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Section 1: MOSAIC Pipeline Architecture  
 
 
 

 

Figure S1. The MOSAIC processing pipeline comprises of five modules that perform well-defined functions. By enforcing a 
common interface, individual functions can be easily customized in a manner that allows them to interoperate with other parts 
of the pipeline. 

 

MOSAIC consists of a modular data processing pipeline, shown schematically in Fig. S1. Five self-
contained modules provide the building blocks of the pipeline, which together allows the analysis of data from 
single-molecule nanopore experiments. MOSAIC was designed using object-oriented concepts. This allowed us 
to leverage polymorphism within individual modules to customize functionality and promote interoperability. 
Module interoperability is also ensured through a well-defined interface. This approach makes it straightforward 
for users to implement new features into the software, such as other analysis algorithms or loading custom data 
formats. In most cases, users interact with MOSAIC using a custom graphical user interface (Fig. 6) that uses the 
pipeline architecture. Here we briefly describe the key elements of that pipeline architecture.  

Load Data: This module allows users to load raw current traces from nanopore experiments into MOSAIC. Axon 
binary format (ABF) by Molecular Devices Axopatch amplifiers and QUB data files (QDF) are supported 
natively. In addition, MOSAIC can read a wide variety of raw binary file format for data saved with custom 
hardware. Data from disk is first loaded into a first-in, first-out (FIFO) queue after applying the specified signal 
conditioning steps (setting amplifier scale and offsets, correcting for systematic artifacts, etc.). Downstream 
modules request data in blocks for subsequent processing. The Load Data module adds data to the FIFO queue 
on demand until the end of the data set is reached. Because the logic for the data access is implemented as part of 
the common interface, new data types can be added to MOSAIC by simply reading in individual files and making 
the data available to the FIFO queue.  

 
Filtering: MOSAIC allows acquired data to be filtered prior to analysis by applying the optional Filtering 
module. While this module is not a substitute for anti-alias filtering, it allows the data bandwidth and sampling to 
be controlled in software.1 High frequency noise, resulting from amplifier noise or charge trapping in solid-state 
measurements can hinder the measurement of short events (< 100 µs). In some cases, the signal-to-noise ratio 
(SNR) can be improved by filtering data, albeit with distortion of the signal shape.2 MOSAIC provides multiple 
options for data filtering including Bessel which has a well-behaved response to signal transients.21 Alternatively, 
arbitrary filters (finite impulse response filters, weighted moving averages, etc.) can be implemented using a tap-
delay line.3  Finally, this module provides experimental support for wavelet-based filtering,3 which allows a signal 
to be denoised while preserving SNR and pulse shape.  

 
Event Detection: This module partitions the time-series to detect individual interactions of single molecules with 
the nanopore. Currently, we have implemented a simple thresholding algorithm that detects deviations of the ionic 
current from the open channel baseline value.2,4,5 To discern statistically meaningful events, we heuristically set 
the current threshold. Typical values range from 2.5 to 6 times the standard deviation of the open channel current, 
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σ. The end of an event is registered when the ionic current returns to the open-channel baseline. The segment of 
the time-series corresponding to the event is then processed further using the Event Analysis module. 

Event Analysis: Detected events are analyzed using the user-selected algorithm as described in the main text. 
Currently two algorithms—ADEPT and CUSUM+ are available. However, additional algorithms can be added. 
The parameters and associated metadata of successfully analyzed events are stored in a SQLite database (Figure 
S2) for future analysis.  Events with processing or analysis errors are flagged within the database.    

Store Results & Graph: The results generated by the Event Analysis module are stored in a SQLite database. 
The use of a relational database for storage enables rapid, non-platform specific data storage and access and allows 
users to explore the data and analyze it further using external applications. The database schema for the ADEPT 
is shown in Fig. S2A.  Primary metadata generated from the analysis of individual events in a time-series are 
stored in the metadata table. The analysisinfo table holds additional analysis information needed to make the 
database self-contained. Finally, the analysissettings table holds the settings used to run the analysis and the 
output log of the analysis is stored in the analysislog table. A brief description of the metadata generated by the 
ADEPT algorithm is presented in Fig. S2B. An up-to-date listing of metadata of all algorithms available in 
MOSAIC is available at https://pages.nist.gov/mosaic/. 

 
Figure S2. (A) Database schema for ADEPT algorithm output in MOSAIC. Primary metadata associated with processed events are 
stored in the metadata table. (B) Descriptions of the different metadata produced by ADEPT. 
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Section 2: Time Constant Estimation 
 

As described in the paper, the time constant τ varies with ΔR, 𝜏 = #$%& %'()%
%&(%'()%

 . However, the actual 

difference between the time constants leading up to and following an event are considerably shorter than 
the sampling rate used in most experiments. For example, the partitioning of DNA into an aHL 
nanopore, discussed in paper, produces a blockade depth ratio, ⟨i⟩/⟨i0⟩ ≈ 0.1. For typical experimental 
parameters,  the time constant associated with entry and exit of the DNA into the nanopore will differ by 
by ≈ 293 ns (assuming Rp = 0.8 GW, Rs = 50 MW, Cm = 2 pF, and ΔR = 7.2 GW). This change is even 
smaller (≈ 237 ps) for solid state nanopores.6,7 Because these differences are ≈ 1000 times shorter than 
the duration between sampled points (2 µs) at a sampling rate, Fs=500 kHz,  they cannot be resolved by 
our measurements. We therefore utilize a single fit parameter for τ, which reduces the degrees of 
freedom in the fit. For cases where these assumptions do not hold, there is an option to override this 
constraint in the software. 

 
 

Section 3: Extended Analysis and Comparison of ADEPT and CUSUM+ 
 

(A) Solid State Nanopores: dsDNA 
 

As discussed in the text, the observed difference between the output of ADEPT and CUSUM+ results from 
the limitations of the CUSUM+ algorithm. Because CUSUM+ can only correctly identify states that have 
reached their steady state value (with residence times > 5t) we normally exclude events less than 5t from 
CUSUM+ analysis. 
 
Relaxing this constraint results in a systematic underestimation of the ionic current when DNA occupies the 
pore, causing the blockade depth histogram to shift to the right (compare to Fig. 3B in text). This 
underestimation will also apply to sub-states shorter than 5t within a longer event. 
 
 

 

 
 

Figure S3. A comparison of ADEPT (red) and CUSUM+ (grey) blockade depths for dsDNA events with a minimum length of 2t. 
Including events in CUSUM+ that do not converge to a steady state (< 5t) results in a systematic shift in the peak positions. 
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In some instances, ADEPT’s fitting process can fail to converge for events containing more than ~12,500 points 
(25 ms when Fs = 500 kHz). This is seen in Fig. 3B, where CUSUM+ recovers ≈ 11% more events for the peak 
at ⟨i⟩/⟨i0⟩= 0.56 ±0.01, which contains characteristically long events. The overall result can be improved when 
both algorithms are used in a complementary manner—using ADEPT to fit short events and CUSUM+ to fit 
long ones, as seen in Fig. S4. 

 

Figure S4. A proof of concept hybrid approach (Blue, rectangles) that merges the results of ADEPT (Orange, triangles) and 
CUSUM+ (Gray, circles) improves the analysis of the dsDNA data.  

 
(B) Computational Efficiency of Algorithms 
 

The processing times for both  ADEPT and CUSUM+ scaled linearly with the length of the event, as seen 
in Figure S5, suggesting O(N) scaling for each algorithm, as implemented currently. 

   
 

 
Figure S5. Processing time as a function of number of data points in the event (event length), N, for ADEPT (black) and 
CUSUM+ (red). CUSUM+ is on average ~10x faster.  The processing time for both algorithms scales linearly with N (R2 = 
0.927 and 0.999 for ADEPT and CUSUM+ respectively).  Linear fits to data are shown in dotted lines (Slopes are: (47 ± 5) 
µs/pt and (4.87 ± 0.02) µs/pt for ADEPT and CUSUM+ respectively). The results were obtained from data processed on a 
computer with an Intel 3.6 GHz i7-4790 CPU, 16 GB RAM and a solid-state hard drive.  
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(C) Effect of Voltage on ssDNA Blockades as a Function of Polymer Length 
 
We examine the translocation of the homopolymer, poly(dA)n, through the nanopore (cis),8 as a function 
of hompolymer length and applied potential. The blockade depth histogram produced when the  
polynucleotides enter from the cis side of the pore is shown in Figure S6 as a function of applied 
potential. At 130 mV, the blockade depth histogram of dA100 has three distinct peaks, ⟨i⟩/⟨i0⟩ =(0.11 ± 
0.01), (0.15 ± 0.03), and (0.51 ± 0.02). The first two peaks (denoted ⟨i⟩/⟨i0⟩3’ and ⟨i⟩/⟨i0⟩5’) are consistent 
with the dependence of the blockade depth on the orientation of the leading end of the DNA entering the 
pore (3’ vs 5’).9-11 The location of these two peaks agrees with previous measurements of dA100, where 
two broad overlapping peaks were observed at similar locations.12  
 
These differences are not as clearly observed in the shorter ssDNA. As seen in Fig. S6B-C, the position 
of the 3’ peak of dA40 and dA20 does not change with voltage. The amplitude of the 5’ peak decreases 
substantially for measurements of dA40 (Fig. S6B) and is not observed for dA20 (Fig. S6C), likely due to 
both the lower probability of 5’ entry as well as the decreasing residence time of shorter ssDNA.10  
 

 
 
Figure S6.  Blockade depth histograms for dA100, dA40 and dA20 ssDNA translocation from the cis side of aHL nanopore at as a 
function of voltage. Peak fits shown were obtained using an error-weighted fit to a sum of Gaussians, as described in the text. 
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(D) Effect of Voltage on Capture Rate of dA20 
 
To accurately calculate the mean capture rate from the arrival times we include all events with 4 or more 
data points, regardless of whether the events are successfully fit by ADEPT. The arrival times (defined 
as the time between the start of sequential events) follow an exponential distribution. In SI Figure 7, we 
plot histogram of the arrival times for dA20 as a function of voltage and fit it to a single exponential 
decay.  

 

 

SI Figure 7.  Normalized probability distribution of arrival times (log-linear plot). Error bars indicate the standard 
error for Poisson counting; bins with zero counts were assigned an error of s = 1. Mean residence times for each 
voltage are shown in the plot legend.  
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(E) SNR Analysis for PEG Measurements.  
 
For the PEG data shown in Fig 7. of the text, both ADEPT and CUSUM+ similarly resolve peaks for 
polymers with n>17. The difference between the two algorithms becomes apparent for shorter polymers, 
where the mean residence times are substantially shorter. In SI Figure S6, we directly compare the peak 
signal to noise ratio of peak, defined as the logarithm of the ratio of the peak amplitude, to the residual 
fit error. For larger polymers (n>20) the SNR is similar, however for small species (n < 20) the SNR of 
the CUSUM+ peaks are on average 14.3 ± 0.3% lower than those recovered by ADEPT.  
 

 
 
 
 
 

 
Figure S8.  A comparison of ADEPT (blue) and CUSUM+(orange) analysis of a polydisperse PEG solution measured 
with an αHL nanopore. Blockade depth histogram of events recovered by each algorithm and comparison of signal to 
noise of each peak. The number of events recovered by CUSUM+ decreases sharply for small polymers (N < 20) that 
exhibit fast residence times (< 5τ) in the pore. 

 
 
 
 
 
 
 
 
 

25

20

15

10

SN
R

dB

300

200

100

0

C
ou

nt
s

1.00.80.60.40.20.0

<i>/<i0>

40 35 30 25 20 15 10 8
Polymer Number

 ADEPT
 CUSUM+

 ADEPT
 CUSUM+



 S-9 

(F) Tables of Analysis Parameters Used and Fit Parameters Obtained  
 
 

Parameter ADEPT 
400 mV 

ADEPT 
800 mV 

CUSUM+ 
400 mV 

CUSUM+ 
800 mV 

Event Identification Threshold 
(´s) 5.0 5.0 5.0 5.0 

Min. Event Length (data points) 5 5 5 5 
Block Size (s) 2.0 2.0 2.0 2.0 
StepSize  9.0 9.0 9.0 18.0 
Min. Threshold - - 0.1 0.1 
Min. State Length (data points) 10 10 10 10 
Max. Event Length (data points) 15000 15000 ¾ ¾ 
Fit Iterations 50000 50000 ¾ ¾ 
Fit Tolerance 1e-7 1e-7 ¾ ¾ 

 
Table S1.  Parameters used in the analysis of dsDNA with a solid-state nanopore. 

 

 ⟨i⟩/⟨i0⟩ Amplitude 

400 mV 
ADEPT 0.070 ± 0.001 309.0 ± 15.2 

0.488 ± 0.004 11.0 ± 1.1 

CUSUM+ 0.070 ± 0.001 301.6 ± 7.4 
0.486 ± 0.004 11.7 ± 1.1 

800 mV 

ADEPT 

0.080 ± 0.002 86.5 ± 6.5 
0.138 ± 0.002 128.7 ± 3.9 
0.226 ± 0.018 23.1 ± 1.9 
0.560 ± 0.005 12.3 ± 0.9 

CUSUM+ 

0.090 ± 0.002 80.8 ± 5.7 
0.134 ± 0.010 31.3 ± 2.7 
0.250 ± 0.030 8.0 ± 0.7 
0.559 ± 0.004 21.6 ± 1.2 

 

Table S2.  Blockade depth peaks and amplitude, as a function of voltage and algorithm, for 50bp dsDNA interaction with a solid-
state nanopore. Peak locations are obtained from an error-weighted fit of the data to a sum of three Gaussians; individual bin errors 
were assumed to follow a Poisson error distribution. Expanded uncertainty for individual fit parameters (k=2) is reported.  
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Parameter dA100 dA40 dA20 
Event Identification Threshold (´s) 5.0 5.0 5.0 
Min. Event Length (data points) 5 5 5 
Block Size (s) 0.5 0.5 0.5 
StepSize  9 9 9 
Min. State Length (data points) 5 5 5 
Max. Event Length (data points) 50000 100000 10000 
Fit Iterations 5000 5000 5000 
Fit Tolerance 1e-7 1e-7 1e-7 

 
Table S3.  Parameters used in the analysis of ssDNA with a protein nanopore with ADEPT  

 

 

 

 

 

 

 

 

 

Table S4.  Blockade depth peaks, as a function of voltage, for different lengths of dA interaction with αHL. Peak locations are 
obtained from an error-weighted fit of the data to a sum of three Gaussians; individual bin errors were assumed to follow a Poisson 
error distribution. Expanded uncertainty for individual fit parameters (k=2) is reported.  

 
 
 

Parameter ADEPT 
Small PEG 

ADEPT 
Large PEG 

CUSUM+ 
Small PEG 

CUSUM+ 
Large PEG 

Event Identification Threshold 
(´s) 2.75 4.0 2.75 4.0 

Min. Event Length (data points) 5 5 5 5 
Block Size (s) 0.5 0.5 0.5 0.5 
StepSize  ¾ ¾ 3.0 3.0 
Min. Threshold ¾ ¾ 2.0 2.0 
Max Threshold ¾ ¾ 100.0 100.0 
Max. Event Length (data points) ¾ ¾ ¾ ¾ 
Fit Iterations 50000 50000 50000 50000 
Fit Tolerance 1e-7 1e-7 1e-7 1e-7 

 
Table S5.  Parameters used in the analysis of PEG with an αHL nanopore 

 

 ⟨i⟩/⟨i0⟩3’ ⟨i⟩/⟨i0⟩5’ ⟨i⟩/⟨i0⟩a ⟨i⟩/⟨i0⟩b 

dA100 
130 mV 0.11±0.03 0.15±0.08 0.51±0.07 — 
140 mV 0.11±0.03 0.15±0.05 0.50±0.05 — 
150 mV 0.11±0.01 0.16±0.02 0.49±0.02 — 

dA40 
130 mV 0.12±0.06 0.15±0.13 0.49±0.02 — 
140 mV 0.12±0.07 0.15±0.11 0.50±0.04 — 
150 mV 0.12±0.03 0.15±0.04 0.47±0.02 — 

dA20 
120 mV 0.13±0.02 — 0.49±0.25 0.56±0.12 
140 mV 0.14±0.02 — 0.47±0.08 0.51±0.05 
160 mV 0.14±0.02 — 0.45±0.07 0.49±0.10 
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