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1 �e ORI�ird-Order Response Function

�e macroscopic polarization, P (t), generated by an incident electric �eld connects a measured

optical signal to the microscopic response of the molecules or materials. In the dipole approxi-

mation, this polarization can be expressed as

P (t) = Tr(µ̂ρ(t)) =< µ̂ρ(t) >,

where µ̂ is the dipole operator, ρ(t) is the time-dependent density matrix, and the angle brackets

denote a trace.1 In the perturbative regimewhere the electric �eld of the light onlyweakly couples

to the material system, it is possible to perturbatively expand the density matrix. For a third-order

nonlinear experiment, involving three interactions of an electric �eld with a sample at distinct
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times denoted as t1, t2, and t3, in the interaction picture, we can write the trace above as the

following convolution integral

P (3)(t) =

∫ t

−∞
dt3

∫ t3

−∞
dt2

∫ t2

−∞
dt1E(t1)E(t2)E(t3) ·R(3)(t1, t2, t3),

where E denotes an electric �eld interaction and R(t1, t2, t3) is a third-order response function

that can be wri�en

R(3)(t1, t2, t3) = (
−i
~

)3Θ(t1)Θ(t2)Θ(t3) < µ(t) · [µ(t3), [µ(t2), [µ(t1), ρ(−∞)]]] >,

where Θ(t) is the Hevaside step function.

�e time variables discussed above are de�ned for absolute times, but it is more useful experi-

mentally to discuss time intervals corresponding to the time di�erences between a pair of pulses.

As such we can make the following de�nitions:

t1 = 0

τ = t2 − t1

T = t3 − t2

tR = t− t3,

where τ is the time between pulses 1 and 2, T is the time between pulses 2 and 3, and tR is the

time between pulse 3 and the signal time t. �is allows us to rede�ne the response function as

R(3)(τ, T, tR).

In a canonical third-order nonlinear spectroscopicmeasurement, such as 2DES or 2DIR, where

none of the pulses have pulse-front tilt, the third-order polarization generated in the sample,

and thus the emi�ed third-order signal, is a function of three temporal intervals de�ned above.

�ese three variables are controlled experimentally by moving an opto-mechanical delay line to

delay one pulse�s arrival relative to the other. Performing di�erent measurements with di�erent
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values of τ and then Fourier transforming over this coordinate produces a frequency axis that is

equivalent to spectrally resolving the pump frequency (or excitation frequency, ωτ ). �e second

time variable, T , corresponds to the time di�erence between pulses 2 and 3. During this time, the

measured system is generally thought to be in a population state, meaning the system evolves in

time as an eigenstate of the unperturbed Hamiltonian. Again, this time is controllable by varying

the arrival time of pulse 3 relative to pulse 2 using an opto-mechanical delay line. �e �nal time

domain, tR, is de�ned as the time a�er the third pulse, when the signal is emi�ed. �is time

domain is typically measured intereferometrically by using a spectrometer to convert from time

to frequency and mixing the signal with the local oscillator, producing the second frequency axis,

or probe frequency, ωtR , presented in a typical 2D plot.

A nonseparable spatio-temporal coupling, such as pulse-front tilt, of pulse 3means that arrival

time of this pulse, ie. time variable t3, will vary across the sample as a function of position,

allowing us to write the spatially-dependent temporal interval between pulses two and three as

t3 − t2 = T − px,

where p denotes pulse-front tilt and x is a spatial coordinate. As such the spatial-temporal cou-

pling is present in the response function, which can be wri�en as R(3)(τ, T − px, tR). �us, all

the time intervals, including T , remain experimentally controllable variables. �is should enable

the extraction of both two-dimensional spectra as well as optical resonant images from the same

experimental setup, as long as all the time intervals are experimentally scanned.

2 Kostenbauder Matrix Calculations

�e Kostenbauder formalism discussed in the main text allows us to follow the spatio-temporal

coupling of pulse 3.2 Fig. S1 con�rms that the pulse still has a 15 fs FWHM.
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Figure S1. A slice through the point x′ = 0 from Fig.1. �e ordinate is in normalized intensity

units.

3 Fourier Optics Simulation

�e simulated ORI signal was calculated by propagating the emi�ed dipole �elds through a f/2

optical system. Fig. S2 shows the �eld as calculated before the �rst lens. �e lens applies a

quadratic phase which cancels the phase from the emi�ed signal wave since the source was at

the focus. �ewave was then propagated to just before the second lens. �e calculated collimated

�eld can be seen in Fig. S3. Finally the �eld was propagated to the focus of the second lens, which

in this model corresponds with the entrance slit of the simulated spectrometer. �is simulated

signal can be seen in Fig. S4.
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Figure S2. �e real-valued electric �eld before the �rst lens of the collection optics.
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Figure S3. �e real-valued electric �eld before the second lens of the collection optics.
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Figure S4. �e real-valued electric �eld at the entrance slit of the simulated spectrometer.
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