
2, t
′
3) = R++−,1 −R∗++−,3 (S.52)

where

R++−,1(t
′
1, t
′
2, t
′
3) = Tr

{
µeLt

′
3

(
µ−eLt

′
2
(
µ+eLt

′
1(µ+~ρ0)

) )}
(S.53)

R∗++−,3(t
′
1, t
′
2, t
′
3) = Tr

{
µeLt

′
3

((
eLt

′
2
(
µ+eLt

′
1(µ+~ρ0)

) )
µ−

)}
(S.54)

(S.55)

To model the electric field, we use assume that the electric field in the frequency domain

is real such that E(t) is given by the fourier-transform of the square-root of the experimental

spectrum S(ω) (see Fig. 1 in main text), i.e. E−(t) =
∫∞
0
eiωt
√
S(ω)dω and E+(t) = E−(t)∗.

S4 Experimental details

S4.1 Sample preparation and linear characterization

Sample solutions are prepared starting from a water solution of TPPS (PorphyChem) at

neutral pH. Sulfuric acid 1 M was added until pH ≈ 1.5-2 is reached. The preparation

procedure follows the guidelines suggested for the achievement of short linear aggregates

16



Figure S1: Simulated real rephasing spectra at t2 = 0 (Colorbars in A.U.). (a)-(f) All six
contributions to the third-order polarization in the rephasing direction P (3)

−++ for finite pulse
width (Eq. S.39). First (a), second (b), third (c), fourth (d), fifth (e) and sixth (f) term
in (Eq. S.39). (g) Total third order polarization P (3)

−++ = P a
−++ + P b

−++ + P a
+−+ + P b

+−+ +

P a
++− + P b

++−. (h) Impulsive limit spectra P (3)
−++ = R

(3)
−++. In the impulsive limit the upper

negative cross-peak is more intense than the lower negative cross-peak due to excited state
absorption (ω1 ∼ E1, ω3 ∼ E1,2 − E1 = E2. Finite pulse width effects increase the strength
of a negative cross-peak below the diagonal with respect to the impulsive limit scenario.
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as stated by Micali et al. (N. Micali et al, J. Phys. Chem. B, 2000 104, 25, 5897-5904).

Absorption spectra have been recorded using a Varian Cary 5 spectrophotometer in 1 mm

path cells. For 2D experiments the concentration was tuned so to reach absorbance ≈ 0.3 at

the excitation wavelength, corresponding to a concentration of about 10 µM of monomeric

units.

S4.2 Raman spectroscopy

Raman spectra have been performed with a home-built micro-Raman system, based on a

Triax-320 ISA spectrograph, equipped with a holographic 1800 g/mm grating and a CCD

detector (Spectrum One ISA Instruments). The excitation source was a Spectra Physics

Ar+ laser (Stabilite 2017-06S) operating at 488 and 514 nm for resonant and non-resonant

conditions, respectively. A Kaiser Optical System holographic notch filter was used to reduce

the stray-light level. An Olympus BX 40 optical microscope equipped with a 20x/0.75

objective was optically coupled to the spectrograph. To avoid optical damage to the sample,

the power of the exciting radiation was maintained between 0.15 and 0.5 mW. The Raman

spectra were recorded on concentrated solutions (100µM) of H2TPPS aggregates between

200 and 2000 cm−1 and with an instrumental resolution of about 2 cm−1 (see figure S2).

It was not possible to include in the aggregate solutions an internal standard, therefore the

resonant and non-resonant spectra have been normalized on the 1537 cm−1 band, as already

proposed in the literature (D.L.Akins et al, J. Phys. Chem., 1998 98, 3612-3618).

S4.3 2D electronic spectroscopy (2DES)

2DES measurements have been performed with a setup similar to the one described in

(Nemeth et al, Opt. Lett., 2009, 34, 3301-3303) and schematized in figure S3 panel a. Briefly,

the output of a 800 nm, 3 KHz Ti:Sapphire laser system (Coherent Libra) is converted in a

visible broad pulse in an non-collinear optical amplifier (Light Conversion TOPAS White).

The transform-limited condition for the pulses at the sample position is achieved through a
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Figure S2: Resonant and non-resonant Raman spectra of concentrated solution of H2TPPS
aggregates in the full range.

prism compressor coupled with a Dazzler pulse shaper for the fine adjustment. The pulse

duration is optimized through FROG measures on a solvent using an iterative procedure:

the phases of the different wavelength components of the broadband pulse are changed at

each iteration until the optimum pulse is obtained. The pulses energy at the sample position

is reduced until 5 nJ per pulse by a broadband half-waveplate/polarizer system. The 2DPE

experiment relies on the passively phase stabilized setup with a transmission grating already

described in the literature (Nemeth et al, Opt. Lett., 2009, 34, 3301-3303). Briefly, the laser

output is splitted into four identical phase-stable beams (three exciting beams and a fourth

beam further attenuated of about 3 orders of magnitude used as Local Oscillator, LO) in

a BOXCARS geometry using a suitably designed 2D grating. Time delays between pulses

are modulated by pairs of 1◦ fused silica wedges. One glass wedge of each pair is mounted

onto a translation stage (Aerotech Ant95), providing a temporal resolution of 0.07 fs. The

exciting geometry and time delays definition are illustrated in figure S3 panel b and c.
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Figure S3: Scheme of the optical setup used for 2D measurements

A digital double lock-in acquisition is implemented (Augulis, R.; Zigmantas D., Opt.

Express 2011, 19, 14, 13126-33 ). Two optical choppers modulate the repetition rate of

pulses kb and kc at 200 and 40 Hz, respectively. The signal is thus extracted at 160 Hz.

The frequency of data collection is set to 500 Hz. This method could remove most of the

scattering contributions of the sample.

This setup allows performing different 2D schemes (rephasing (R), non-rephasing (NR)

and double quantum (2Q)) through suitable variation of the pulse sequence. The pulse order

determines indeed the phase matching conditions (figure S3 panels b, c).

In R and NR measures, for fixed values of t2, the echo signal is measured while scanning

the coherence time t1, by means of the CCD camera. Thus, the signal evolution over the

echo time t3 is indirectly measured through its Fourier analogue, ω3. The signal field is thus

measured as a function of t1, t2, and ω3. Fourier transformation along t1 yields finally the

signal as a function of ω1, t2, and ω3 , so that the final result is a 2D map in which the

signal is plotted as a function of the corresponding coherence frequency ω1, representing the

initial excitation, and the rephasing frequency ω3, which can be interpreted as the ensuing
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emission. To obtain R and NR signals, the relative pulse ordering of beams ka and kb is

varied as depicted in figure S3 panel c. In our R and NR experiments, t2 was scanned from

0 to 600 fs in steps of 5 fs and for each value of t2 the coherence time t1 was scanned from 0

to 75 fs in steps of 0.32 fs.

In the 2Q experiment instead, t1 is fixed to 0 while t2 is scanned. Practically, ka is kept

fixed in time while kb and kc are equally delayed. Fourier transformation along t2 yields the

2Q signal as a function of ω2, t1=0, and ω3 , so that, differently from the R and NR maps,

the final 2Q2D map presents the signal as a function of ω2 and ω3. The only two Feynman

paths contributing to the 2Q signal are shown in figure S4 panel d. The positive contribution

( R4, on the left) and negative contribution (R∗3, on the right).

In all experiments, the delay between t3 and tLO is removed so that the signal comes out

just after t3 = 0. A supergaussian function with formula exp −(t3−40fs)
6

2∗(100fs)6 is used as time filter.

This function assumes a value ≈ 1 between t3 = 0 and t3 = 80 fs when the signal is present,

and quickly decays to 0 beyond this interval where only scattering contribution is collected.

Phasing of R, NR and 2Q spectra follows the procedure described in (Nemeth et al, Opt.

Lett., 2009, 34, 3301-3303) and (Nemeth et al, J. Chem. Phys., 2010, 133, 094505).

To ensure the reliability of the measures, at least 3 different sets of measures in different

days were performed and then averaged. All measurements were performed under ambient

temperatures (295 K).

The evolution of the R and NR spectra as a function of t2 is shown in figure S5.

S4.4 Global fitting analysis

R and NR signals are analyzed with a global complex multi-exponential fit method as pro-

posed in (Volpato, A. et al. Opt. Express 2016, 24, 24773 ).

Briefly, the decay of the total complex signal at each point of the 2D map is fitted with

a global function written as sum of complex exponentials: f =
∑N

n=1 ane
iφne−t2/τneiωnt2 .

Components with ωn=0 describe population decay contributions, whereas components with
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Figure S4: a) 2Q signal as a function of t2 and ω3. b) Slice of 2Q signal extracted at
ω3 = 20400cm−1 compared with the same traces extracted from 2Q experiment performed
on water and fluorescein solution in the same conditions. The 2Q signal of aggregates is
significantly greater because of the resonance with two-exciton states. c) Absolute 2Q signal
as a function of ω2 and ω3 after FFT along t2. Rephasing, non-rephasing and scattering
contributions oscillate along t2 with frequency close to 0 or to the exciting laser frequency.
The only Feynman paths oscillating at about twice the excitation frequency with the right
phase matching condition and thus contributing to the 2Q signal are shown in panel (d).
On the left the positive contribution (peak at ω2 = E1,2 and ω3 = E1) while on the right the
negative one (peak at ω2 = E1,2 and ω3 = E1,2 − E1 = E2).

ωn 6=0 represent oscillating components associated to coherent dynamics along t2. The

corresponding amplitude an plotted in a 2D map as a function of ω1 and ω3 builds the so

called DAS (dcay associated spectra) and CAS (coherence associated spectra), respectively.

These maps allow the direct visualization of the sign and the amplitude distribution of a

particular decay component along the 2D spectra. Given the n-th component associated to

the time constant τn, a positive amplitude (yellow areas) will be found at positions in the

2D maps where the signal is decaying with τn, whereas a negative amplitude (blue areas)

will be found where the signal is rising with τn.
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Figure S5: Real rephasing, non rephasing and purely absorptive spectra at selected values
of t2. All the spectra are normalized to their maximum.

The global fit of the R and NR complex signals recorded for the solution of H2TPPS

aggregate allowed the identification of 5 components, two associated with population decay

and three with oscillating components, as reported in Table 1 of the main text. The DAS

associated with the population decay constants are reported in figure S6. The CAS associated

with oscillating components are reported in figure S7 and S8. In the R signal, CAS 1 and

CAS 2 show the typical amplitude distribution expected for vibrational coherences, mainly

localized in the region below diagonal. CAS 3 instead is characterized by a symmetrical

distribution with respect to the diagonal, in agreement with the attribution of this CAS to

a coherence having a mainly electronic character. The CAS of the NR signal are noisier and

their interpretation is more difficult. In figure S7, the CAS obtained with our global fitting

methodology are compared with the conventional Fourier maps (Turner D.B. et al. J. Chem.

Phys. 2016, 131, 144510); H.Li,et al. Nat. Commun. 2013 4, 1390; J. O. Tollerud, et al.
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Phys. Rev. Lett. 2016, 117(9), 097401). In figure S8 we compare the CAS obtained from

the analysis of experimental and simulated rephasing signal. In figure S7 and S8 colored

dots indicate relevant positions where vibrational (red) and electronic (green) coherences are

expected to contribute based on the simplified Displaced Harmonic Oscillators model (Turner

D.B. et al. Phys. Chem. Chem. Phys. 2012, 14, 4857). This model is not fully meaningful

in our system for which a more advanced vibronic model is employed, but the pinpointed

positions represent a guide for the eye and a support for the beating interpretation.
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Figure S6: DAS of rephasing and non-rephasing signals. DAS 1 is associated to a time con-
stant >1 ps and represents the global decay of R and NR maps during the whole investigated
time-window. DAS 2 is associated to a faster time constant (280 fs) which was attributed
to the intra-band relaxation toward lower energy states. The purely absorptive DAS on the
right correspond to the sum of R and NR contributions.
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Figure S7: Comparison between the results of global fitting analysis (in terms of CAS) and
conventional Fourier transform maps analysis of the oscillations in rephasing (upper panel)
and non-rephasing (lower panel) contributions. The lower line in each panel reports the
absolute CAS of the oscillating components of the signals. CAS 1,2 and 3 are associated to the
258, 334 and 445 cm−1 frequencies with dephasing times >1 ps, >1ps and 265 fs, respectively.
The upper line in each panel reports the Fourier maps at corresponding frequencies. No
information about dephasing times can be estimated in this case since FT maps describe the
average behavior along the whole t2 window investigated.
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Figure S8: Comparison between simulated and experimental CAS of rephasing signal. In
general, the shape of the simulated maps appear more elongated with respect of the experi-
mental ones but still similar. This discrepancy is probably due to laser spectrum issues.
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