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Materials and Methods 

Magneto-plasmonic Fresnel Theory 

The magneto-optical response of the superlattice-Co two-layer structure (pictured in Fig. 

1a) to an incident plane wave was modeled using the transfer matrix method described by Qiu 

and Bader (which is described in detail in the Supporting Information).
1
 In brief, a plane wave is 

incident on a multi-layer structure and within each layer the field is decomposed into forward 

and backward propagating s- and p- polarized waves. The interfaces are described by a matrix 

transfer operation such that the boundary conditions set by Maxwell’s equations are satisfied. 

Non-magnetic material layers (Ag, Au, and dielectrics) are described by a diagonal, isotropic 

permittivity tensor ��� where I3 is the identity matrix, and ε is the permittivity. Magnetic layers 

include off-diagonal components related to the Voigt vector Q.  
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These off-diagonal elements are proportional to the induced magnetization and are 

responsible for the various magneto-optic phenomena including Faraday rotation, Kerr rotation, 

and Kerr ellipticity. The diagonal components of the Co permittivity tensor were computed by 

interpolating the experimental dielectric function data of Johnson & Christy,
2
 and the amplitude 

of the Voigt vector was taken to be 
 = 0.043 + 	0.007.
3
 This value has given good agreement 

with experiments in the visible and near-infrared and was obtained by fitting measured Kerr 

ellipticity data as a function of Co thickness.
1
 

 

Transverse Magneto Optical Kerr Effect 

In the TMOKE geometry, whereby the applied magnetization M is oriented transverse to 

the plane of incidence, there is no mixing of s- and p-polarized field components for light 

reflected from the magnetized surface. The intensity of reflected p-polarized light does, however, 

depend on M and is given by ������,����� = |�  !"|#. When the direction of the applied 

magnetization is reversed in the sample, the sign of Q changes, altering rpp. The change in 

reflected intensity upon reversal of the magnetization direction is quantified by the TMOKE 

parameter δ:  

δ =
R +M( )−R −M( )
R +M( )+R −M( )

 (2) 

 

Maxwell-Garnett Effective Medium Theory 

 The macroscopic optical properties of the superlattice were modeled using Maxwell-

Garnett effective medium theory. In this method, the effective dielectric function of the 



superlattice εeff is related to the polarizability of the inclusions αi through the Clausius-Mossotti 

formula: 

�$%% − �"�$%% + 2�" = '()3*�" 

where V is the volume of an individual inclusion and f is the volume fraction of inclusions 

embedded in the background medium. For spherical inclusions with bulk dielectric function εi 

embedded in a medium with dielectric function εb, the polarizability is:  

()+,-$.$ = 3* (�0 − �1)(�0 + 2�1) 
For spheroidal inclusions, the polarizability is: 

()+,-$.304 = * �0 −	�1�1 + 6(�0 − �1) 
where L is the geometric factor, which depends on the relative orientation of the incident light 

polarization and the spheroid principle axes. For light polarized along the longitudinal axis 

67389 = 1 − :#:# ;−1 + 12: ln 1 + :1 − :> 

where the eccentricity e depends on the spheroid geometric parameters a (semi-major axis) and b 

(semi-minor axis): 

: = ?1 − @ABA. 
 Because the sum of the geometric factors must equal 1, and the two transverse modes are 

degenerate, the transverse geometric factor can be determined from 

6C.D8+ = 1 − 673892  



 To obtain an isotropic permittivity tensor, it is assumed that the spheroids are randomly 

oriented in the superlattice. To describe this situation an orientation averaged spheroid 

polarizability is used to compute the superlattice permittivity: 

(E)+,-$.304 = F�()7389 + #�()C.D8+. 
Though Maxwell-Garnett effective medium theory does not account for interactions 

between inclusions, it has been shown to accurately describe the optical properties of 

nanoparticle superlattices for volume fractions up to ~ 20% when compared both with 

experiments as well as with numerical coupled dipole and analytic multiparticle Mie theory 

simulations.
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 Dielectric functions from Johnson & Christy were used for Au and Ag.
2
 In all 

geometries, the Co layer was fixed at 100 nm, the total superlattice thickness was set to 100 nm, 

the angle of incidence was fixed at 30° from normal, and the background dielectric constant was 

fixed at 1. 

 

Transfer Matrix Fresnel Theory 

Here we provide a brief outline of the transfer matrix Fresnel theory - a detailed 

derivation may be found in ref.1 by Qiu and Bader. Within this framework a monochromatic 

plane wave is incident (from above) on a multi-layer stack structure, which is oriented such that 

the surface normals are directed along the z-axis. Within each layer the field is decomposed into 

forward (f) and backward (r) propagating s- and p- polarized waves:  

GH =	
IJ
K!LM! M!LN! NOP

Q
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where Pm denotes the field components at the bottom of the m
th

 layer. 

At the interface between two layers, the 4x4 medium boundary matrix (Am) performs a 

change of basis such that  
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This change of basis implicitly applies the boundary conditions imposed by Maxwell’s 

equations, connecting the transverse field components on either side of the interface. Subsequent 

application of UHVFWF  returns the field vector to the s,p polarization basis. A medium propagation 

matrix (D) connects the fields at the top and bottom interfaces of a layer such that the field at the 

top of the layer is equal to XHGH. The boundary condition at the interface is then satisfied by UHGH = UHVFXHVFGHVF. The full solution for a multi-layer structure is constructed by repeated 

application of the A and D matrices:  

 U)G) = UFXFGF =	UFXFUFWFUFGF = UFXFUFWFU#X#U#WFU#G# ⋮ 
= Z(UHXHUHWF)[

H\F UMGM 

This expression can be recast into the form G) = ]GM by defining matrix T as 

] = U)WFZ(UHXHUHWF)[
H\F UM ≝ ;_ S� ` > 

where the 2x2 sub-matrices G and I are used to determine the Fresnel reflection and 

transmission coefficients:  

_WF = ;aLL aL a L a  > 								bcd							�_WF = e�LL �L � L �  f 

 

The material properties of each layer are incorporated into the A and D matrices through their 

dependence on the layer’s permittivity tensor. 
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S1 Bulk optical properties of Ag, Au, and Co. Real (a.) and imaginary (b.) dielectric functions 

and (c.) skin depth penetration depth. 

 

 
S2 Nanoparticle superlattice dielectric functions. Effective real (a.) and imaginary (b.) dielectric 

functions for Ag and Au as a function of volume fraction. (c.) Effective real dielectric functions 

for Ag superlattices between 300 – 400 nm.  

 



 
 

S3 Effective dielectric functions for plasmonic alloys. Real (a.) and imaginary (b.) effective 

dielectric function for plasmonic alloys ranging from 100% Ag (lightest), to 100% Au (darkest) 

in increments of 20%. The total volume fraction for all materials is 20% (Ag%+Au%). 

 

 
S4 Anisotropic nanoparticle superlattice dielectric functions. Orientation averaged ellipsoid-

based effective dielectric functions for Ag (a., real, b. imaginary) and Au (c. real, d. imaginary) 

at 5% volume fraction. 

 

 


