Practical Synthesis of MDM2 Antagonist RG7388. Part 1: A $\mathbf{C u}($ II)-Catalyzed Asymmetric [3+2] Cycloaddition

Lianhe Shu, ${ }^{*}$ Chen Gu, Dan Fishlock, and Zizhong Li
Process Research and Synthesis, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley,
New Jersey 07110, United States
Email: lshu@verizon.net

Table of Contents

1. Detailed procedure for the preparation of $r a c-\mathbf{1 5}, r a c-16 \quad \mathrm{~S}-2$
2. NMR data of $\mathbf{1 0}, \mathbf{3 3}, \mathbf{3 4}$ S-4
3. X-ray crystallographic result for $\mathbf{1 0}, \mathbf{1 5}$ and $\mathbf{1 6}$ S-6
4. Copies of NMR spectra for $\mathbf{1 0}, \mathbf{1 5}, \mathbf{1 6}, \mathbf{3 3}, \mathbf{3 4} \quad$ S-7
5. HPLC chromatograms for compound $\mathbf{1}$ S-12

Detailed procedure for the preparation of $\mathrm{rac}-\mathbf{1 5}, \mathrm{rac}-\mathbf{1 6}$
rac-Ethyl 4-[[(2R,3S,4R,5R)-4-(2-chloro-4-fluorophenyl)-3-(3-chloro-2-fluorophenyl)-4-cyano-5-(2,2-dimethylpropyl)pyrrolidine-2-carbonyl]amino]-3-methoxybenzoate (rac-15)

A mixture of $\mathrm{Cu}(\mathrm{OAc})_{2}(7.5 \mathrm{mg}, 41.3 \mu \mathrm{~mol})$ and rac -BINAP $(28.0 \mathrm{mg}, 45.0 \mu \mathrm{~mol})$ was suspended in MeTHF (6 mL) and stirred under N_{2} at room temperature for 3 h . Then DIPEA ($0.60 \mathrm{~mL}, 3.44 \mathrm{mmol}$) was added, followed by $\mathbf{3}(1.00 \mathrm{~g}, 3.22 \mathrm{mmol})$ and $\mathbf{8}(1.20 \mathrm{~g}, 3.59 \mathrm{mmol})$. The mixture was stirred at room temperature under N_{2} overnight. The resulting suspension was diluted with EtOH ($9.47 \mathrm{~g}, 12 \mathrm{~mL}$), stirred at room temperature for 3 h , then filtered. The solid cake was washed with $\operatorname{EtOH}(15.8 \mathrm{~g}, 20 \mathrm{~mL})$ and n-heptane ($13.7 \mathrm{~g}, 20 \mathrm{~mL}$), dried by suction to give rac-15 (1.41 g, 67.8% yield) as white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.66$ (brs, 1 H), $8.42(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~m}, 1 \mathrm{H}), 7.65(\mathrm{dd}, J=8.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.40(\mathrm{~m}, 1 \mathrm{H}), 7.32(\mathrm{td}, J=8.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.15(\mathrm{~m}, 3 \mathrm{H}), 4.45(\mathrm{~m}, 2 \mathrm{H}), 4.36(\mathrm{q}, J=7.2 \mathrm{~Hz}$, 2H), 4.25 (m, 1H), 3.91 (s, 3H), 1.39 (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$), 1.30 (dd, $J=14.2,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.92$ (s, $9 \mathrm{H}), 0.84(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 169.72, 166.19, 161.17, 158.66, $157.73,155.27,147.68,136.28,136.17,130.90,130.61,129.31,127.00,125.85,125.45,125.42$, $125.21,125.17,125.12,125.09,123.16,121.90,121.70,120.89,120.77,118.62,117.53,117.27$, $110.68,66.61,65.69,60.99,57.28,55.62,45.74,44.02,30.55,29.34,14.34$.
rac-Ethyl 4-[[(2S,3S,4R,5S)-4-(2-chloro-4-fluorophenyl)-3-(3-chloro-2-fluorophenyl)-4-cyano-5-(2,2-dimethylpropyl)pyrrolidine-2-carbonyl]amino]-3-methoxybenzoate (rac-16)

A suspension of $\mathrm{CuOAc}(5.0 \mathrm{mg}, 40.8 \mu \mathrm{~mol})$ and triphenylphosphine $(22.0 \mathrm{mg}, 83.9 \mu \mathrm{~mol})$ in MeTHF (8 mL) was stirred at room temperature under N_{2} for 3 h . Compound $3(1.00 \mathrm{~g}, 3.22$ $\mathrm{mmol})$ and $\mathbf{8}(1.20 \mathrm{~g}, 3.59 \mathrm{mmol})$ were added and the mixture was stirred at room temperature under N_{2} overnight. The resulting solution was washed with 5% aq. $\mathrm{NH}_{4} \mathrm{OAc}(2 \times 5.0 \mathrm{~mL}), 5 \%$ of aq. $\mathrm{NaCl}(5.0 \mathrm{~mL})$, and concentrated to give a foam. This foam was re-dissolved in EtOH (20 mL) and stirred at room temperature over weekend. The slurry was filtered and washed with EtOH (10 mL) to give a $1: 5$ mixture of rac- $\mathbf{1 5}$ and rac- $\mathbf{1 6}(1.75 \mathrm{~g}, 84.2 \%$ yield). Analytical sample of pure rac-16 was obtained by column chromatography on silica gel. ${ }^{1}$ H NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.97$ (brs, 1 H), $8.30(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{dd}, J=8.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J$ $=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~m}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~m}, 1 \mathrm{H}), 7.17(\mathrm{dd}, J=12.6,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.11(\mathrm{~m}, 1 \mathrm{H}), 6.89(\mathrm{td}, J=8.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{dd}, J=10.8,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=$ $10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.22(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 1.85(\mathrm{dd}, J=14.1$, $8.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.48(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.08,166.24,160.84,158.34,157.87,155.40,148.08,136.51,136.40,131.75$, $131.71,130.85,130.43,127.94,125.94,125.45,125.42,124.17,124.12,123.14,120.98,120.79$, $118.41,118.13,117.86,110.95,62.34,60.95,60.72,58.24,56.17,45.73,44.96,30.28,29.84$, 14.35 .
rac-Ethyl 4-[[(2R,3S,4R,5S)-3-(3-chloro-2-fluoro-phenyl)-4-(4-chloro-2-fluorophenyl)-4-cyano-5-(2,2-dimethylpropyl)pyrrolidine-2-carbonyl]amino]-3-methoxybenzoate (rac-10)

Rac-10 was obtained from the esterification of rac-1. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.41$ (s, $1 \mathrm{H}), 8.47$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.68$ (dd, $J=8.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.59$ (d, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.49$ (m, $1 \mathrm{H}), 7.32(\mathrm{~m}, 1 \mathrm{H}), 7.25(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{dd}, J=12.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{t}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.11(\mathrm{dd}, J=8.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~m}$, 2H), $4.10(\mathrm{~m}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 2.79(\mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.59(\mathrm{dd}, J=14.5,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.40(\mathrm{~m}, 1 \mathrm{H}), 1.02(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.39,166.31$, $160.62,158.95,157.46,155.81,147.89,136.39,136.32,131.35,131.32,131.19,130.46,127.38$, $125.82,125.36,125.34,124.76,124.69,124.66,123.31,121.62,121.50,118.25,117.96,117.88$, $117.81,117.78,117.76,110.73,65.14,65.10,64.34,63.17,63.11,61.04,55.69,50.34,50.31$, 45.03, 30.48, 29.82, 14.41.
rac-4-[[(2R,3S,4R,5R)-3-(3-chloro-2-fluoro-phenyl)-4-(4-chloro-2-fluorophenyl)-4-cyano-5-(2,2-dimethylpropyl)pyrrolidine-2-carbonyl]aminol-3-methoxybenzoic acid (rac-33)

Rac-13 was hydrolyzed with aq. NaOH to give a mixture of rac-33 and rac-1. Pure rac-33 was obtained by preparative SFC. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 12.85(\mathrm{br}, 1 \mathrm{H}), 9.96(\mathrm{~s}, 1 \mathrm{H}), 8.25$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~m}, 1 \mathrm{H}), 7.65(\mathrm{dd}, J=11.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.52(\mathrm{~m}$,

2H), 7.41-7.31 (m, 3H), 4.55-4.45 (m, 2H), $4.34(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H})$, $1.29(\mathrm{dd}, J=13.7,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.80(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz , DMSO- d_{6}) $\delta 170.87,167.33,160.90,159.23,157.13,155.49,148.27,135.43,135.36,131.14$, $130.82,129.97$, $128.51,126.59,126.19,126.11,126.06,126.03,125.99,123.07,122.07,121.99$, $120.85,120.63,120.50,118.73,118.03,117.85,111.60,66.13,65.09,56.30,46.70,44.77,30.92$, 30.75, 29.75.
rac-4-[[(2S,3S,4R,5S)-3-(3-Chloro-2-fluorophenyl)-4-(4-chloro-2-fluorophenyl)-4-cyano-5-(2,2-dimethylpropyl)pyrrolidine-2-carbonyl]aminol-3-methoxybenzoic acid (rac-34)

Rac-34 was obtained from enzymatic hydrolysis of rac-14 and was purified by preparative HPLC. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, ~ D M S O-d_{6}$) $\delta 12.83(\mathrm{brs}, 1 \mathrm{H}), 10.50(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.60(\mathrm{dd}, J=12.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{dd}, J=8.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.38$ (m, 2H), 7.37 (dd, $J=8.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{td}, J=8.1,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.47(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{br}, 1 \mathrm{H}), 4.08(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{dd}, J=13.6$, $9.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.38(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz, DMSO- d_{6}) $\delta 169.50$, $167.39,160.82,159.15,157.34,155.70,148.64,135.38,135.31,131.72,131.69,131.31,130.30$, $128.43,126.49,126.24,126.22,124.98,124.95,124.35,124.26,123.09,119.79,119.73,119.67$, $118.69,118.63,118.39,118.21,117.76,62.21,61.58,61.55,57.35,57.31,56.65,46.82,46.02$, 30.53, 30.21 .

X-ray crystallographic result for $\mathbf{1 0}, \mathbf{1 5}$ and $\mathbf{1 6}$

10

15

		1	170	16		1	1			100		1	70						10
00	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

	1	1		1						1,	1	1			1	+	1	T	
00	190	180	170	160	150	140	130	120	110	$\stackrel{100}{\mathrm{f} 1(\mathrm{ppm})}$	90	80	70	60	50	40	30	20	10

 \(\stackrel{\text { ®. }}{\text { in }}\)

D-12

Data File C: \CHEM32 \1 \DATA \backslash SHUL1 $\backslash L S$ 2012-04-02 14-56-28\008-0301.D
Sample Name: 7859-116-B

Last changed : 11/16/2011 4:39:33 PM

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Dilution
Use Multiplier \& Dilution Factor with ISTDs

Signal 1: VWD1 A, Wavelength=254 nm

Peak \#	RetTime	Type	Width	Area	Height	Area
	[min]		[min]	mAU *s	[mAU]	\%
1	8.098	BB	0.3954	956.88763	36.76637	48.6806
2	9.844	BB	0.5333	1008.75812	28.83627	51.3194
Total	s :			1965.64575	65.60264	

[^0]```
Data File C:\CHEM32\1\DATA\SHUL1\LS 2012-04-03 10-13-38\010-0101.D
Sample Name: 7859-116-D
```



Signal 1: VWD1 A, Wavelength=254 nm

| Peak \# | $\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$ | Type | Width <br> [min] | Area |  | Height | Area |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | mAU | * 5 | [mAU |  |
| 1 | 8.037 | MM | 0.4254 |  | 1.72749 | 6.76850e-2 | 0.2005 |
| 2 | 9.814 | MM | 0.5847 | 860 | . 00543 | 24.51359 | 99.7995 |
| Totals | $s$ : |  |  | 861 | . 73292 | 24.58128 |  |


[^0]:    *** End of Report ***

