Supporting Information

Hypoxia-mimicking nanofibrous scaffolds promote endogenous bone regeneration

Qingqing Yao ^{a,b}, Yangxi Liu ^{a,b}, Jianning Tao ^c, Keith M. Baumgarten ^d, Hongli Sun ^{a,b, *}

^a Department of Biomedical Engineering, University of South Dakota, Sioux Falls, SD 57107, USA

^b BioSNTR, Sioux Falls, SD 57107, USA

^c Children's Health Research Center at Sanford Research, Sioux Falls, SD 57104,

USA

^d Orthopedic Institute, Sioux Falls, SD 57105, USA

Corresponding Author

* Professor Hongli Sun, Ph.D.

Department of Biomedical Engineering

The University of South Dakota

4800 N. Career Ave, Suite 221, Sioux Falls, SD 57107

Phone: (+1) 605-275-7470; Fax: +1 605-782-3280; E-mail:

Hongli.Sun@usd.edu

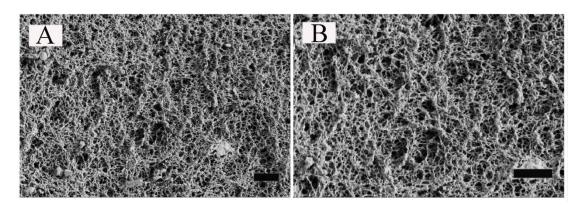


Fig. S1: High magnification SEM images of gelatin nanofibers. Morphology of gelatin nanofibers on 3D scaffolds was observed by SEM at 25,000X (A), and 40,000X (B), respectively. Scale bar =1 μ m.