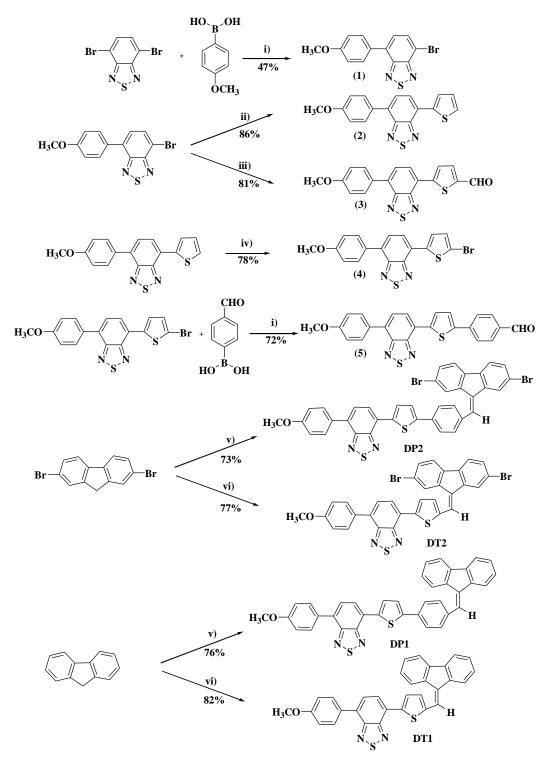
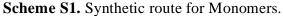
Supporting Information


Mono-Substituted Dibenzofulvene-based Luminogens: Aggregation-Induced Emission Enhancement and Dual-State Emission


Peddaboodi Gopikrishna^{\dagger} and Parameswar Krishnan Iyer*^{\dagger #}

^{*†*}Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India. ^{*#*}Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.

Corresponding Author: E-mail: <u>pki@iitg.ernet.in</u> FAX: +913612582349

Content	Page
1. Synthetic route of monomers	S2
2. Synthetic Procedure of monomers	S3-S6
3. ¹ H, ¹³ C NMR spectra and Maldi-TOF and HRMS of synthesized	
compounds	S7-S20
4. ORTEP diagram of Compound-5, crystal data of DT1 and	
Compound-5	S20-S21
5. Chromaticity diagrams of luminogens	S22
6. TD-DFT simulated absorption spectra and contributing orbitals at	
each excitation of luminogens	S22-26
7. Cyclic voltammograms of luminogens	S27

i) Pd(PPh₃)₄, 2M K₂CO₃, THF, 80 °C, 12 h. ii) Tributyl-thiophen-2-yl-stannane, Pd(PPh₃)₄, THF, 80 °C, 12 h, iii) 5-Formylthiophene-2-boronic acid, Pd(PPh₃)₄, 2M K₂CO₃, THF, 80 °C, 12 h. iv) NBS, THF:CH₃COOH (1:1), RT, 6 h. v) Compound (5) and EtOH, Potassium tert-butoxide, Reflux, 12 h. vi) Compound (3) and EtOH, Potassium tert-butoxide, Reflux, 12 h.

Synthetic procedure of Monomers:

Synthesis of 4-Bromo-7-(4-methoxy-phenyl)-benzo[1,2,5]thiadiazole (1);

The mixture of 4,7-dibromo-benzo[1,2,5]thiadiazole (1.eq), 4-methoxy phenyl boronic acid (0.7 eq), 12 mL THF and tetrakis(triphenyl phosphine)palladium(0) (0.015 eq) were added into a dry two neck round bottom flask. Subsequently, 4 mL 2M aqueous potassium carbonate was added to the flask. The reaction mixture was stirred at 80 °C for 12 h under argon atmosphere. The reaction mixture was then cooled to room temperature. After work up, the mixture was purified by column chromatography to give greenish yellow solid compound 1. (yield: 47%); ¹H NMR (600 MHz, CDCl₃) δ (ppm): 7.89 (d, *J*=7.2 Hz, 1H), 7.86 (d, *J*=9 Hz, 2H), 7.52 (d, *J*=7.4 Hz, 1H), 7.05 (d, *J*=8.4 Hz, 2H), 3.89 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ (ppm): 160.33, 154.10, 153.49, 133.91, 132.54, 130.62, 129.28, 127.65, 114.42, 112.47, 55.63. HRMS (ESI): m/z [M + H]⁺ Calcd: 320.9697, found 320.9690.

Synthesis of 4-(4-Methoxy-phenyl)-7-thiophen-2-yl-benzo[1,2,5]thiadiazole (2);

The mixture of 4-Bromo-7-(4-methoxy-phenyl)-benzo[1,2,5]thiadiazole (1) (1.eq), Tributylthiophen-2-yl-stannane (1.2 eq) 12 mL THF and tetrakis(triphenyl phosphine)palladium(0) (0.015 eq) were added into a dry round bottom flask. The reaction mixture was stirred at 80 °C for 12 h under argon atmosphere. The resulting reaction mixture was cooled to room temperature and the crude product was purified by column chromatography to give yellow solid compound **2** (yield: 86%); ¹H NMR (600 MHz, CDCl₃) δ (ppm): 8.10 (d, *J*=3.6 Hz, 1H), 7.91 (dd, *J*=8.4 Hz, 6 Hz, 2H), 7.66 (d, *J*=7.2 Hz, 1H), 7.44 (d, *J*=4.8 Hz, 1H), 7.21 (t, 1H), 7.07 (d, *J*=8.4 Hz, 2H), 3.89 (s, 3H), ¹³C NMR (150 MHz, CDCl₃) δ (ppm): 160.05, 154.22, 153.02, 139.70, 132.74, 130.58, 129.95, 128.15, 127.91, 127.52, 127.40, 126.73, 126.21, 125.98, 114.31, 55.59. HRMS (ESI): m/z [M + H]⁺ Calcd: 325.0469, found 325.0468.

Synthesis of 5-[7-(4-Methoxy-phenyl)-benzo[1,2,5]thiadiazol-4-yl]-thiophene-2carbaldehyde (3):

A mixture of compound 1 (1.eq), 5-formylthiophene-2-boronic acid (1.2 eq), 12 mL THF and tetrakis(triphenyl phosphine)palladium(0) (0.015 eq) were added into a dry two neck round bottom flask. Subsequently 4 mL 2M aqueous potassium carbonate were added to the flask. The reaction mixture was stirred at 80 °C for 12 hours under argon atmosphere. The reaction mixture was then cooled to room temperature. After work up, the mixture was purified by column chromatography to give yellow solid compound **3**. (yield: 81%); ¹H NMR (600 MHz, CDCl₃) δ (ppm): 9.98 (s, 1H), 8.21 (d, *J*=4.2 Hz, 1H), 8.04 (d, *J*=7.2 Hz, 1H), 7.94 (d, *J*=8.4 Hz, 2H), 7.85 (d, *J*=3.6 Hz, 1H), 7.72 (d, *J*=7.2 Hz, 1H), 7.08 (d, *J*=9 Hz, 2H),

3.90 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ (ppm): 183.28, 160.46, 154.14, 152.83, 149.13, 143.50, 137.08, 134.95, 130.78, 129.48, 128.08, 127.83, 127.09, 124.50, 114.43, 55.65. HRMS (ESI): m/z [M + H]⁺ Calcd: 353.0418, found 353.0416.

Synthesis of 4-(5-Bromo-thiophen-2-yl)-7-(4-methoxy-phenyl)-benzo[1,2,5]thiadiazole (4);

4-(4-Methoxy-phenyl)-7-thiophen-2-yl-benzo[1,2,5]thiadiazole (2) (1.eq), was added into 12 mL THF and glacial acetic acid (1:1). After the solid dissolved completely, *N*-bromosuccinimide (1. eq) was added in one portion and stirred at room temperature for 6 h, under argon atmosphere. The reaction mixture was washed with brine and dried over anhydrous sodium sulfate. The solvent was removed at reduced pressure and the crude product was purified by column chromatography to give the produ ct as a yellow solid compound **4** (yield: 78%); ¹H NMR (600 MHz, CDCl₃) δ (ppm): 7.915 (d, *J*=6 Hz, 2H), 7.84 (d, *J*=12 Hz, 1H), 7.795 (d, *J*=6 Hz, 1H), 7.665 (d, *J*=6 Hz, 1H), 7.155 (d, *J*=6 Hz, 1H), 7.075 (d, *J*=6 Hz, 2H), 3.90 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ (ppm):160.31, 153.84, 153.76, 133.40, 130.72, 130.57, 129.57, 127.28, 126.76, 125.59, 123.31, 114.37, 114.33, 109.27, 55.60. MALDI-TOF MS: [M + H]⁺ Calcd. 404.53, Found: 404.08.

Synthesis of 4-{5-[7-(4-Methoxy-phenyl)-benzo[1,2,5]thiadiazol-4-yl]-thiophen-2-yl}benzaldehyde (5);

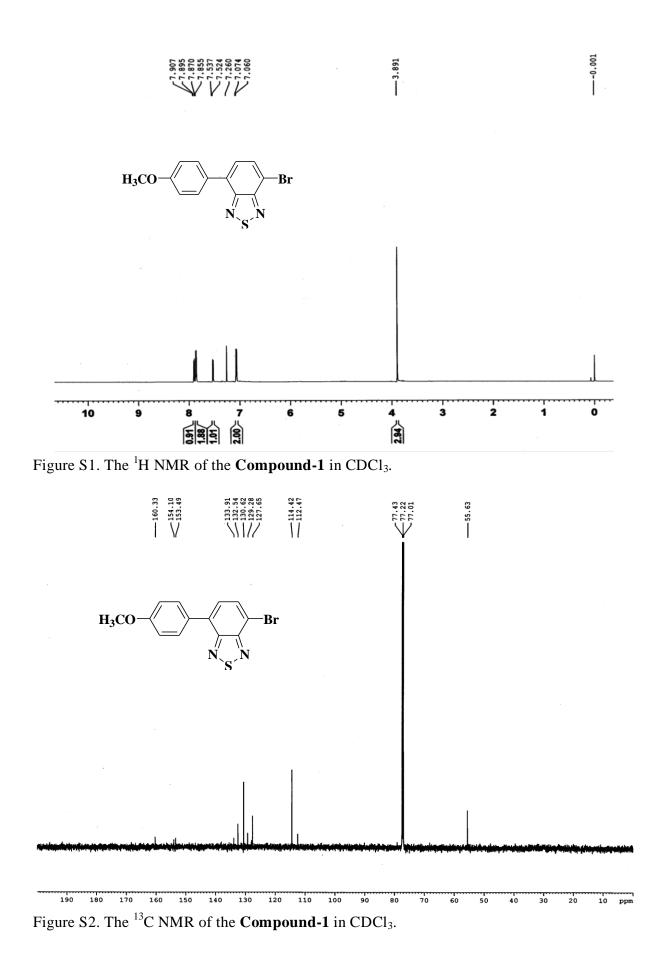
4-(5-Bromo-thiophen-2-yl)-7-(4-methoxy-phenyl)-benzo[1,2,5]thiadiazole (3) (1.eq), 4formyl phenyl boronic acid (1.2 eq), 12 mL of Tetrahydrofuran (THF) and tetrakis(triphenyl phosphine)palladium(0) (0.015 eq) were added into a dry two neck round bottom flask. Subsequently 4 mL 2M aqueous potassium carbonate were added to the flask. The reaction mixture was stirred at 80 °C for 12 h under argon atmosphere. The reaction mixture was then cooled to room temperature. The reaction mixture was washed with brine and dried over anhydrous sodium sulfate. The solvent was removed at a reduced pressure and the mixture purified by column chromatography to give light orange compound **5**. (yield: 72%); ¹H NMR (600 MHz, CDCl₃) δ (ppm): 9.96 (s, 1H), 7.92 (m, 3H), 7.85 (d, *J*=7.8 Hz, 2H), 7.77 (d, *J*=7.8 Hz, 2H), 7.54 (d, *J*=7.8 Hz, 1H), 7.49 (d, *J*=3.6 Hz, 2H), 7.05 (d, *J*=8.4 Hz, 2H), 3.88 (s, 3H).¹³C NMR (150 MHz, CDCl₃) δ (ppm): 191.53, 160.31, 154.03, 153.88, 143.42, 142.83, 140.85, 139.49, 136.37, 135.70, 135.21, 134.22, 131.03, 130.72, 130.44, 130.20, 129.47, 126.15, 114.34, 55.57. HRMS (ESI): m/z [M + H]⁺ Calcd: 429.0731, found 429.0737.

Synthesis of 4-{5-[4-(2,7-Dibromo-fluoren-9-ylidenemethyl)-phenyl]-thiophen-2-yl}-7-(4-methoxy-phenyl)-benzo[1,2,5]thiadiazole (6) (DP2);

A mixture of potassium tert-butoxide (1.2 eq) and 2,7-Dibromo-9H-fluorene (1.2 eq) was dissolved in 15 mL absolute ethanol. The resulting solution was refluxed for 1 h and compound 5 (1 eq) was added into reaction mixture and again refluxed for 18 h. The solvent was concentrated, and the residue was extracted with CH₂Cl₂ and evaporated. The residue was purified by column chromatography to give the product as a orange solid compound **DP2**. (yield: 73%); ¹H NMR (600 MHz, CDCl₃) δ (ppm): 8.14, (d, *J*=3.6 Hz, 1H), 7.97, (d, *J*=7.2 Hz, 1H), 7.95, (d, *J*=7.2 Hz, 2H), 7.90, (m, 3H), 7.84, (s, 1H), 7.82, (d, *J*=7.8 Hz, 2H), 7.70, (d, *J*=7.8 Hz, 2H), 7.67, (s, 1H), 7.64, (d, *J*=7.8 Hz, 1H), 7.54, (m, 2H), 7.50, (m, 2H), 7.46, (d, *J*=1.2 Hz, 1H), 7.08, (d, *J*=9 Hz, 2H), 3.90, (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ (ppm): 160.19, 154.38, 154.00, 147.28, 144.57, 141.49, 141.35, 141.28, 139.49, 139.35, 138.12, 137.51, 137.11, 136.28, 135.35, 134.73, 134.10, 131.40, 130.99, 130.68, 130.36, 129.84, 129.75, 129.55, 129.36, 127.49, 126.62, 126.10, 124.67, 123.89, 121.16, 119.29, 114.34, 114.27, 55.61. MALDI-TOF MS: [M + H]⁺ Calcd.734.95, Found: 734.10.

Synthesis of 4-[5-(2,7-Dibromo-fluoren-9-ylidenemethyl)-thiophen-2-yl]-7-(4-methoxy-phenyl)-benzo[1,2,5]thiadiazole (7) (DT2):

A mixture of potassium tert-butoxide (1.2 eq) and 2,7-Dibromo-9H-fluorene (1.2 eq) was dissolved in 15 mL absolute ethanol. The resulting solution was refluxed for 1 h and compound 3 (1 eq) was added into reaction mixture and again refluxed for 18 h. The solvent was cncentrated, and the residue was extracted with CH₂Cl₂ and evaporated. The residue was purified by column chromatography to give the product as a red solid compound **DT2**. (yield: 77%); ¹H NMR (600 MHz, CDCl₃) δ (ppm): 8.62, (s, 1H), 8.17, (d, *J*=6 Hz, 1H), 8.0, (d, *J*=7.2 Hz, 1H), 7.95, (d, *J*=8.4 Hz, 2H), 7.86, (s, 1H), 7.72, (d, *J*=7.2 Hz, 1H), 7.65, (s, 1H), 7.60, (d, *J*=3.6 Hz, 1H), 7.57, (d, *J*=7.8 Hz, 1H), 7.52, (d, *J*=8.4 Hz, 1H), 7.50, (d, *J*=7.8 Hz, 1H), 7.47, (d, *J*=6.6 Hz, 1H), 7.08, (d, *J*=9 Hz, 2H), 3.90, (s, 3H), ¹³C NMR (150 MHz, CDCl₃) δ (ppm): 160.22, 154.19, 152.88, 142.99, 141.70, 139.44, 139.22, 137.77, 136.75, 133.50, 132.26, 131.78, 131.22, 130.67, 129.78, 127.98, 127.67, 127.34, 126.39, 123.66, 121.42, 121.30, 121.26, 121.18, 114.38, 55.64. MALDI-TOF MS: [M + H]⁺ Calcd. 658.92, Found: 658.06.


Synthesis of 4-[5-(4-Fluoren-9-ylidenemethyl-phenyl)-thiophen-2-yl]-7-(4-methoxy-phenyl)-benzo[1,2,5]thiadiazole (8) (DP1):

A mixture of potassium tert-butoxide (1.2 eq) and 9H-fluorene (1.2 eq) was dissolved in 15 mL absolute ethanol. The resulting solution was refluxed for 1 h and compound 5 (1 eq) was added into the reaction mixture and again refluxed for 18 h. The solvent was concentrated and the residue was extracted with CH_2Cl_2 and evaporated. The residue was purified by

column chromatography to give the product as a orange solid compound **DP1**. (yield: 76%); ¹H NMR (600 MHz, CDCl₃) δ (ppm): 7.94, (d, *J*=8.4 Hz, 1H), 7.84, (d, *J*=8.4 Hz, 1H), 7.80, (d, *J*=8.4 Hz, 1H), 7.73, (d, *J*=7.8 Hz, 2H), 7.69, (m, 2H), 7.65, (s, 1H), 7.62, (d, *J*=7.8 Hz, 1H), 7.57, (d, *J*=7.8 Hz, 1H), 7.52, (m, 2H), 7.46, (d, *J*=7.8 Hz, 1H), 7.36, (m, 4H), 7.12, (t, 1H), 7.07, (d, *J*=8.4 Hz, 2H), 7.03, (t, 1H), 3.89, (s, 3H), ¹³C NMR (150 MHz, CDCl₃) δ (ppm): 160.19, 154.34, 154.03, 144.71, 141.54, 139.38, 139.30, 136.95, 136.83, 136.63, 133.83, 133.64, 130.90, 130.67, 130.35, 129.85, 129.01, 128.89, 128.82, 128.49, 127.23, 127.04, 126.96, 126.82, 126.35, 125.96, 125.87, 124.65, 124.46, 120.48, 120.41, 119.98, 119.82, 119.79, 114.35, 55.61. MALDI-TOF MS: [M]⁺ calcd.576.13 Found: 576.29

Synthesis of 4-(5-Fluoren-9-ylidenemethyl-thiophen-2-yl)-7-(4-methoxy-phenyl)benzo[1,2,5]thiadiazole (9) (DT1):

A mixture of potassium tert-butoxide (1.2 eq) and 9H-fluorene (1.2 eq) was dissolved in 15 mL absolute ethanol. The resulting solution was refluxed for 1 h and compound 7 (1 eq.) was added into the reaction mixture and refluxed further for 18 h. The solvent was concentrated, and the residue was extracted with CH₂Cl₂ and evaporated. The residue was purified by column chromatography to give the product as a orange solid compound **DT1**. (yield: 82%); ¹H NMR (600 MHz, CDCl₃) δ (ppm): 8.35 (d, *J*=7.8 Hz, 1H), 8.19 (d, *J*=3.6 Hz, 1H), 7.97 (d, *J*=7.2 Hz, 1H), 7.94 (d, *J*=8.4 Hz, 2H), 7.75 (dd, *J*=7.2 Hz, 7.8 Hz, 2H), 7.71 (dd, *J*=3 Hz, 3 Hz, 2H), 7.76 (s, 1H), 7.59 (d, *J*=3.6 Hz, 1H), 7.37 (t, 2H), 7.33 (t, 1H), 7.24 (t, 1H), 7.08 (d, *J*=7.8 Hz, 2H), 3.90 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ (ppm): 160.17, 154.30, 152.95, 141.68, 141.52, 139.87, 139.13, 136.73, 136.33, 133.15, 131.03, 130.65, 129.89, 129.03, 128.51, 128.15, 127.41, 127.25, 127.15, 126.23, 124.77, 120.41, 120.07, 119.86, 118.98, 114.38, 55.63. MALDI-TOF MS: [M + H]⁺ Calcd. 501.10, Found: 501.26.

S-7

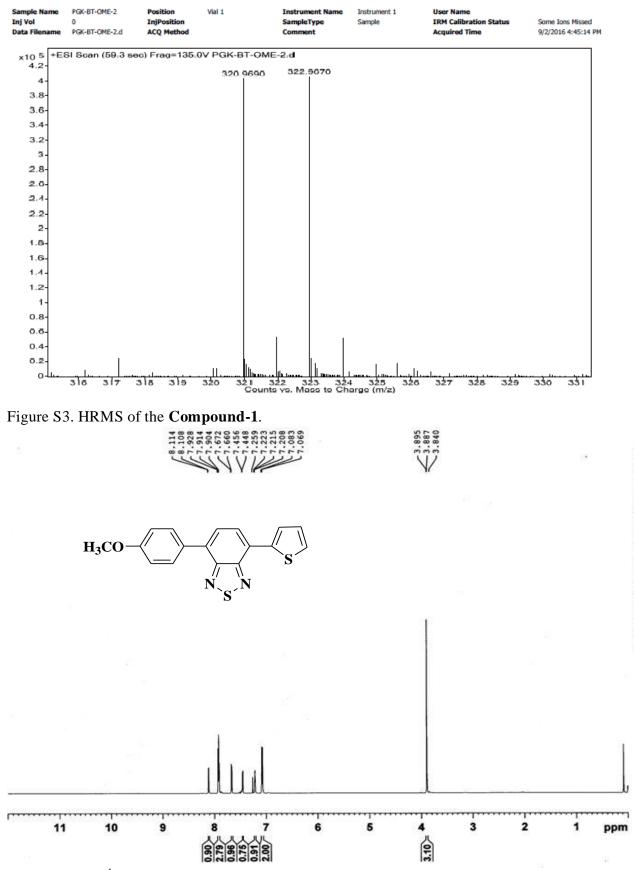


Figure S4. The ¹H NMR of the **Compound-2** in CDCl₃.

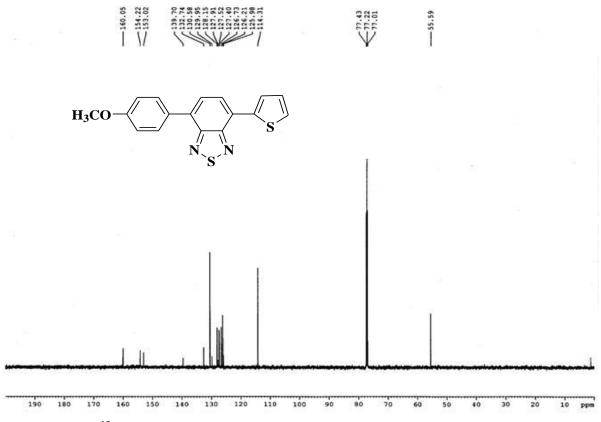


Figure S5. The ¹³C NMR of the **Compound-2** in CDCl₃.

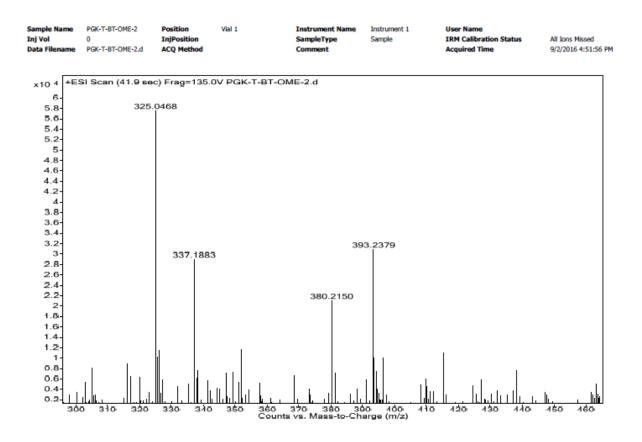


Figure S6. HRMS of the Compound-2.

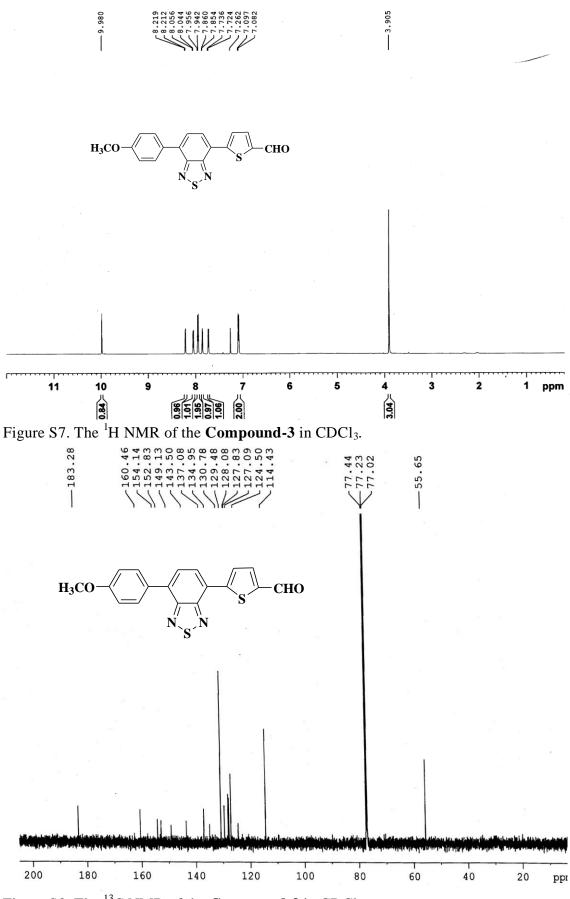


Figure S8. The ¹³C NMR of the **Compound-3** in CDCl₃.

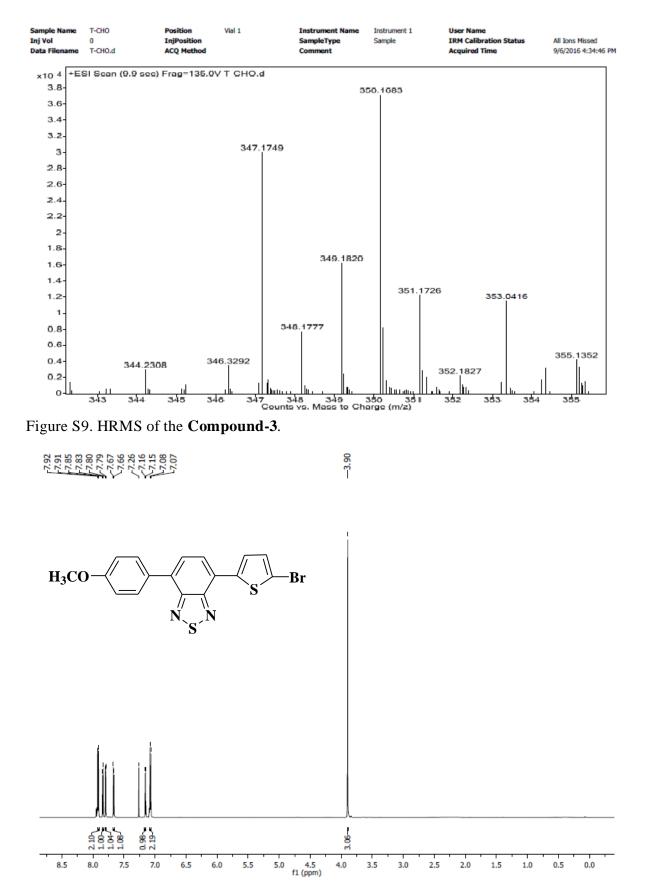


Figure S10. The ¹H NMR of the **Compound-4** in CDCl₃.

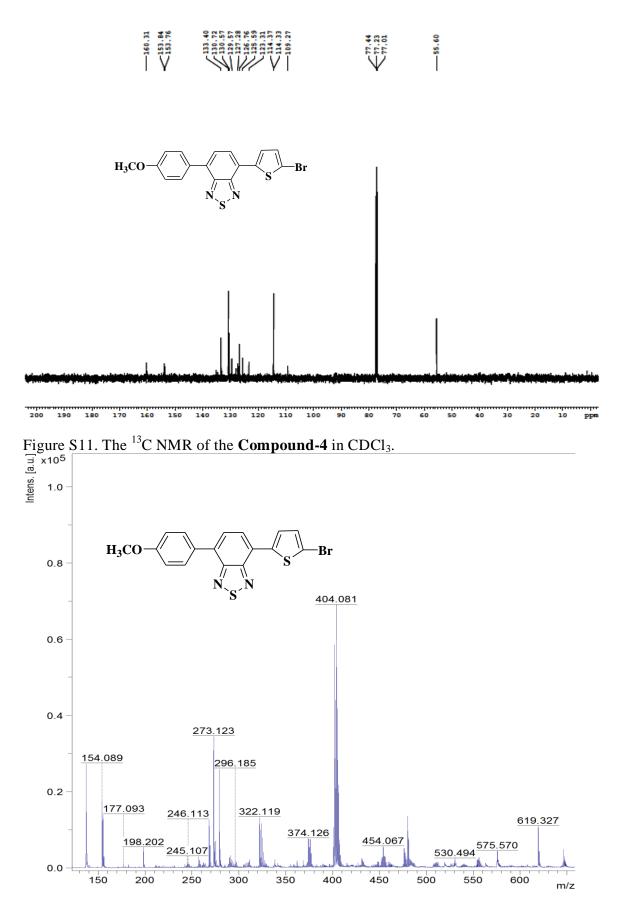
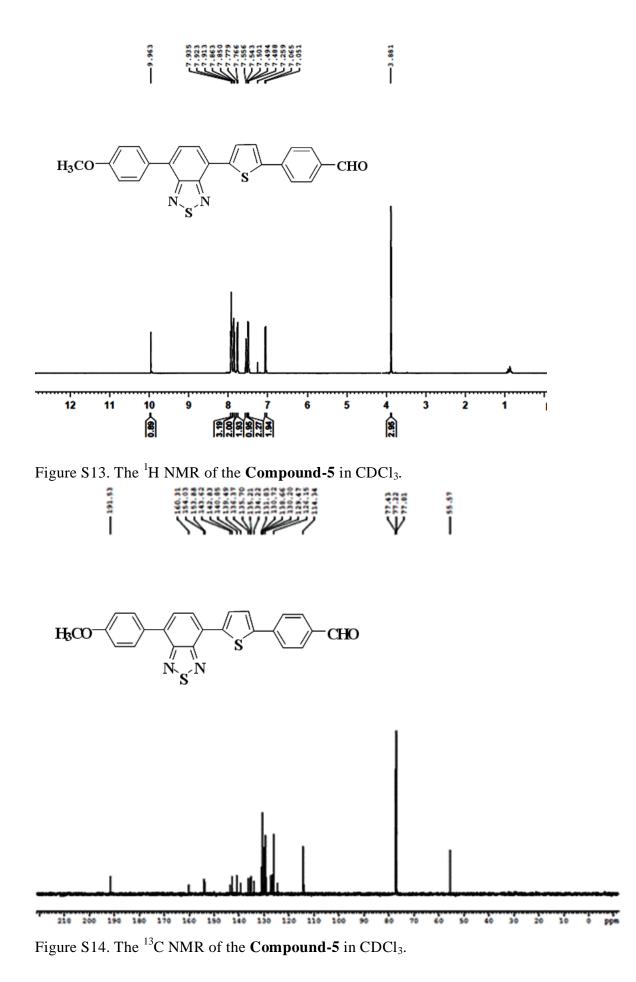
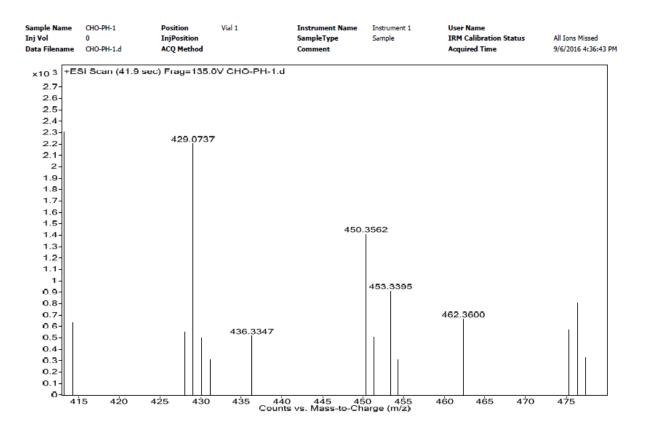
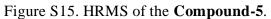





Figure S12. The time-of-flight mass spectrum of the Compound-4.

S-13

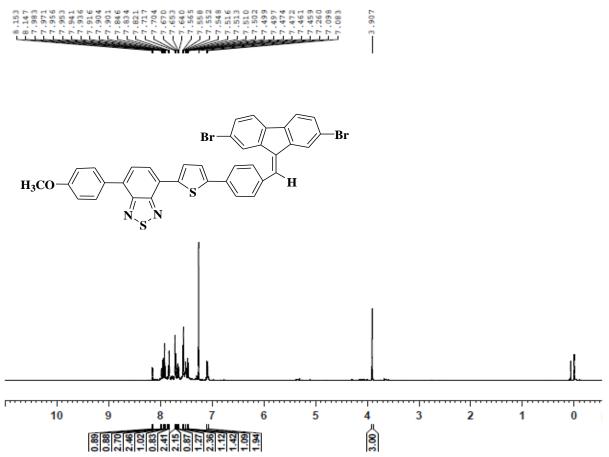


Figure S16. The ¹H NMR of the **DP2** in CDCl₃.

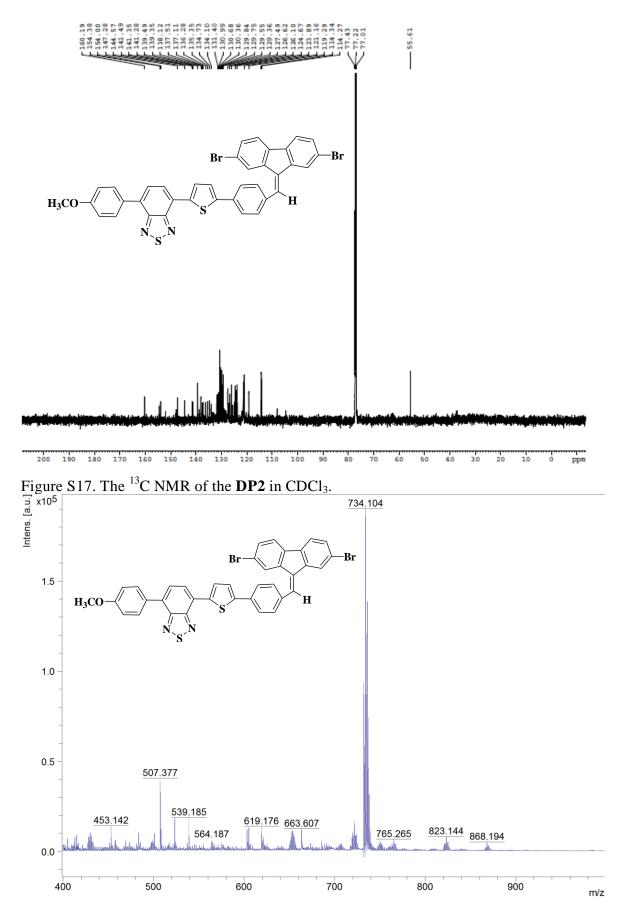


Figure S18. The time-of-flight mass spectrum of the **DP2**.

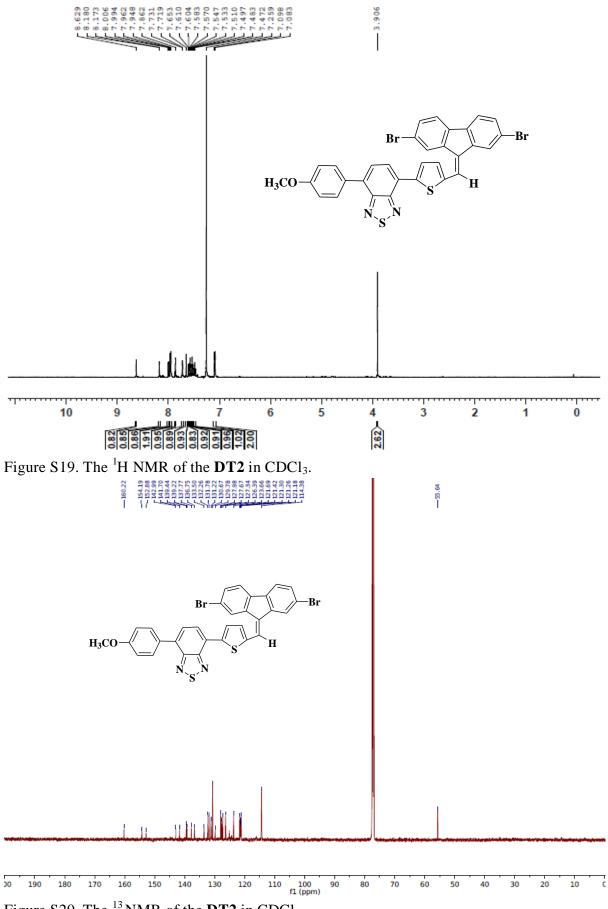


Figure S20. The ¹³NMR of the **DT2** in CDCl₃.

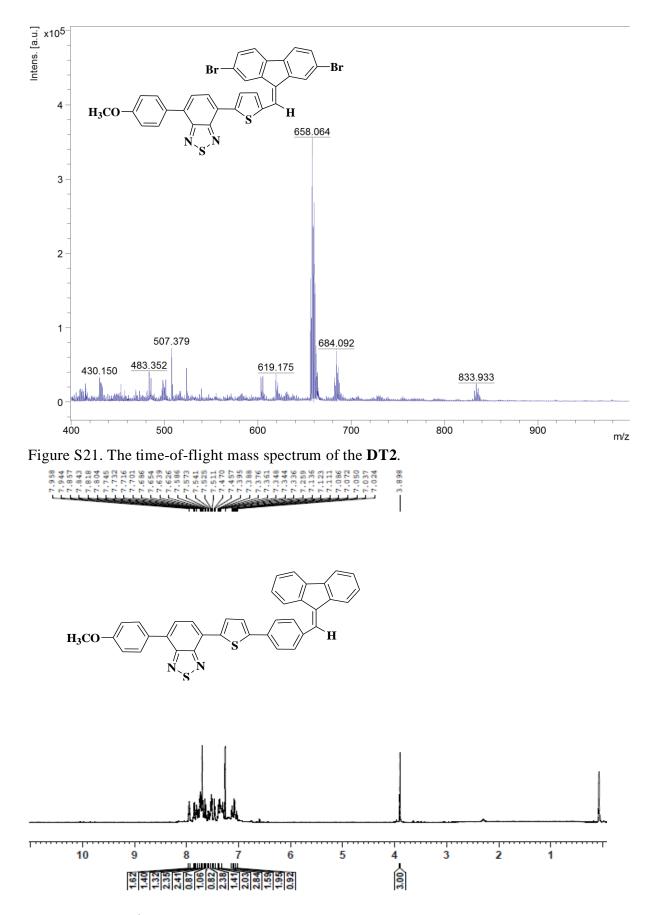


Figure S22. The ¹H NMR of the **DP1** in CDCl₃.

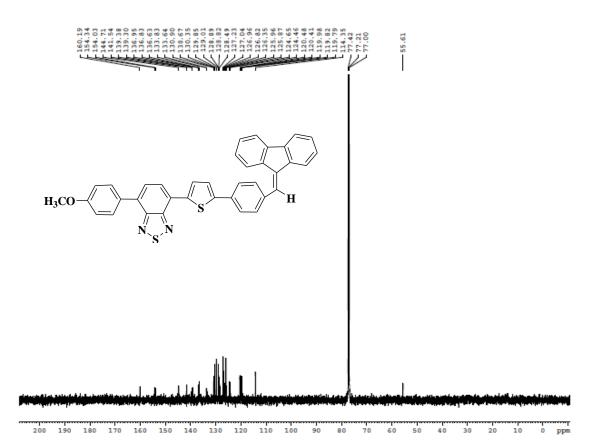


Figure S23. The ¹³C NMR of the **DP1** in CDCl₃.

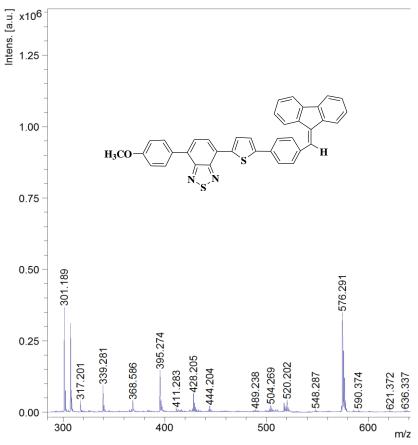
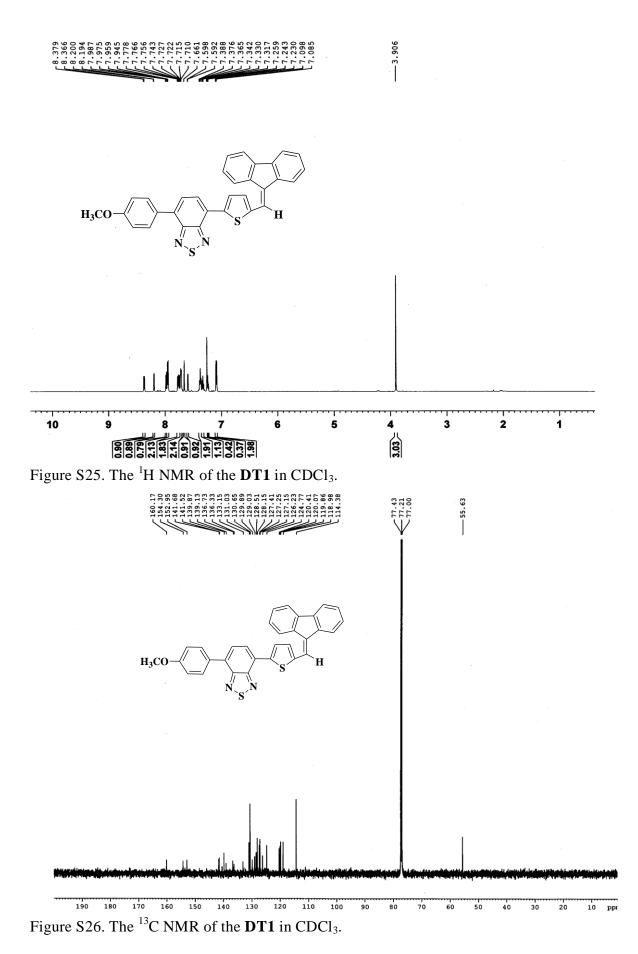



Figure S24. The time-of-flight mass spectrum of the DT2.

S-19

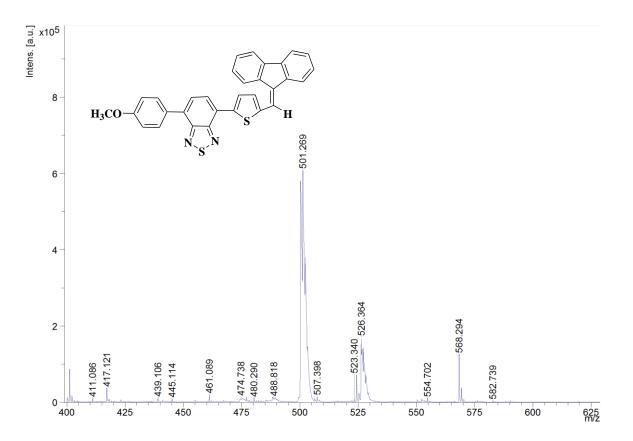


Figure S27. The time-of-flight mass spectrum of the **DT1**.

Crystal Data:

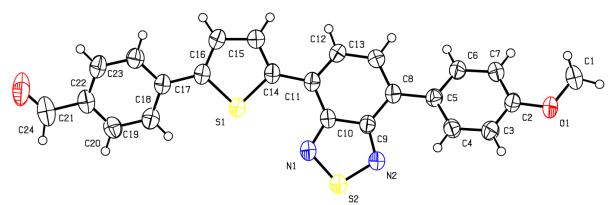


Figure S28. ORTEP diagram of **Compound-5**.

Table S1. Structure determination summary	of DT1	and Compound-5.
---	--------	-----------------

Compound	DT1	Compound-5
Empirical formula	$C_{31}H_{20}N_2Os_2$	$C_{24}H_{16}N_2O_2S_2$
CCDC NO	1445372	1446140
Formula weight	500.61	428.51
Temperature/K	296 (2)	296 (2)
Crystal system	monoclinic	monoclinic
Space group	$P2_1/n$	$P2_1/c$
a/Å	10.1603(3)	9.4561(3)

b/Å	18.4764(5)	17.9251(6)	
c/Å	12.9632(3)	12.1203(4)	
α/°	90.00	90.00	
β/°	92.126(2)	108.290(2)	
γ/°	90.00	90.00	
Volume/Å ³	2431.85(11)	1950.62(11)	
Z	4	4	
$\rho_{calc} mg/mm^3$	1.367	1.459	
m/mm ⁻¹	0.247	0.298	
F(000)	1040.0	888.0	
Crystal size/mm ³	0.32 imes 0.24 imes 0.12	0.28 imes 0.24 imes 0.21	
20 range for data collection	3.84 to 50.5°	4.2 to 50.5°	
Index ranges	$-11 \le h \le 12, -21 \le k \le 21, -15 \le l \le 14$	$-11 \le h \le 11, -21 \le k \le 21, -14 \le 1 \le 14$	
Reflections collected	31332	17891	
Independent reflections	4339[R(int) = 0.0369]	3492[R(int) = 0.0368]	
Data/restraints/parameters	4339/0/326	3492/0/276	
Goodness-of-fit on F^2	1.067	0.915	
Final R indexes [I>=2σ	$R_1 = 0.0401, wR_2 =$	$R_1 = 0.0435, wR_2 =$	
[(I)]	0.1158	0.1247	
Final R indexes [all data]	$R_1 = 0.0565, wR_2 = 0.1268$	$R_1 = 0.0714, wR_2 = 0.1431$	

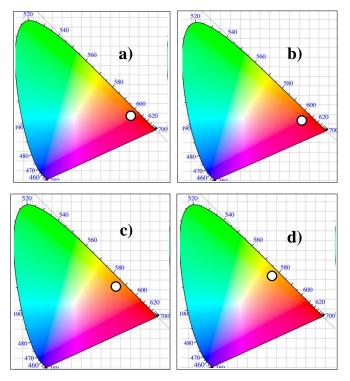


Figure S29. Chromaticity diagram representing the CIE coordinates of **a**) **DT1**, (0.65, 0.34), **b**) **DT2**, (0.66, 0.32), **c**) **DP1** (0.57, 0.42), and **d**) **DP2**, (0.51, 0.47).

Monomers	TD-DFT		
	$\lambda_{\text{theory}}(\mathbf{nm})$	f	Composition
DT1	$370 (S_0 \rightarrow S_8)$	0.47,	$H \rightarrow L+1 \ (64.6\%) = \pi - \pi^* \ H - 2 \rightarrow L \ (26.0\%) = \pi - \pi^*,$
	$500 (S_0 \rightarrow S_3)$	0.89	$H \rightarrow L (91.2\%) = \pi - \pi^* (ICT)),$
DT2	$368, (S_0 \rightarrow S_8)$	0.45,	$H \rightarrow L+1 (73.2\%) = \pi - \pi^* H - 2 \rightarrow L(17.0\%) = \pi - \pi^*,$
	512 $(S_0 \rightarrow S_3)$	0.96	$H \rightarrow L (92.8\%) = \pi - \pi^* (ICT)$
DP1	$352 (S_0 \rightarrow S_8)$	0.89	$H \rightarrow L+1 (49.7\%) = \pi - \pi^* H - 1 \rightarrow L (27.3\%) = \pi - \pi^*$
	$495 (S_0 \rightarrow S_4)$	0.87	$H \rightarrow L (92.8\%) = \pi - \pi^* (ICT)$
DP2	$370 \ (S_0 \rightarrow S_8)$	0.97	$H \rightarrow L+1 \ (59.4\%) = \pi - \pi^* H - 1 \rightarrow L \ (16.8\%) = \pi - \pi^*$
	$499 (S_0 \rightarrow S_4)$	0.91	$H \rightarrow L (91.0\%) = \pi - \pi^* (ICT)$

Table S2. TD-DFT calculations of the luminogens.

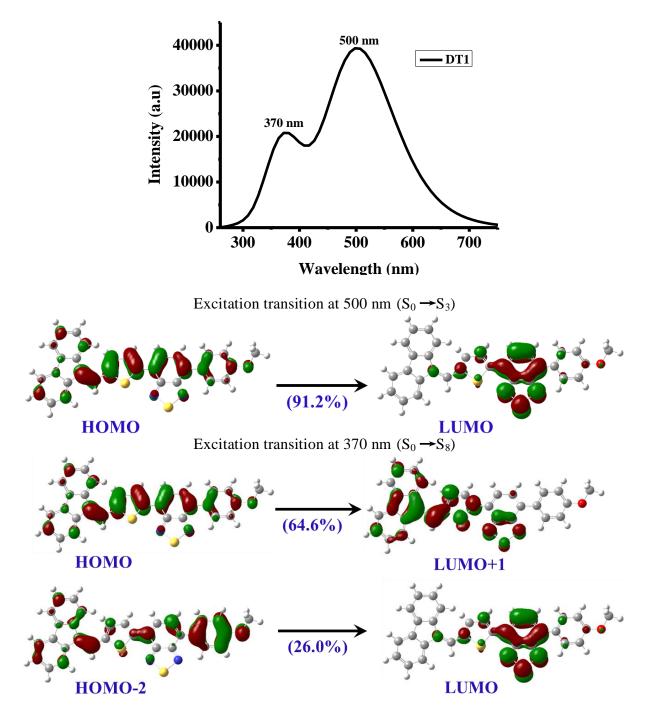
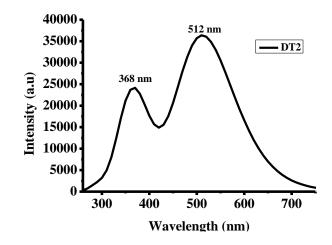



Figure S30. TD-DFT simulated absorption spectra and contributing orbitals at each excitation of **DT1** luminogen (isovalue = 0.03).

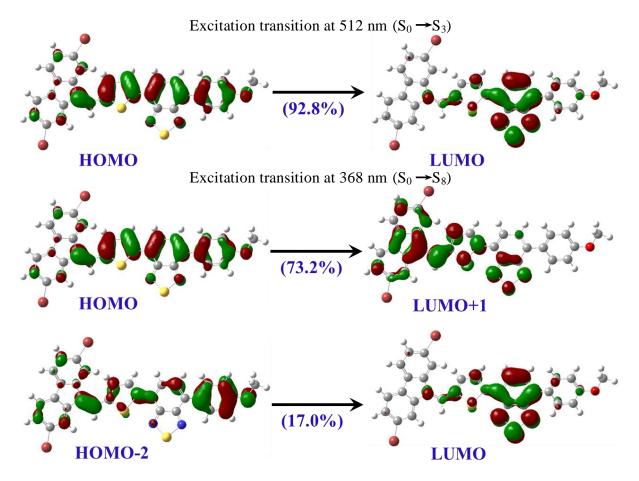


Figure S31. TD-DFT simulated absorption spectra and contributing orbitals at each excitation of **DT2** luminogen (isovalue = 0.03).

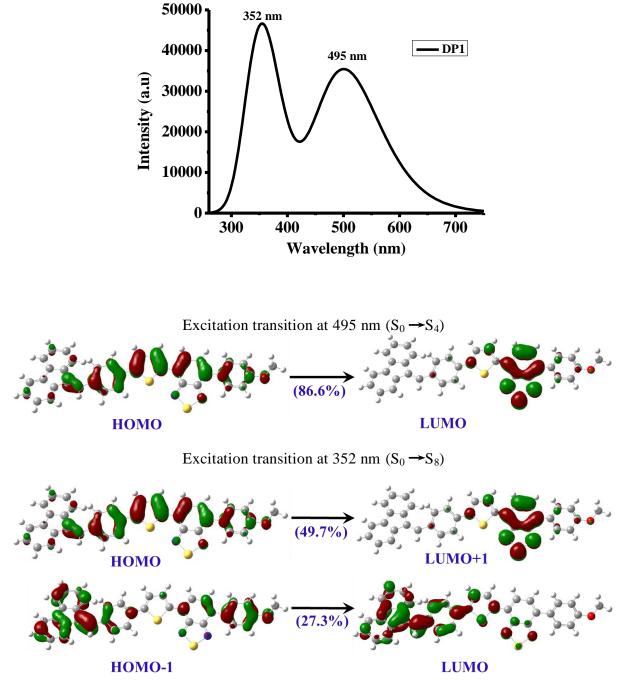


Figure S32. TD-DFT simulated absorption spectra and contributing orbitals at each excitation of **DP1** luminogen (isovalue = 0.03).

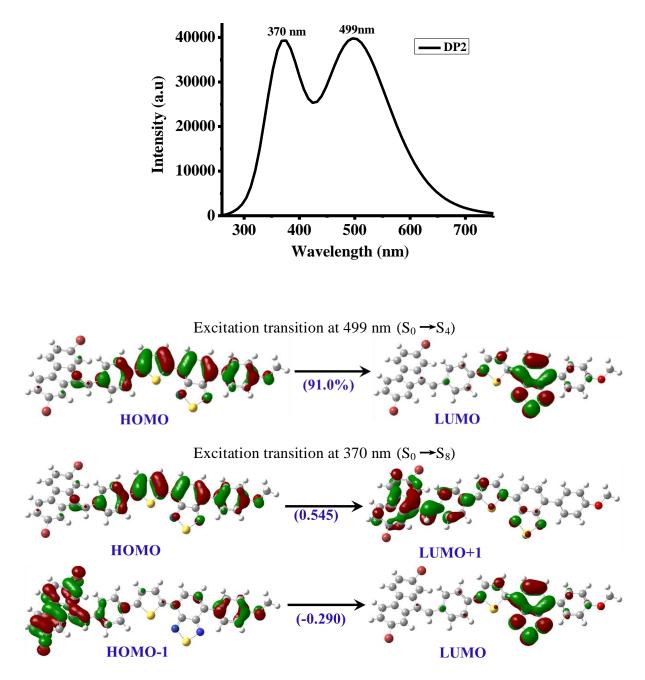


Figure S33. TD-DFT simulated absorption spectra and contributing orbitals at each excitation of **DP2** luminogen (isovalue = 0.03).

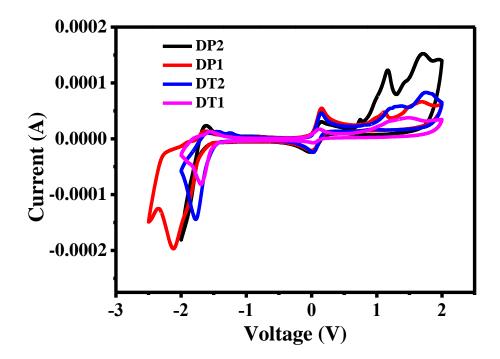


Figure S34. Cyclic voltammograms of Luminogens.