

Supporting Information for

3 Polybrominated Diphenyl Ethers (PBDEs) in Surface Soil across Five Asian Countries:

4 Levels, Spatial Distribution and Source Contribution

- 5 Wen-Long Li^a, Wan-Li Ma^a, Hong-Liang Jia^b, Wen-Jun Hong^b, Hyo-Bang Moon^c, Haruhiko Nakata^d,
- 6 Nguyen Hung Minh^e, Ravindra Kumar Sinha^f, Kai Hsien Chi^g,
- 7 Kurunthachalam Kannan^h, Ed Sverko^a, and Yi-Fan Li^{a,b,i*}
- 8 ^aInternational Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water
- 9 Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin
- 10 150090, China

1

- ¹¹ ^bIJRC-PTS, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
- 12 °IJRC-PTS, Department of Marine Sciences and Convergent Technology, Hanyang University, 55 Hanyangdaehak-ro,
- 13 Sangnok-gu, Ansan city, Gyeonggi-do 426-791, Republic of Korea
- ¹⁴ ^dIJRC-PTS, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555,
- 15 Japan
- 16 ^eDioxin laboratory, Center for Environmental Monitoring (CEM), Vietnam Environmental Administration (VEA), 556
- 17 Nguyen Van Cu, Long Bien, Ha Noi, Vietnam
- 18 ^fIJRC-PTS, Department of Zoology, Patna University, Patna 800 005, Bihar, India
- 19 ^gInstitute of Environmental and Occupational Health Sciences, National Yang Ming University, Taipei 112, Taiwan
- 20 ^hWadsworth Center, New York State Department of Health, Department of Environmental Health Sciences, School of
- 21 Public Health, State University of New York at Albany, Empire State Plaza, P.O. Box 509, Albany, New York
- 22 12201-0509, United States
- 23 ⁱIJRC-PTS-NA, Toronto, M2N 6X9, Canada
- 24 **Corresponding author: Yi-Fan Li: E-mail: ijrc_pts_paper@yahoo.com*
- 25
- 26 For submission to: Environmental Science & Technology
- 27 Pages: 44 Figures: 6 Tables: 16 References: 40

28	Contents
29	S1. Materials and methods
30	S1.1. Chemicals and Reagents1
31	S1.2. Soil samples collection1
32	S1.3. Sample Preparation2
33	S1.4. Chemical Analysis2
34	S2. Supplementary Tables
35 36 37	Table S1. Statistics discription of area (km²), population (POP, 2015), GDP (USD/capita, 2015), humandevelopment index (HDI, 2014) and the number of soil samples collected from urban (U), rural (R),background (B), e-waste (E), and manufacture (F) regions from five Asian countries.4
38 39	Table S2. Summary of the full names, abbreviations, homologue groups, monitoring ions (m/z), logK _{OA} (at 25 °C) and MDLs for PBDEs. 5
40	Table S3. The profiles of PBDE in three commercial mixtures: penta-BDE, octa-BDE and deca-BDE. ⁴ 6
41 42	Table S4. Summary of minimum (Min), maximum (Max), mean, standard deviation (SD) concentrations of PBDEsin the soil samples of Japan (in ng/g dw)
43 44	Table S5. Summary of minimum (Min), maximum (Max), mean, standard deviation (SD) concentrations of PBDEsin the soil samples of China (in ng/g dw)
45 46	Table S6. Summary of minimum-maximum (Range), mean ± standard deviation (Mean ± SD) concentrations ofPBDEs in the soil samples of South Korea (in ng/g dw)9
47 48	Table S7. Summary of minimum (Min), maximum (Max), mean, standard deviation (SD) concentrations of PBDEsin the soil samples of Vietnam (in ng/g dw).10
49 50	Table S8 . Summary of minimum (Min), maximum (Max), mean, standard deviation (SD) concentrations of PBDEsin the soil samples of India (in ng/g dw).11
51 52 53	Table S9. Summary of minimum (Min), maximum (Max), mean and standard deviation (SD) concentrations (in ng/g dw) of PBDEs in the soil samples collected in e-waste regions (E) and factory regions (F) in China, South Korea and Vietnam. 12
54 55 56	Table S10. Summary of mean concentrations (ng/g dw) of BDE-47, -99, -183, -209, total PBDEs (ΣBDEs (exc209), excluding BDE-209) and total PBDEs (ΣBDEs), and of proportion of BDE-209 (BDE-209%) in the soils from studies around the world.
57 58 59	Table S11. Correlation coefficients between natural logarithm concentrations of PBDEs in U/R/B sites in China (n= 101) and other parameters, i.e. longitude (LONG, °E), latitude (LAT, °N), population density (PD, natural logarithm of person/km²), and gross domestic product (GDP, natural logarithm of Chinese Yuan/person) 15
60 61	Table S12. Regression coefficients along with statistical errors, and significant levels for equation (3) for Chinese samples (excluding E and F sites, n = 101)
62 63	Table S13. Regression coefficients along with statistical errors, and significant levels for equation (3) for samplescollected from South Korea (excluding E sites, n = 20)

64 65	Table S14. Regression coefficients along with statistical errors, and significant levels for equation (3) for samples collected from Japan (n = 14). 22
66 67	Table S15. Regression coefficients along with statistical errors, and significant levels for equation (3) for samples collected from India (n = 24). 25
68 69	Table S16. Regression coefficients along with statistical errors, and significant levels for equation (3) for samples collected from Vietnam (excluding E sites, n = 13). 28
70	S3. Supplementary Figures
71	Figure S1. The soil sampling sites for SAMP-Asia
72 73	Figure S2 . The proportions of PBDE homologues in different longitude ranges from east (120-125°E) to west (<100°E). The values of proportions in the longitude range of 120-125°E were normalized to 1
74 75	Figure S3. Correlations among natural logarithm concentrations (ng/g dw) of PBDE homologues in soil samples from U/R/B sites. The values inside the graph are Pearson correlation coefficients
76 77	Figure S4. The concentrations of PBDE homologues in urban, rural, background, e-waste (CH-E) and industrial sites (CH-F) in five Asian countries
78	Figure S5. Population density (persons/km ²) for Asian countries in 2015
79 80	 Figure S6. Correlations between the population density (log²(<i>PD</i>), in persons/km²) and the annual average temperature (in K) for the five countries
81	References

83 S1. Materials and methods

84 S1.1. Chemicals and Reagents

The 23 PBDE congeners analyzed include BDE-17, -28, -47, -66, -85, -99, -100, -138, -153, -154, -183,

-190, -191, -196, -197, -201, -203, -204, -205, -206, -207, -208 and -209, which can be classified into 8
homologue groups (Table S2, Supporting Information (SI)). The 23 congeners and the internal standard
BDE-71 were purchased from AccuStandard Inc. (New Haven, CT, USA). The surrogate standards
containing CB-155, ¹³C₁₀-syn-DP, ¹³C₁₀-anti-DP and ¹³C₁₂-BDE209 were purchased from Cambridge Isotope
Laboratories Inc (Tewksbury, MA, USA). All the organic solvents used in the present study were pesticide
residue grade (J.T. Baker, Phillipsburg, NJ, USA).

92 S1.2. Soil samples collection

The study area encompasses 5 Asian countries (China, India, Japan, Vietnam and South Korea; Figure 93 S1). Sampling sites were selected in 82 urban, 80 rural and 10 background locations, as well as locations 94 affected by the emissions of industries (10 locations from vicinity of a BFR-factory (F) in China) and 95 e-waste recycling activities (10 locations from vicinity of two e-waste recycling regions in China, 2 96 locations near two e-waste recycling regions in South Korea, and 1 locations near an e-waste recycling 97 regions in Vietnam) (Table S1). The urban, rural and background area were classified by considering the 98 local population density and gross domestic product (GDP). A total of 195 sampling locations were chosen 99 to collect the soil samples, including 121 from China, 24 from India, 14 from Japan, 14 from Vietnam and 100 22 from South Korea. Soil samples were collected during the period of September to November, 2012. 101 102 Details regarding soil sampling and pretreatment procedures have been reported in our previous studies.^{1,2} Briefly, each surface soil sample was collected at a depth of 0–20 cm and was collected manually in an area 103 of approximately 100 m². Five subsamples were collected at the four corners and at the center of sampling 104

field. After collection, the subsamples were well mixed and transferred in an aluminum container and sealed.
All the samples were shipped to Harbin Institute of Technology, Harbin, China and stored at -20 °C until
analysis.

108 S1.3. Sample Preparation

Each soil sample (about 20 g, wet weight) was measured in a pre-cleaned filter paper bags and 109 homogenized with anhydrous sodium sulfate to remove moisture. Another 10 g of soil were weighed to 110 determine the soil organic carbon (SOC) and moisture contents. The SOC for each sample was measured by 111 using a Shimadzu TOC Analyzer (Model TDC-VCPN, Kyoto, Japan). The soil samples were then spiked 112 with the mixture of surrogate standards and Soxhlet extracted with acetone and hexane (1:1, v/v) for 24 h. 113 The volume of extracts were reduced to 3.0 mL in a rotary evaporator and purified using silica gel column 114 chromatography filled with 2.0 g of anhydrous sodium sulfate, 7.0 g of activated silica gel and 3.0 g of 115 anhydrous sodium sulfate from bottom to top. The column was firstly pre-rinsed with 30 mL of hexane, and 116 then eluted using 70 mL of 50% dichloromethane in hexane. The eluents were solvent-exchanged into 117 isooctane under a gentle stream of purified nitrogen (99.999%). The mixture of internal standards was added 118 and the final volume was adjusted to 0.5 mL for chemical analysis. 119

120 S1.4. Chemical Analysis

Identification and quantification of PBDEs was carried out on an Agilent 6890 gas chromatograph/5975 mass spectrometer connected with a DB-5MS column (15 m × 0.25 mm × 0.10 µm, J&W Scientific). The flow rate of helium was kept constant at 1.7 mL/min. A 2.0-µL sample was injected in splitless mode with the injector temperature maintained at 260 °C. The oven temperature program was: 110 °C for 0.5 min, 4.5 °C /min to 220 °C, 15 °C /min to 280 °C, 5.0 °C /min to 310 °C and held for 3.0 min. Target ions were monitored in the electron capture negative ionization mode with the ion source temperature of 150 °C. For

- 127 BDE-17 to BDE-190: 79 and 81; BDE-191: 79, 81 and 160.8; BDE-196: 79, 81 and 720.4; BDE-197 and
- 128 201: 408.7 and 406.7; BDE-203: 79, 81 and 801.4; BDE-204: 486.6 and 488.6; BDE-205:79, 81 and 801.4;
- 129 BDE-206: 79, 81 and 800.4; BDE-207, 208 and 209: 484.5, 486.6 and 488.6; CB-155: 360 and 362;
- 130 ${}^{13}C_{12}$ -BDE-209: 496.6 and 494.8; ${}^{13}C_{10}$ -syn-DP and ${}^{13}C_{10}$ -anti-DP: 665.8 and 667.8.
- 131
- 132

133 S2. Supplementary Tables

Table S1. Statistics discription of area (km²), population (POP, 2015), GDP (USD/capita, 2015), human

development index (HDI, 2014) and the number of soil samples collected from urban (U), rural (R),
background (B), e-waste (E), and manufacture (F) regions from five Asian countries.

Country	Area	POP	GDP	HDI	U	R	В	Е	F	Total sites
China	9.6E+06	1.4E+09	8,280	0.727	58	39	4	10	10	121
India	3.3E+06	1.3E+09	1,688	0.609	12	12	0	0	0	24
Japan	3.8E+05	1.3E+08	33,223	0.891	3	8	3	0	0	14
South Korea	1.0E+05	5.2E+07	27,513	0.898	5	13	2	2	0	22
Vietnam	3.3E+05	9.2E+07	2,321	0.666	4	8	1	1	0	14

137

138

140 **Table S2**. Summary of the full names, abbreviations, homologue groups, monitoring ions (m/z), $\log K_{OA}$ (at

141 25 °C) and MDLs for PBDEs.

Chemicals	Abbreviation	Homologue	m/z	logKov	MDLs
	Abbieviation	Homologue	III/Z	IOgROA	(pg/g dw)
2,2',4-tribromodiphenyl ether	BDE-17	TriBDE	79/81	9.31 ^a	1.8
2,4,4'-tribromodiphenyl ether	BDE-28	TriBDE	79/81	9.51 ª	1.3
2,2',4,4'-tetrabromodiphenyl ether	BDE-47	TetraBDE	79/81	10.54 ^a	2.4
2,3',4,4'-tetrabromodiphenyl ether	BDE-66	TetraBDE	79/81	10.83 ^a	1.0
2,2',3,4,4'-pentabromodiphenyl ether	BDE-85	PentaBDE	79/81	11.67 a	1.8
2,2',4,4',5-pentabromodiphenyl ether	BDE-99	PentaBDE	79/81	11.32 a	1.8
2,2',4,4',6-pentabromodiphenyl ether	BDE-100	PentaBDE	79/81	11.14 ^a	2.0
2,2',3,4,4',5'- hexabromodiphenyl ether	BDE-138	HexaBDE	79/81	13.27 ^b	1.0
2,2',4,4',5,5'-hexabromodiphenyl ether	BDE-153	HexaBDE	79/81	11.83 ^a	1.1
2,2',4,4',5,6'-hexabromodiphenyl ether	BDE-154	HexaBDE	79/81	11.93 a	1.0
2,2',3,4,4',5',6-heptabromodiphenyl ether	BDE-183	HeptaBDE	79/81	11.97 ^a	1.6
2,3,3',4,4',5,6-heptabromodiphenyl ether	BDE-190	HeptaBDE	79/81	14.56 ^b	1.0
2,3,3'4,4'5'6-heptabromodiphenyl ether	BDE-191	HeptaBDE	79/81/160.8	14.56 ^b	1.0
2,2',3,3',4,4',5,6'-octabromodiphenyl ether	BDE-196	OctaBDE	79/81/720.4	15.85 ^b	1.0
2,2'3,3',4,4'6,6'-octabromodiphenyl ether	BDE-197	OctaBDE	408.7/406.7	15.85 ^b	1.2
2,2'3,3',4,5'6,6'-octabromodiphenyl ether	BDE-201	OctaBDE	408.7/406.7	15.85 ^b	1.5
2,2'3,4,4'5,5'6-octabromodiphenyl ether	BDE-203	OctaBDE	79/81/801.4	15.85 ^b	1.0
2,2',3,4,4',5,6,6'-octabromodiphenyl ether	BDE-204	OctaBDE	486.6/488.6	15.85 ^b	2.7
2,3,3'4,4'5,5',6-octabromodiphenyl ether	BDE-205	OctaBDE	79/81/801.4	15.85 ^b	6.5
2,2',3,3',4,4',5,5',6-nonabromodiphenyl ether	BDE-206	NonaBDE	79/81/800.4	17.13 ^b	5.7
2,2',3,3',4,4',5,6,6'-nonabromodiphenyl ether	BDE-207	NonaBDE	486.6/488.6	17.13 ^b	4.4
2,2',3,3',4,5,5',6,6'-nonabromodiphenyl ether	BDE-208	NonaBDE	486.6/488.6	17.13 ^b	5.2
decabromodiphenyl ether	BDE-209	DecaBDE	484.5/486.5	18.42 ^b	83

^a The values of log K_{OA} at 25°C were determined by (Harner and Shoeib, 2002) (log K_{OA} = A+B/T), where T is 25°C.³

^b The values of $\log K_{OA}$ at 25°C were calculated using the program of KOAWIN in EPI Suite v4.1.

Congener	penta-BDE ^a	octa-BDE ^b	deca-BDE ^c	
BDE-17	0.05	nd ^d	nd	
BDE-28	0.15	nd	nd	
BDE-47	36.11	nd	nd	
BDE-66	0.32	nd	nd	
BDE-85	2.26	nd	nd	
BDE-99	41.49	nd	nd	
BDE-100	9.22	nd	nd	
BDE-138	0.56	0.29	nd	
BDE-153	4.79	4.07	nd	
BDE-154	3.18	0.51	nd	
BDE-183	0.20	25.50	nd	
BDE-190	nd	nd	nd	
BDE-191	nd	nd	nd	
BDE-196	nd	6.36	0.23	
BDE-197	nd	15.34	0.01	
BDE-201	nd	0.36	nd	
BDE-203	nd	5.97	0.03	
BDE-204	nd	nd	nd	
BDE-205	nd	nd	nd	
BDE-206	nd	4.35	3.63	
BDE-207	nd	10.73	2.14	
BDE-208	nd	0.09	0.06	
BDE-209	nd	24.61	93.89	

143	Table S3. The	profiles of PBDE in three	commercial mixtures:	penta-BDE,	octa-BDE and d	eca-BDE. ⁴
-----	---------------	---------------------------	----------------------	------------	----------------	-----------------------

^a mean value (%) of DE71 and Bromkal 705DE;

^b mean value (%) of DE79 and Bromkal 798DE;

^c mean value (%) of Saytex 102E and Bromkal 820DE;

^d nd: not detected

144

146 Table S4. Summary of minimum (Min), maximum (Max), mean, standard deviation (SD) concentrations of

147 PBDEs in the soil samples of Japan (in ng/g dw).

Compound	Urban ((n=3)			Rural (n=8)				Background (n=3)			
	Min	Max	Mean	SD	Min	Max	Mean	SD	Min	Max	Mean	SD
BDE-17	0.014	0.056	0.038	0.022	nd	0.033	0.016	0.009	0.011	0.030	0.020	0.010
BDE-28	0.020	0.086	0.042	0.038	nd	0.033	0.017	0.011	nd	0.019	0.009	0.009
BDE-47	0.061	1.0	0.40	0.56	0.018	0.41	0.13	0.14	0.010	0.025	0.017	0.007
BDE-66	0.018	0.16	0.069	0.080	0.005	0.057	0.026	0.018	nd	0.028	0.015	0.014
BDE-85	nd	0.028	0.019	0.015	nd	0.020	0.005	0.008	nd	0.001	0.001	0.000
BDE-99	0.25	1.6	1.0	0.69	0.118	3.6	1.0	1.2	0.072	0.33	0.17	0.13
BDE-100	0.036	0.20	0.096	0.090	0.017	0.12	0.060	0.040	0.008	0.054	0.034	0.024
BDE-138	nd	0.022	0.008	0.013	nd	0.022	0.005	0.008	nd	nd	nd	nd
BDE-153	0.036	0.34	0.14	0.17	0.007	0.096	0.040	0.032	0.007	0.032	0.016	0.014
BDE-154	0.024	0.18	0.098	0.076	0.006	0.099	0.040	0.038	0.006	0.011	0.008	0.003
BDE-183	0.044	0.47	0.22	0.22	0.015	0.29	0.11	0.092	0.010	0.041	0.022	0.017
BDE-190	0.081	0.36	0.20	0.14	nd	0.12	0.033	0.037	nd	0.046	0.019	0.024
BDE-191	0.043	0.11	0.071	0.032	nd	0.057	0.019	0.019	nd	nd	nd	nd
BDE-196	0.039	0.26	0.16	0.11	nd	0.12	0.041	0.042	0.007	0.062	0.030	0.029
BDE-197	0.083	0.20	0.13	0.060	nd	0.12	0.037	0.035	0.010	0.045	0.027	0.018
BDE-201	0.050	0.25	0.13	0.11	nd	0.11	0.042	0.035	0.015	0.074	0.045	0.030
BDE-203	0.12	0.32	0.22	0.10	nd	0.10	0.041	0.037	0.012	0.064	0.032	0.028
BDE-204	nd	0.18	0.061	0.10	nd	nd	nd	nd	nd	nd	nd	nd
BDE-205	nd	0.018	0.008	0.009	nd	nd	nd	nd	nd	nd	nd	nd
BDE-206	0.397	4.9	3.2	2.4	nd	5.0	1.00	1.7	0.052	0.64	0.28	0.31
BDE-207	0.339	5.6	2.9	2.6	nd	3.1	0.89	1.2	0.033	0.50	0.22	0.24
BDE-208	0.696	4.3	2.2	1.9	nd	3.1	0.83	1.1	0.065	0.69	0.36	0.31
BDE-209	29	730	430	360	nd	1000	160	350	1.3	47	21	24
\sum_{22} BDEs	2.8	21	11	8.9	0.84	10	4.4	4.0	0.38	2.6	1.3	1.2
\sum_{23} BDEs	32	740	450	370	1.0	1000	161	351	1.7	50	22	25
BDE-209%	91	99	95	3.7	4.1	99	77	32	78	95	88	9.5

148

Compound	Urban	(n=58)			Rural (n=39)			Backgr	ound (n=	-4)	
	Min	Max	Mean	SD	Min	Max	Mean	SD	Min	Max	Mean	SD
BDE-17	nd	0.11	0.013	0.021	nd	0.017	0.004	0.004	nd	0.005	0.003	0.002
BDE-28	nd	0.22	0.033	0.038	0.005	0.17	0.029	0.031	0.002	0.008	0.006	0.002
BDE-47	nd	0.53	0.10	0.12	nd	0.46	0.058	0.083	nd	0.021	0.008	0.009
BDE-66	nd	0.15	0.023	0.031	nd	0.24	0.023	0.042	nd	0.005	0.003	0.002
BDE-85	nd	0.028	0.005	0.007	nd	0.044	0.004	0.008	nd	nd	nd	nd
BDE-99	0.016	3.4	0.41	0.58	0.005	1.5	0.30	0.39	0.005	0.035	0.019	0.016
BDE-100	nd	0.23	0.034	0.039	nd	0.16	0.033	0.043	nd	0.016	0.005	0.007
BDE-138	nd	0.093	0.012	0.018	nd	0.092	0.010	0.016	nd	0.003	0.001	0.001
BDE-153	nd	0.96	0.077	0.15	nd	0.64	0.039	0.10	nd	0.005	0.002	0.002
BDE-154	nd	0.21	0.028	0.033	nd	0.19	0.018	0.033	nd	0.002	0.001	0.001
BDE-183	0.002	0.84	0.11	0.15	nd	0.63	0.069	0.11	nd	0.008	0.004	0.004
BDE-190	nd	0.49	0.034	0.070	nd	0.16	0.015	0.026	nd	nd	nd	nd
BDE-191	nd	0.25	0.028	0.051	nd	0.043	0.009	0.010	nd	nd	nd	nd
BDE-196	nd	1.2	0.095	0.22	nd	0.37	0.035	0.060	nd	nd	nd	nd
BDE-197	nd	0.50	0.054	0.082	nd	0.13	0.027	0.031	nd	nd	nd	nd
BDE-201	nd	0.70	0.072	0.12	nd	0.13	0.031	0.030	nd	nd	nd	nd
BDE-203	nd	1.0	0.085	0.18	nd	0.23	0.035	0.047	nd	nd	nd	nd
BDE-204	nd	0.21	0.006	0.028	nd	0.025	0.002	0.004	nd	nd	nd	nd
BDE-205	nd	0.15	0.016	0.029	nd	0.020	0.004	0.004	nd	nd	nd	nd
BDE-206	nd	8.2	0.56	1.3	nd	0.96	0.17	0.22	nd	0.055	0.024	0.026
BDE-207	nd	20	0.72	2.7	nd	0.73	0.16	0.20	nd	0.032	0.010	0.015
BDE-208	nd	16	0.58	2.2	nd	0.75	0.16	0.19	nd	0.038	0.011	0.018
BDE-209	0.47	790	72	136	0.25	270	26	54	0.41	1.1	0.66	0.31
∑22BDEs	0.076	45	3.1	6.8	0.13	6.7	1.2	1.3	0.078	0.14	0.11	0.024
∑23BDEs	0.6	800	75	140	0.46	280	28	55	0.51	1.2	0.77	0.32
BDE-209%	72	99	93	5.9	54	99	90	8.9	80	90	85	5.3

Table S5. Summary of minimum (Min), maximum (Max), mean, standard deviation (SD) concentrations of
PBDEs in the soil samples of China (in ng/g dw).

152

Table S6. Summary of minimum-maximum (Range), mean ± standard deviation (Mean ± SD)
concentrations of PBDEs in the soil samples of South Korea (in ng/g dw).

1	F	E	
Т	Э	Э	

Compound	Urban (n=5)		Rural (n=13)		Background (n=2)
	Range	$Mean \pm SD$	Range	$Mean \pm SD$	Range	$Mean \pm SD$
BDE-17	nd-0.005	0.003 ± 0.002	nd-0.013	0.004 ± 0.004	nd	nd
BDE-28	0.003-0.013	0.008 ± 0.004	nd-0.011	0.004 ± 0.003	nd-0.004	0.003 ± 0.003
BDE-47	0.017-0.22	0.12 ± 0.076	0.005- 0.38	0.076 ± 0.13	0.003-0.005	0.004 ± 0.001
BDE-66	0.002-0.025	0.011 ± 0.009	nd-0.022	0.008 ± 0.007	0.002-0.004	0.003 ± 0.002
BDE-85	nd-0.047	0.012 ± 0.019	nd-0.035	0.004 ± 0.010	nd	nd
BDE-99	0.044-0.91	0.47 ± 0.35	0.011-1.5	0.25 ± 0.38	0.035-0.060	0.048 ± 0.018
BDE-100	0.012-0.089	0.053 ± 0.032	0.003-0.24	0.041 ± 0.068	0.010-0.025	0.018 ± 0.011
BDE-138	0.006-0.063	0.032 ± 0.028	nd-0.046	0.005 ± 0.013	nd-0.003	0.002 ± 0.002
BDE-153	0.012-0.90	0.24 ± 0.38	0.003-0.29	0.038 ± 0.078	0.008-0.025	0.016 ± 0.012
BDE-154	0.011-0.20	0.094 ± 0.077	0.003-0.15	0.022 ± 0.041	0.002-0.006	0.004 ± 0.003
BDE-183	0.060-4.0	1.2 ± 1.7	0.007-0.14	0.044 ± 0.044	0.007-0.196	0.10 ± 0.13
BDE-190	0.041-0.12	$0.081{\pm}~0.027$	nd-0.019	0.008 ± 0.006	nd-0.006	0.003 ± 0.004
BDE-191	nd-0.055	0.015 ± 0.023	nd-0.012	0.003 ± 0.004	nd-0.002	0.001 ± 0.001
BDE-196	0.013-0.40	0.15 ± 0.16	0.002-0.054	0.012 ± 0.014	nd-0.23	0.012 ± 0.016
BDE-197	0.020-0.79	0.34 ± 0.39	0.002-0.069	0.012 ± 0.018	0.005-0.031	0.018 ± 0.018
BDE-201	0.011-0.074	0.044 ± 0.027	nd-0.051	0.016 ± 0.016	0.004-0.008	0.006 ± 0.003
BDE-203	0.014-0.31	0.13 ± 0.12	0.002-0.041	0.011 ± 0.011	0.004-0.016	0.010 ± 0.008
BDE-204	nd	nd	nd	nd	nd-0.062	0.032 ± 0.043
BDE-205	nd-0.007	0.004 ± 0.002	nd	nd	nd	nd
BDE-206	0.124-1.0	0.51 ± 0.34	0.003-1.4	$0.19{\pm}~0.39$	0.041-	0.11 ± 0.099
BDE-207	0.086-1.6	0.95 ± 0.65	nd-1.1	0.17 ± 0.32	0.032-	0.034 ± 0.003
BDE-208	0.11-0.95	0.46 ± 0.33	0.003-0.80	0.14 ± 0.23	0.014-	0.059 ± 0.064
BDE-209	3.1-88	34 ± 35	0.042-38	8.7 ± 13	0.43-1.4	0.91 ± 0.68
\sum_{22} BDEs	0.65-9.3	4.9 ± 3.5	0.16-5.2	1.1 ± 1.5	0.46-0.52	0.49 ± 0.040
∑23BDEs	3.7-94	39 ± 36	0.46-41	10 ± 14	0.95-1.9	1.4 ± 0.64
BDE-209%	60-94	82 ± 13	3.9-97	77 ± 24	46 -75	60 ± 21

Compound	Urban (n=4)			Rural (n	=8)			Background (n=1)
	Min	Max	Mean	SD	Min	Max	Mean	SD	
BDE-17	nd	0.015	0.008	0.007	nd	0.012	0.002	0.004	0.003
BDE-28	nd	0.011	0.006	0.004	nd	0.014	0.003	0.005	0.003
BDE-47	0.004	0.94	0.26	0.46	0.004	0.013	0.008	0.003	0.006
BDE-66	nd	0.04	0.012	0.019	nd	0.011	0.004	0.003	0.003
BDE-85	nd	nd	nd	nd	nd	0.004	0.001	0.001	nd
BDE-99	0.042	0.92	0.42	0.38	0.013	0.26	0.12	0.096	0.044
BDE-100	0.008	0.092	0.036	0.039	0.005	0.051	0.014	0.016	0.008
BDE-138	nd	nd	nd	nd	nd	nd	nd	nd	nd
BDE-153	nd	0.034	0.016	0.015	0.001	0.12	0.019	0.041	0.002
BDE-154	0.001	0.011	0.007	0.004	nd	0.011	0.004	0.004	nd
BDE-183	0.002	0.021	0.012	0.008	0.004	0.041	0.016	0.015	nd
BDE-190	nd	0.009	0.003	0.004	nd	0.003	0.001	0.001	0.005
BDE-191	nd	0.007	0.002	0.003	nd	0.004	0.001	0.001	nd
BDE-196	0.001	0.015	0.006	0.006	0	0.005	0.002	0.002	0.001
BDE-197	0.001	0.013	0.006	0.005	nd	0.014	0.004	0.004	0.002
BDE-201	0.001	0.016	0.007	0.006	nd	0.007	0.003	0.002	0.002
BDE-203	nd	0.008	0.003	0.003	nd	0.008	0.003	0.003	0.002
BDE-204	nd	nd	nd	nd	nd	nd	nd	nd	nd
BDE-205	nd	nd	nd	nd	nd	nd	nd	nd	nd
BDE-206	0.011	0.022	0.017	0.005	0.007	0.091	0.025	0.028	0.019
BDE-207	0.005	0.036	0.024	0.014	nd	0.031	0.014	0.01	0.012
BDE-208	0.01	0.04	0.03	0.01	nd	0.04	0.02	0.01	nd
BDE-209	0.10	0.37	0.22	0.11	0.08	1.5	0.48	0.46	0.10
∑22BDEs	0.10	2.1	0.88	0.85	0.09	0.6	0.27	0.16	0.12
∑23BDEs	0.20	2.4	1.1	0.96	0.24	1.8	0.75	0.51	0.23
BDE-209%	15	50	28	16	33	85	59	19	45

Table S7. Summary of minimum (Min), maximum (Max), mean, standard deviation (SD) concentrations of
 PBDEs in the soil samples of Vietnam (in ng/g dw).

160

Compound	Urban (n	=12)			Rural (n=	=12)		
	Min	Max	Mean	SD	Min	Max	Mean	SD
BDE-17	nd	0.020	0.004	0.005	nd	0.004	0.001	0.001
BDE-28	nd	0.010	0.003	0.003	nd	0.004	0.002	0.001
BDE-47	nd	0.029	0.012	0.009	nd	0.006	0.003	0.002
BDE-66	nd	0.010	0.003	0.003	nd	0.002	0.001	0.001
BDE-85	nd	0.002	0.001	0.001	nd	0.031	0.003	0.009
BDE-99	0.003	0.13	0.049	0.046	nd	0.081	0.015	0.023
BDE-100	0.002	0.026	0.009	0.006	nd	0.006	0.003	0.002
BDE-138	nd	0.003	0.001	0.001	nd	0.003	0.001	0.001
BDE-153	nd	0.035	0.012	0.010	nd	0.006	0.002	0.002
BDE-154	nd	0.012	0.005	0.004	nd	0.004	0.001	0.001
BDE-183	nd	0.19	0.037	0.058	nd	0.009	0.003	0.003
BDE-190	nd	0.014	0.004	0.005	nd	0.004	0.001	0.001
BDE-191	nd	0.008	0.002	0.002	nd	nd	nd	nd
BDE-196	nd	0.022	0.008	0.009	nd	0.004	0.001	0.001
BDE-197	nd	0.036	0.009	0.012	nd	0.005	0.001	0.001
BDE-201	nd	0.022	0.009	0.007	nd	0.009	0.001	0.002
BDE-203	nd	0.019	0.008	0.008	nd	0.007	0.001	0.002
BDE-204	nd	nd	nd	nd	nd	nd	nd	nd
BDE-205	nd	0.007	0.004	0.001	nd	0.003	0.003	0.000
BDE-206	nd	0.13	0.044	0.042	nd	0.026	0.013	0.009
BDE-207	nd	0.11	0.036	0.043	nd	0.012	0.004	0.004
BDE-208	nd	0.12	0.036	0.039	nd	0.015	0.004	0.004
BDE-209	nd	12.3	3.1	4.0	nd	3.7	0.72	1.1
\sum_{22} BDEs	0.054	0.75	0.30	0.25	0.023	0.15	0.066	0.039
∑23BDEs	0.13	13	3.4	4.2	0.06	3.8	0.79	1.1
BDE-209%	32	95	83	17	33	98	71	22

Table S8. Summary of minimum (Min), maximum (Max), mean, standard deviation (SD) concentrations of
 PBDEs in the soil samples of India (in ng/g dw).

164

166

Table S9. Summary of minimum (Min), maximum (Max), mean and standard deviation (SD) concentrations

(in ng/g dw) of PBDEs in the soil samples collected in e-waste regions (E) and factory regions (F) in China, 167 South Korea and Vietnam. 168

Compound	E, China (n	=10)	F, China (n=10)		E, South Kore	ea (n=2)	E, Vietnam (n=1)
	Range	$Mean \pm SD$	Range	$Mean \pm SD$	Range	$Mean \pm SD$	
BDE-17	0.019-4.9	0.9 ± 1.5	0.010-1.2	0.18 ± 0.40	nd	nd	0.008
BDE-28	0.044-15	2.8 ± 5.0	0.087-14	2.3 ± 4.4	nd-0.006	0.003 ± 0.004	0.06
BDE-47	0.10-270	52 ± 100	0.090-38	8.6 ± 14	0.003-0.009	0.006 ± 0.004	0.45
BDE-66	0.034-15	3.0 ± 5.1	nd-3.3	0.70 ± 1.1	nd	nd	0.13
BDE-85	nd-6.2	1.5 ± 2.1	nd-2.1	0.70 ± 0.80	nd	nd	0.021
BDE-99	0.39-2000	240 ± 620	0.045-48	10 ± 16	0.029-0.039	0.034 ± 0.007	0.61
BDE-100	0.047-320	40 ± 100	0.035-4.8	1.4 ± 1.9	0.004-0.011	0.007 ± 0.005	0.049
BDE-138	nd-1.9	0.6 ± 0.8	nd-2.9	0.50 ± 0.90	nd	nd	nd
BDE-153	0.072-150	23 ± 46	0.14-140	35 ± 50	0.002-0.013	0.008 ± 0.008	0.13
BDE-154	0.070-160	23 ± 52	0.050-25	6.5 ± 9.1	0.002-0.004	0.003 ± 0.002	0.04
BDE-183	0.13-35	9.0 ± 13	0.13-460	100 ± 160	0.007-0.017	0.012 ± 0.007	0.27
BDE-190	0.038-4.1	1.3 ± 1.4	nd-10	2.5 ± 3.6	nd-0.009	0.005 ± 0.006	0.036
BDE-191	0.063-23	3.1 ± 7.2	0.33-17	2.9 ± 5.2	nd-0.004	0.002 ± 0.003	0.013
BDE-196	0.20-20	5.2 ± 6.5	nd-110	26 ± 38	nd-0.006	0.003 ± 0.004	0.087
BDE-197	0.23-19	4.5 ± 6.0	0.35-150	31 ± 53	0.003-0.010	0.006 ± 0.005	0.2
BDE-201	0.16-110	13 ± 32	0.70-38	5.9 ± 12	0.003-0.012	0.008 ± 0.006	0.13
BDE-203	0.12-19	4.6 ± 6.1	nd-130	35 ± 50	nd-0.010	0.005 ± 0.007	0.096
BDE-204	nd-1.3	0.28 ± 0.5	nd-97	23 ± 35	nd	nd	nd
BDE-205	0.16-4.0	1.0 ± 1.2	nd-18	4.4 ± 6.2	nd	nd	nd
BDE-206	0.66-110	26 ± 35	5.7-1200	360 ± 440	0.021-0.11	0.068 ± 0.066	1.1
BDE-207	0.33-87	18 ± 27	1.7-520	130 ± 180	0.008-0.057	0.033 ± 0.035	0.9
BDE-208	0.24-48	10 ± 15	0.82-160	44 ± 59	0.007-0.043	0.025 ± 0.025	0.53
BDE-209	57-13000	3400 ± 4200	270-16000	5600 ± 5600	1.2-16	8.8 ± 11	63
\sum_{22} BDEs	3.2-3100	490 ± 1000	11-3100	840 ± 1100	0.11-0.36	0.24 ± 0.18	4.9
\sum_{23} BDEs	60-14000	3900 ± 5100	280-19000	6400 ± 6700	1.3-17	9.0 ± 11	68
BDE-209%	74-98	93 ± 7.6	82-96	91 ± 5.1	91-98	94 ± 4.8	93

nd: not detected.

169

Table S10. Summary of mean concentrations (ng/g dw) of BDE-47, -99, -183, -209, total PBDEs (Σ BDEs

172 (exc209), excluding BDE-209) and total PBDEs (Σ BDEs), and of proportion of BDE-209 (BDE-209%) in

the soils from studies around the world.

Region	Year	Ν	Type ^b	-47	-99	-183	-209	ΣBDEs (exc209)	ΣBDEs	BDE-209%	Ref.
Chenab, Pakistan	2013	28	U+R	1.15	17.8	0.26	na ^c	21.1	na	na	5
China	2013	82	В	0.014	0.017	0.015	0.241	na	na	>60	6
UK West Midlands ^a	2013	8	U+R	1.0	0.93	na	5.5	na	9.8	na	7
Stockholm, Sweden ^a	2012	8	U+R	0.64	0.43	na	2.7	na	na	na	8
Qingyuan, China	2012	16	R	1.12	1.00	0.24	162.43	na	165	na	9
Hung Yen, Vietnam	2012	19	R	0.38	0.61	0.68	1.4	na	2.2	64	10
Hung Yen, Vietnam	2012	10	Е	20	21	46	1700	na	1900	89	10
Shanghai, China	2012	37	U	0.924	0.189	0.459	28.6	3.8	32.5	88	11
Guiyu, China	2012	16	Е	42.26	50.56	544.6	1946	na	2665	73	12
Yangtze River, China	2012	33	U+R	na	na	na	9.47	0.543	na	92	13
Indus River, Pakistan	2012	60	U+R	0.049	0.044	0.029	na	0.272	na	na	14
Tibet, China	2011	27	В	0.0098	0.0077	0.00075	0.00045	na	0.103	0.6	15
Kaixian, China	2011	7	R	0.02	0.01	0.01	101	2.3	na	94-98	16
Shandong, China	2011	23	F	na	na	na	51100	na	58700	>90	17
Qingyuan, China	2011	36	Е	na	na	49.6	783.5	na	898.3	61-94	18
Zhaogezhuang, China	2011	40	Е	0.29	0.37	1.82	665	na	690	93	19
Yangtze River, China	2011	33	U+R	0.113	0.107	0.094	9.48	na	10	91	20
North China	2011	87	U+R	4.14	1.72	0.22	188	13.7	202	96	21
Kocaeli, Turkey	2010	49	U	1.11	1.73	na	22.2	na	26.3	74	22
Tibet, China	2010	16	В	0.0024	0.0009	0.0005	0.0013	na	0.080	1.6	23
Iraqe-Kuwaite-Saudi	2010	11	U+R	0.251	0.367	0.0164	15.85	0.766	16.615	94	24
Thi Nai Lagoon, Vietnam	2010	7	R	na	na	na	na	1.40	na	na	25
Loess Plateau, China	2009	45	U+R	0.27	0.216	0.0127	0.538	0.911	1.55	44	26
Chongming Island, China	2009	22	R	0.09	0.23	0.03	12	0.76	na	>90	27
Shandong, China	2008	38	F	na	na	na	1062	na	1127	94	28
Yellow River Delta, China	2008	8	R	2.2	1.7	3.6	104.3	17	na	86	29
Shenzhen, China	2008	6	U	na	na	na	1.306	0.0187	1.325	85-99	30
Surabaya, Indonesia	2008	6	U	na	na	na	8.09	3.71	12.0	67	31
Surabaya, Indonesia	2008	4	R	na	na	na	10.5	4.5	15.3	71	31
Shanghai, China	2007	36	А	0.014	0.011	0.005	0.254	0.175	0.429	59	32
Laizhou Bay, China	2007	5	Р	0.4	0.4	10.1	575.8	na	687.2	81-94	33
Guangzhou, China	2007	4	SU	na	na	0.16	62.5	0.84	63.3	99	34
Guiyu, China	2007	6	E	na	na	na	2246	663	na	77-86	35
Foshan, China	2007	9	U	na	na	na	64.3	5.97	na	90	35
Beijing, China	2007	26	А	na	na	na	1.44	0.099	1.54	93	36
Shanghai, China	2007	10	Е	26.5	45.6	na	1800	na	1910	94	37
Harbin, China	2006	17	U+R	0.006	0.010	0.024	0.52	0.026	na	95	38
Shiawassee River, USA	2004	10	R	1.49	1.38	na	10.8	3.53	13.8	78	39
Saginaw River, USA	2004	10	R	0.14	0.12	na	2.77	0.29	3.03	91	39
Saginaw Bay, USA	2004	6	R	0.14	0.08	na	0.60	0.28	0.88	68	39

India	2004	5	R	0.01	0.01	nd	0.05	0.02	0.07	71	40
India	2000	6	D	0.19	0.33	0.15	5.4	0.81	7.3	74	40
Vietnam	2004	7	R	0.01	0.01	0.01	0.14	0.05	0.22	64	40
Vietnam	2004	5	D	0.14	0.66	7.3	56	11	95	59	40

^a: geometric mean, in ng/g organic matter;

^b: R: rural; U: urban; SU: suburban; B: background; E: e-waste; A: agriculture; P: production area; D: dumping site;

^c: na: not available.

174

- 176 Table S11. Correlation coefficients between natural logarithm concentrations of PBDEs in U/R/B sites in
- 177 China (n = 101) and other parameters, i.e. longitude (LONG, $^{\circ}$ E), latitude (LAT, $^{\circ}$ N), population density (PD, 178 natural logarithm of person/km²), and gross domestic product (GDP, natural logarithm of Chinese
- 179 Yuan/person).

	LONG	LAT	PD	GDP
TriBDE	0.20	-0.13	0.22*	0.30*
TetraBDE	0.22^{*}	-0.08	0.41**	0.44**
PentaBDE	0.36**	-0.08	0.39**	0.44**
HexaBDE	0.14	-0.21*	0.44**	0.36**
HeptaBDE	0.18	-0.31**	0.49**	0.42**
OctaBDE	0.13	-0.34**	0.47**	0.38**
NonaBDE	0.11	-0.27**	0.48^{**}	0.43**
DecaBDE	0.26**	-0.28**	0.57**	0.51**
\sum_{22} BDEs	0.22^{*}	-0.26**	0.50^{**}	0.48^{**}
\sum_{23} BDEs	0.26**	-0.29**	0.57**	0.50**
BDE-209%	0.25*	-0.14	0.33**	0.17

*. Correlation is significant at the 0.05 level (2-tailed).

**. Correlation is significant at the 0.01 level (2-tailed).

180

- **Table S12.** Regression coefficients along with statistical errors, and significant levels for equation (3) for
- 183 Chinese samples (excluding E and F sites, n = 101).

	Unstandardized	1 Coefficients	Standardized Coefficients ^a	
Model (r = $0.20, p < 0.001$)	В	Std. Error	Beta	Sig.
(Constant), b_0	-10.743	4.739		0.026
$\log^2(PD)$, b_1	0.005	0.030	0.020	0.862
T, b_2	0.023	0.017	0.172	0.165
SOC, b_3	0.098	0.059	0.186	0.098

Dependent Variable: TriBDE

^a: Standardized coefficients are used in order to ignore the scale of units of independent variables, and to understand which of the independent variables have a greater influence on the dependent variable.

184

Dependent Variable: TetraBDE

	Unstandardize	d Coefficients	Standardized Coefficients	
Model (r = $0.50, p < 0.001$)	В	Std. Error	Beta	Sig.
(Constant), b_0	-10.831	6.524		0.100
$\log^2(PD)$, b_1	0.159	0.041	0.394	0.000
T, b_2	0.021	0.023	0.100	0.363
SOC, b_3	0.280	0.081	0.342	0.001

185

Dependent Variable: PentaBDE

	TT . 1 1			
	Unstandardize	d Coefficients	Standardized Coefficients	
Model (r = $0.47, p < 0.001$)	В	Std. Error	Beta	Sig.
(Constant), b_0	-5.688	6.370		0.374
$\log^2(PD)$, b_1	0.170	0.040	0.439	0.000
T, b_2	0.009	0.022	0.043	0.700
SOC, b_3	0.172	0.079	0.219	0.032

186

188 Table 12-Continue

Dependent Variable: HexaBDE

	Unstandardized	d Coefficients	Standardized Coefficients	
Model (r = $0.58, p < 0.001$)	В	Std. Error	Beta	Sig.
(Constant), b_0	-20.012	6.309		0.002
$\log^2(PD)$, b_1	0.174	0.040	0.419	0.000
T, b_2	0.052	0.022	0.241	0.021
SOC, b_3	0.292	0.078	0.348	0.000

189

Dependent Variable: HeptaBDE

	Unstandardize	d Coefficients	Standardized Coefficients	
Model (r = $0.58, p < 0.001$)	В	Std. Error	Beta	Sig.
(Constant), b_0	-24.427	6.194		0.000
$\log^2(PD)$, b_1	0.154	0.039	0.377	0.000
T, b_2	0.070	0.022	0.331	0.002
SOC, b_3	0.225	0.077	0.272	0.004

190

Dependent Variable: OctaBDE

	Unstandardized	d Coefficients	Standardized Coefficients	
Model (r = $0.54, p < 0.001$)	В	Std. Error	Beta	Sig.
(Constant), b_0	-23.224	6.534		0.001
$\log^2(PD)$, b_1	0.149	0.041	0.357	0.000
T, b_2	0.068	0.023	0.311	0.004
SOC, b ₃	0.186	0.081	0.220	0.023

191

192

Table 12-Continue

Dependent Variable: NonaBDE

	Unstandardized	d Coefficients	Standardized Coefficients	
Model (r = $0.53, p < 0.001$)	В	Std. Error	Beta	Sig.
(Constant), b_0	-15.515	7.791		0.049
$\log^2(PD)$, b_1	0.221	0.049	0.448	0.000
T, b_2	0.044	0.027	0.170	0.115
SOC, b ₃	0.168	0.081	0.168	0.035

Dependent Variable: DecaBDE

	Unstandardized	d Coefficients	Standardized Coefficients	
Model (r = $0.57, p < 0.001$)	В	Std. Error	Beta	Sig.
(Constant), b_{θ}	-14.405	7.342		0.053
$\log^2(PD)$, b_1	0.225	0.046	0.467	0.000
T, b_2	0.053	0.026	0.212	0.043
SOC, b_3	0.130	0.091	0.133	0.156

- **Table S13.** Regression coefficients along with statistical errors, and significant levels for equation (3) for
- samples collected from South Korea (excluding E sites, n = 20).

	Unstandard	ized Coefficients	Standardized Coefficients	
Model $(r = 0.74, p < 0.001)$	В	Std. Error	Beta	Sig.
1 (Constant), b_0	28.896	22.037		0.208
$\log^2(PD)$, b_1	0.072	0.029	0.426	0.024
T, b_2	-0.123	0.077	-0.300	0.127
SOC, b_3	0.496	0.183	0.504	0.015

Dependent Variable: TriBDE

201

Dependent Variable: TetraBDE

	Unstandardi	ized Coefficients	Standardized Coefficients	
Model $(r = 0.75, p < 0.001)$	В	Std. Error	Beta	Sig.
(Constant), b_0	69.651	38.370		0.088
$\log^2(PD)$, b_1	0.159	0.050	0.534	0.006
T, b_2	-0.263	0.134	-0.365	0.066
SOC, b_3	0.659	0.319	0.381	0.055

202

Dependent Variable: PentaBDE

	Unstandardi	ized Coefficients	Standardized Coefficients	
Model $(r = 0.80, p < 0.001)$	В	Std. Error	Beta	Sig.
(Constant), <i>b</i> ₀	52.136	29.536		0.097
$\log^2(PD)$, b_1	0.134	0.039	0.525	0.003
T, b_2	-0.196	0.103	-0.318	0.074
SOC, b_3	0.752	0.245	0.509	0.007

203

205 Table 13-Continue

Dependent Variable: HexaBDE

	Unstandard	ized Coefficients	Standardized Coefficients	
Model $(r = 0.74, p < 0.001)$	В	Std. Error	Beta	Sig.
(Constant), b_0	42.655	39.613		0.298
$\log^2(PD)$, b_1	0.222	0.052	0.732	0.001
T, b_2	-0.167	0.138	-0.228	0.244
SOC, b_3	0.198	0.329	0.113	0.555

206

Dependent Variable: HeptaBDE

	Unstandard	ized Coefficients	Standardized Coefficients	
Model $(r = 0.83, p < 0.001)$	В	Std. Error	Beta	Sig.
(Constant), b_0	16.112	37.115		0.670
$\log^2(PD)$, b_1	0.289	0.049	0.842	0.000
T, b_2	-0.074	0.129	-0.089	0.575
SOC, b_3	0.243	0.308	0.122	0.442

207

Dependent Variable: OctaBDE

	Unstandard	ized Coefficients	Standardized Coefficients	
Model $(r = 0.80, p < 0.001)$	В	Std. Error	Beta	Sig.
(Constant), b_0	29.809	32.919		0.379
$\log^2(PD)$, b_1	0.229	0.043	0.804	0.000
T, b_2	-0.118	0.115	-0.172	0.317
SOC, b ₃	-0.133	0.273	-0.080	0.634

208

210 Table 13-Continue

Dependent Variable: NonaBDE

	Unstandard	ized Coefficients	Standardized Coefficients	
Model $(r = 0.79, p < 0.001)$	В	Std. Error	Beta	Sig.
(Constant), b_0	51.324	41.715		0.236
$\log^2(PD)$, b_1	0.277	0.055	0.792	0.000
T, b_2	-0.190	0.145	-0.225	0.209
SOC, b3	-0.091	0.346	-0.045	0.795

211

Dependent Variable: DecaBDE

	Unstandard	ized Coefficients	Standardized Coefficients	
Model $(r = 0.77, p < 0.001)$	В	Std. Error	Beta	Sig.
(Constant), b_0	98.763	53.767		0.085
$\log^2(PD)$, b_1	0.303	0.071	0.721	0.001
T, b_2	-0.349	0.187	-0.344	0.080
SOC, b_3	0.112	0.446	0.046	0.804

212

- **Table S14.** Regression coefficients along with statistical errors, and significant levels for equation (3) for
- samples collected from Japan (n = 14).

	TT (1, 1)			
	Unstandardi	ized Coefficients	Standardized Coefficients	
Model $(r = 0.70, p < 0.001)$	В	Std. Error	Beta	Sig.
(Constant), b_0	-9.205	14.850		0.549
$\log^2(PD)$, b_1	0.129	0.043	0.695	0.014
T, b_2	0.015	0.052	0.067	0.774
SOC, b_3	0.053	0.045	0.274	0.265

Dependent Variable: TriBDE

216

Dependent Variable: TetraBDE

	Unstandard	ized Coefficients	Standardized Coefficients	
Model $(r = 0.76, p < 0.001)$	В	Std. Error	Beta	Sig.
(Constant), b_0	6.221	29.139		0.835
$\log^2(PD)$, b_1	0.300	0.085	0.748	0.005
T, b_2	-0.042	0.101	-0.087	0.684
SOC, b_3	0.160	0.088	0.385	0.097

217

Dependent Variable: PentaBDE

	Unstandard	ized Coefficients	Standardized Coefficients	
Model $(r = 0.66, p < 0.001)$	В	Std. Error	Beta	Sig.
(Constant), b_0	-8.768	27.721		0.758
$\log^2(PD)$, b_1	0.203	0.080	0.618	0.030
T, b_2	0.019	0.096	0.048	0.845
SOC, b_3	0.130	0.083	0.381	0.149

218

219

221 Table 14-Continue

Dependent Variable: HexaBDE

	Unstandard	ized Coefficients	Standardized Coefficients	
Model $(r = 0.74, p < 0.001)$	В	Std. Error	Beta	Sig.
(Constant), b_0	-5.200	26.799		0.850
$\log^2(PD)$, b_1	0.264	0.078	0.740	0.007
T, b_2	-0.003	0.093	-0.006	0.979
SOC, b_3	0.123	0.081	0.330	0.159

222

Dependent Variable: HeptaBDE

	Unstandardi	ized Coefficients	Standardized Coefficients	
Model $(r = 0.73, p < 0.001)$	В	Std. Error	Beta	Sig.
(Constant), b_{θ}	-5.652	27.253		0.840
$\log^2(PD)$, b_1	0.268	0.079	0.750	0.007
T, b_2	0.003	0.095	0.006	0.978
SOC, b_3	0.066	0.082	0.178	0.439

223

Dependent Variable: OctaBDE

	Unstandardi	ized Coefficients	Standardized Coefficients	
Model $(r = 0.78, p < 0.001)$	В	Std. Error	Beta	Sig.
(Constant), b_0	-19.176	27.799		0.506
$\log^2(PD)$, b_1	0.234	0.081	0.592	0.016
T, b_2	0.056	0.096	0.115	0.577
SOC, b_3	-0.153	0.084	-0.372	0.097

224

226 Table 14-Continue

Dependent Variable: NonaBDE

	Unstandard	ized Coefficients	Standardized Coefficients	
Model $(r = 0.66, p < 0.001)$	В	Std. Error	Beta	Sig.
(Constant), b_0	-17.136	54.816		0.761
$\log^2(PD)$, b_1	0.302	0.159	0.466	0.087
T, b_2	0.054	0.190	0.069	0.780
SOC h	0.245	0 165	0.262	0 160

227

Dependent Variable: DecaBDE

	TT (
	Unstandard	ized Coefficients	Standardized Coefficients	
Model $(r = 0.71, p < 0.001)$	В	Std. Error	Beta	Sig.
(Constant), b_0	-21.905	66.732		0.749
$\log^2(PD)$, b_1	0.375	0.194	0.444	0.081
T, b_2	0.083	0.232	0.080	0.728
SOC, b_3	-0.401	0.201	-0.457	0.073

228

- **Table S15.** Regression coefficients along with statistical errors, and significant levels for equation (3) for
- samples collected from India (n = 24).

	Unstandardi	ized Coefficients	Standardized Coefficients	
Model $(r = 0.64, p < 0.001)$	В	Std. Error	Beta	Sig.
(Constant), b_0	0.058	30.957		0.999
$\log^2(PD)$, b_1	0.113	0.032	0.626	0.002
T, b_2	-0.023	0.104	-0.040	0.827
SOC, b_3	0.113	0.098	0.204	0.264

Dependent Variable: TriBDE

232

Dependent Variable: TetraBDE

	Unstandard	ized Coefficients	Standardized Coefficients	
Model $(r = 0.68, p < 0.001)$	В	Std. Error	Beta	Sig.
(Constant), b_0	10.756	34.896		0.761
$\log^2(PD)$, b_1	0.146	0.036	0.684	0.001
T, b_2	-0.058	0.117	-0.084	0.628
SOC, b_3	0.093	0.110	0.142	0.411

233

Dependent Variable: PentaBDE

	Unstandard	ized Coefficients	Standardized Coefficients	
Model $(r = 0.56, p < 0.001)$	В	Std. Error	Beta	Sig.
(Constant), b_0	-3.466	49.163		0.945
$\log^2(PD)$, b_1	0.138	0.051	0.519	0.014
T, b_2	-0.006	0.165	-0.007	0.970
SOC, b_3	0.213	0.155	0.261	0.185

234

236 Table 15-Continue

Dependent Variable: HexaBDE

	Unstandardi	ized Coefficients	Standardized Coefficients	
Model $(r = 0.76, p < 0.001)$	В	Std. Error	Beta	Sig.
(Constant), b_0	-12.536	36.937		0.738
$\log^2(PD)$, b_1	0.195	0.038	0.762	0.000
T, b_2	0.019	0.124	0.023	0.880
SOC, b_3	0.029	0.117	0.037	0.806

237

Dependent Variable: HeptaBDE

	Unstandard	ized Coefficients	Standardized Coefficients	
Model $(r = 0.71, p < 0.001)$	В	Std. Error	Beta	Sig.
(Constant), b_{θ}	17.968	49.284		0.719
$\log^2(PD)$, b_1	0.228	0.051	0.723	0.000
T, b_2	-0.084	0.165	-0.082	0.618
SOC, b_3	0.086	0.156	0.089	0.588

238

Dependent Variable: OctaBDE

	Unstandard	ized Coefficients	Standardized Coefficients	
Model $(r = 0.80, p < 0.001)$	В	Std. Error	Beta	Sig.
(Constant), b_0	-2.320	29.606		0.938
$\log^2(PD)$, b_1	0.180	0.031	0.808	0.000
T, b_2	-0.012	0.099	-0.017	0.905
SOC, b_3	0.059	0.093	0.086	0.535

239

241 Table 15-Continue

Dependent Variable: NonaBDE

	Unstandard	ized Coefficients	Standardized Coefficients	
Model $(r = 0.59, p < 0.001)$	В	Std. Error	Beta	Sig.
(Constant), b_0	-14.217	46.705		0.764
$\log^2(PD)$, b_1	0.147	0.049	0.573	0.007
T, b_2	0.032	0.157	0.038	0.842
SOC h	0.001	0.147	0.102	0.500

242

Dependent Variable: DecaBDE

	Unstandard	ized Coefficients	Standardized Coefficients	
Model $(r = 0.46, p < 0.001)$	В	Std. Error	Beta	Sig.
(Constant), b_0	-61.903	81.644		0.458
$\log^2(PD)$, b_1	0.160	0.085	0.388	0.076
T, b_2	0.199	0.274	0.150	0.475
SOC, b_3	0.232	0.258	0.184	0.380

243

- **Table S16.** Regression coefficients along with statistical errors, and significant levels for equation (3) for
- samples collected from Vietnam (excluding E sites, n = 13).

	Unstandard	ized Coefficients	Standardized Coefficients	
Model $(r = 0.59, p < 0.001)$	В	Std. Error	Beta	Sig.
(Constant), b_0	-31.449	154.516		0.843
$\log^2(PD)$, b_1	0.128	0.098	0.452	0.225
T, b_2	0.086	0.520	0.057	0.873
SOC, b_3	-0.296	0.220	-0.366	0.212

Dependent Variable: TriBDE

247

Dependent Variable: TetraBDE

	Unstandardi	ized Coefficients	Standardized Coefficients	
Model $(r = 0.75, p < 0.001)$	В	Std. Error	Beta	Sig.
(Constant), b_0	-208.449	161.334		0.229
$\log^2(PD)$, b_1	0.174	0.102	0.481	0.122
T, b_2	0.681	0.543	0.352	0.241
SOC, b_3	-0.089	0.230	-0.085	0.709

248

Dependent Variable: PentaBDE

	Unstandard	ized Coefficients	Standardized Coefficients	
	Onstandard		Standardized Coefficients	
Model $(r = 0.69, p < 0.001)$	В	Std. Error	Beta	Sig.
(Constant), b_0	33.632	138.064		0.813
$\log^2(PD)$, b_1	0.205	0.087	0.725	0.044
T, b_2	-0.127	0.465	-0.084	0.791
SOC, b ₃	0.071	0.197	0.088	0.726

249

251 Table 16-Continue

Dependent Variable: HexaBDE

	Unstandard	ized Coefficients	Standardized Coefficients	
Model $(r = 0.39, p < 0.001)$	В	Std. Error	Beta	Sig.
(Constant), b_0	155.778	185.363		0.422
$\log^2(PD)$, b_1	0.145	0.117	0.487	0.248
T, b_2	-0.542	0.624	-0.341	0.408
SOC, b_3	-0.088	0.264	-0.103	0.748

252

Dependent Variable: HeptaBDE

	Unstandardi	ized Coefficients	Standardized Coefficients	
Model $(r = 0.34, p < 0.001)$	В	Std. Error	Beta	Sig.
(Constant), b_0	98.032	122.743		0.445
$\log^2(PD)$, b_1	0.077	0.078	0.401	0.346
T, b_2	-0.345	0.413	-0.335	0.425
SOC, b_3	-0.068	0.175	-0.123	0.705

253

Dependent Variable: OctaBDE

	Unstandard	ized Coefficients	Standardized Coefficients	
Model $(r = 0.53, p < 0.001)$	В	Std. Error	Beta	Sig.
(Constant), b_0	84.252	77.626		0.306
$\log^2(PD)$, b_1	0.058	0.049	0.432	0.264
T, b_2	-0.297	0.261	-0.410	0.285
SOC, b_3	-0.164	0.111	-0.422	0.173

254

256 Table 16-Continue

Coefficients^a

	Unstandard	ized Coefficients	Standardized Coefficients	
Model $(r = 0.54, p < 0.001)$	В	Std. Error	Beta	Sig.
(Constant), b_0	73.489	105.073		0.502
$\log^2(PD)$, b_1	0.082	0.067	0.445	0.248
T, b_2	-0.257	0.354	-0.261	0.485
SOC, b ₃	-0.240	0.150	-0.453	0.143

a. Dependent Variable: NonaBDE

257

Coefficients^a Unstandardized Coefficients Standardized Coefficients Model (r = 0.33, p < 0.001)В Std. Error Beta Sig. (Constant), bo -15.500 130.477 0.908 $\log^2(PD)$, b_1 0.037 0.083 0.183 0.662 T, b_2 0.045 0.439 0.041 0.920 0.483 SOC, b3 0.136 0.186 0.232

a. Dependent Variable: DecaBDE

259 S3. Supplementary Figures

Figure S1. The soil sampling sites for SAMP-Asia.

Figure S2. The proportions of PBDE homologues in different longitude ranges from east (120-125°E) to west (<100°E). The values of proportions in the longitude range of 120-125°E were normalized to 1.

Figure S3. Correlations among natural logarithm concentrations (ng/g dw) of PBDE homologues in soil
samples from U/R/B sites. The values inside the graph are Pearson correlation coefficients.

Figure S4. The concentrations of PBDE homologues in urban, rural, background, e-waste (CH-E) and
industrial sites (CH-F) in five Asian countries.

279

280

Figure S5. Population density (persons/km²) for Asian countries in 2015.

Population density

The population density data in 2015 were derived from the Socioeconomic Data and Applications Center, NASA (http://sedac.ciesin.columbia.edu), as well as the statistical data from the National Bureau of Statistics of the People's Republic of China (http://www.stats.gov.cn/), the Statistics Japan (http://www.stat.go.jp/), the Statistics Korea (http://www.stat.go.jp/), the General Statistics Office of Vietnam (http://www.gso.gov.vn/default_en.aspx?tabid=491), and the Ministry of Statistics and Programme Implementation of India (http://mospi.nic.in/Mospi New/Site/Home.aspx).

287

288

Figure S6. Correlations between the population density $(\log^2(PD))$, in persons/km²) and the annual average temperature (in K) for the five countries.

299 **References**

- Ren, N. Q.; Que, M. X.; Li, Y. F.; Liu, Y.; Wan, X. N.; Xu, D. D.; Sverko, E.; Ma, J. M.,
 Polychlorinated biphenyls in chinese surface soils. *Environ. Sci. Technol.* 2007, *41*, (11), 3871-3876.
- Jia, H. L.; Liu, L. Y.; Sun, Y. Q.; Sun, B.; Wang, D. G.; Su, Y. S.; Kannan, K.; Li, Y. F., Monitoring and
 Modeling Endosulfan in Chinese Surface Soil. *Environ Sci Technol* 2010, *44*, (24), 9279-9284.
- (3) Harner, T.; Shoeib, M., Measurements of octanol-air partition coefficients (K-OA) for polybrominated
 diphenyl ethers (PBDEs): Predicting partitioning in the environment. *J. Chem. Eng. Data* 2002, 47, (2),
 228-232.
- 307 (4) La Guardia, M. J.; Hale, R. C.; Harvey, E., Detailed polybrominated diphenyl ether (PBDE) congener
 308 composition of the widely used penta-, octa-, and deca-PBDE technical flame-retardant mixtures.
 309 *Environmental Science & Technology* 2006, 40, (20), 6247-6254.
- (5) Mahmood, A.; Malik, R. N.; Syed, J. H.; Li, J.; Zhang, G., Dietary exposure and screening-level risk
 assessment of polybrominated diphenyl ethers (PBDEs) and dechloran plus (DP) in wheat, rice, soil
 and air along two tributaries of the River Chenab, Pakistan. *Chemosphere* 2015, *118*, (0), 57-64.
- (6) Zheng, Q.; Nizzetto, L.; Li, J.; Mulder, M. D.; Sanka, O.; Lammel, G.; Bing, H. J.; Liu, X.; Jiang, Y. S.;
 Luo, C. L.; Zhang, G., Spatial Distribution of Old and Emerging Flame Retardants in Chinese Forest
 Soils: Sources, Trends and Processes. *Environ. Sci. Technol.* 2015, *49*, (5), 2904-2911.
- (7) Drage, D. S.; Newton, S.; de Wit, C. A.; Harrad, S., Concentrations of legacy and emerging flame
 retardants in air and soil on a transect in the UK West Midlands. *Chemosphere* 2016, *148*, 195-203.
- (8) Newton, S.; Sellstrom, U.; de Wit, C. A., Emerging Flame Retardants, PBDEs, and HBCDDs in Indoor
 and Outdoor Media in Stockholm, Sweden. *Environ. Sci. Technol.* 2015, 49, (5), 2912-2920.
- Wang, J. X.; Liu, L. L.; Wang, J. F.; Pan, B. S.; Fu, X. X.; Zhang, G.; Zhang, L.; Lin, K. F., Distribution
 of metals and brominated flame retardants (BFRs) in sediments, soils and plants from an informal
 e-waste dismantling site, South China. *Environ. Sci. Pollut. R.* 2015, *22*, (2), 1020-1033.
- (10) Matsukami, H.; Tue, N. M.; Suzuki, G.; Someya, M.; Tuyen, L. H.; Viet, P. H.; Takahashi, S.; Tanabe,
 S.; Takigami, H., Flame retardant emission from e-waste recycling operation in northern Vietnam:
 Environmental occurrence of emerging organophosphorus esters used as alternatives for PBDEs. *Sci. Total Environ.* 2015, *514*, 492-499.
- Wu, M. H.; Pei, J. C.; Zheng, M.; Tang, L.; Bao, Y. Y.; Xu, B. T.; Sun, R.; Sun, Y. F.; Xu, G.; Lei, J. Q.,
 Polybrominated diphenyl ethers (PBDEs) in soil and outdoor dust from a multi-functional area of
 Shanghai: Levels, compositional profiles and interrelationships. *Chemosphere* 2015, *118*, 87-95.
- 330 (12) Zhang, S. H.; Xu, X. J.; Wu, Y. S.; Ge, J. J.; Li, W. Q.; Huo, X., Polybrominated diphenyl ethers in
- residential and agricultural soils from an electronic waste polluted region in South China: Distribution,

- compositional profile, and sources. *Chemosphere* **2014**, *102*, 55-60.
- (13) Shi, S. X.; Huang, Y. R.; Zhou, L.; Zhang, L. F.; Dong, L.; Yang, W. L.; Zhang, X. L., Changes of
 polybrominated diphenyl ethers and polychlorinated biphenyls in surface soils from urban
 agglomeration of the Yangtze River Delta, in China between 2003 and 2012. *Environ. Sci. Pollut. R.*2015, 22, (13), 9766-9774.
- (14) Ali, U.; Mahmood, A.; Syed, J. H.; Li, J.; Zhang, G.; Katsoyiannis, A.; Jones, K. C.; Malik, R. N.,
 Assessing the combined influence of TOC and black carbon in soil-air partitioning of PBDEs and DPs
 from the Indus River Basin, Pakistan. *Environ. Pollut.* 2015, 201, 131-140.
- (15) Sun, Y.; Yuan, G. L.; Li, J.; Li, J. C.; Wang, G. H., Polybrominated diphenyl ethers in surface soils near
 the Changwengluozha Glacier of Central Tibetan Plateau, China. *Sci. Total Environ.* 2015, *511*,
 399-406.
- (16) Zhang, W. R.; Lu, Y. Z.; Gao, S. T.; Jia, X. W.; Yu, Z. Q.; Zeng, X. Y.; Sheng, G. Y.; Fu, J. M.,
 Determination of polybrominated diphenyl ethers in soils and sediment of Hanfeng Lake, Three Gorges.
- Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering **2015**, *50*, (13), 1316-1323.
- (17) Li, Y.; Niu, S.; Hai, R. T.; Li, M., Concentrations and distribution of polybrominated diphenyl ethers
 (PBDEs) in soils and plants from a Deca-BDE manufacturing factory in China. *Environ. Sci. Pollut. R.* 2015, *22*, (2), 1133-1143.
- (18) Wang, S.; Zhang, S. Z.; Huang, H. L.; Niu, Z. C.; Han, W., Characterization of polybrominated
 diphenyl ethers (PBDEs) and hydroxylated and methoxylated PBDEs in soils and plants from an
 e-waste area, China. *Environ. Pollut.* 2014, *184*, 405-413.
- (19) Tang, Z. W.; Huang, Q. F.; Cheng, J. L.; Yang, Y. F.; Yang, J.; Guo, W.; Nie, Z. Q.; Zeng, N.; Jin, L.,
 Polybrominated Diphenyl Ethers in Soils, Sediments, and Human Hair in a Plastic Waste Recycling
 Area: A Neglected Heavily Polluted Area. *Environ. Sci. Technol.* 2014, *48*, (3), 1508-1516.
- (20) Shi, S. X.; Zhang, L. F.; Yang, W. L.; Zhou, L.; Dong, L.; Huang, Y. R., Levels and Spatial Distribution
 of Polybrominated Diphenyl Ethers (PBDEs) in Surface Soil from the Yangtze River Delta, China. *Bull. Environ. Contam. Toxicol.* 2014, *93*, (6), 752-757.
- (21) Liu, D.; Ma, J.; Qiu, X. H.; Zhao, Y. F.; Lin, Y.; Yang, Q. Y.; Gao, Z. J.; Zhu, T., Gridded Field
 Observations of Polybrominated Diphenyl Ethers in Soils of North China. *Arch. Environ. Contam. Toxicol.* 2014, 66, (4), 482-490.
- 362 (22) Cetin, B., Soil concentrations and source apportionment of polybrominated diphenyl ethers (PBDEs)
 363 and trace elements around a heavily industrialized area in Kocaeli, Turkey. *Environ. Sci. Pollut. R.*364 2014, 21, (13), 8284-8293.
- 365 (23) Yuan, G. L.; Xie, W.; Che, X. C.; Han, P.; Liu, C.; Wang, G. H., The fractional patterns of
 366 polybrominated diphenyl ethers in the soil of the central Tibetan Plateau, China: The influence of soil

- 367 components. *Environ. Pollut.* **2012**, *170*, 183-189.
- 368 (24) Gevao, B.; Ghadban, A. N.; Uddin, S.; Jaward, F. M.; Bahloul, M.; Zafar, J., Polybrominated diphenyl
 369 ethers (PBDEs) in soils along a rural-urban-rural transect: Sources, concentration gradients, and
 370 profiles. *Environ. Pollut.* 2011, *159*, (12), 3666-3672.
- (25) Romano, S.; Piazza, R.; Mugnai, C.; Giuliani, S.; Bellucci, L. G.; Huu, C. N.; Vecchiato, M.; Zambon,
 S.; Hoai, N. D.; Frignani, M., PBDEs and PCBs in sediments of the Thi Nai Lagoon (Central Vietnam)
 and soils from its mainland. *Chemosphere* 2013, *90*, (9), 2396-2402.
- (26) Meng, X. Z.; Pan, Z. Y.; Wu, J. J.; Qiu, Y. L.; Chen, L.; Li, G. M., Occurrence of polybrominated
 diphenyl ethers in soil from the central Loess Plateau, China: Role of regional range atmospheric
 transport. *Chemosphere* 2011, *83*, (10), 1391-1397.
- (27) Duan, Y. P.; Meng, X. Z.; Yang, C.; Pan, Z. Y.; Chen, L.; Yu, R.; Li, F. T., Polybrominated diphenyl
 ethers in background surface soils from the Yangtze River Delta (YRD), China: occurrence, sources,
 and inventory. *Environ. Sci. Pollut. R.* 2010, *17*, (4), 948-956.
- (28) Zhu, Z. C.; Chen, S. J.; Zheng, J.; Tian, M.; Feng, A. H.; Luo, X. J.; Mai, B. X., Occurrence of
 brominated flame retardants (BFRs), organochlorine pesticides (OCPs), and polychlorinated biphenyls
 (PCBs) in agricultural soils in a BFR-manufacturing region of North China. *Sci. Total Environ.* 2014, *481*, 47-54.
- (29) Chen, C. E.; Zhao, H. X.; Chen, J. W.; Qiao, X. L.; Xie, Q.; Zhang, Y. F., Polybrominated diphenyl
 ethers in soils of the modern Yellow River Delta, China: Occurrence, distribution and inventory. *Chemosphere* 2012, *88*, (7), 791-797.
- (30) Qin, P. H.; Ni, H. G.; Liu, Y. S.; Shi, Y. H.; Zeng, H., Occurrence, distribution, and source of
 polybrominated diphenyl ethers in soil and leaves from Shenzhen Special Economic Zone, China. *Environ. Monit. Assess.* 2011, 174, (1-4), 259-270.
- (31) Ilyas, M.; Sudaryanto, A.; Setiawan, I. E.; Riyadi, A. S.; Isobe, T.; Ogawa, S.; Takahashi, S.; Tanabe, S.,
 Characterization of polychlorinated biphenyls and brominated flame retardants in surface soils from
 Surabaya, Indonesia. *Chemosphere* 2011, *83*, (6), 783-791.
- (32) Jiang, Y. F.; Wang, X. T.; Zhu, K.; Wu, M. H.; Sheng, G. Y.; Fu, J. M., Occurrence, compositional
 patterns, and possible sources of polybrominated diphenyl ethers in agricultural soil of Shanghai, China. *Chemosphere* 2012, *89*, (8), 936-943.
- (33) Jin, J.; Wang, Y.; Liu, W. Z.; Yang, C. Q.; Hu, J. C.; Cui, J. A., Polybrominated diphenyl ethers in
 atmosphere and soil of a production area in China: Levels and partitioning. *Journal of Environmental Sciences-China* 2011, 23, (3), 427-433.
- (34) Shi, T.; Chen, S. J.; Luo, X. J.; Zhang, X. L.; Tang, C. M.; Luo, Y.; Ma, Y. J.; Wu, J. P.; Peng, X. Z.;
 Mai, B. X., Occurrence of brominated flame retardants other than polybrominated diphenyl ethers in
 environmental and biota samples from southern China. *Chemosphere* 2009, *74*, (7), 910-916.

- (35) Gao, S. T.; Hong, J. W.; Yu, Z. Q.; Wang, J. Z.; Yang, G. Y.; Sheng, G. Y.; Fu, J. M., Polybrominated
 Diphenyl Ethers in Surface Soils from E-Waste Recycling Areas and Industrial Areas in South China:
 Concentration Levels, Congener Profile, and Inventory. *Environ. Toxicol. Chem.* 2011, *30*, (12),
 2688-2696.
- (36) Sun, K.; Zhao, Y.; Gao, B.; Liu, X. T.; Zhang, Z. Y.; Xing, B. S., Organochlorine pesticides and
 polybrominated diphenyl ethers in irrigated soils of Beijing, China: Levels, inventory and fate. *Chemosphere* 2009, 77, (9), 1199-1205.
- (37) Ma, J.; Addink, R.; Yun, S. H.; Cheng, J. P.; Wang, W. H.; Kannan, K., Polybrominated
 Dibenzo-p-dioxins/Dibenzofurans and Polybrominated Diphenyl Ethers in Soil, Vegetation,
 Workshop-Floor Dust, and Electronic Shredder Residue from an Electronic Waste Recycling Facility
 and in Soils from a Chemical Industrial Complex in Eastern China. *Environ. Sci. Technol.* 2009, *43*,
 (19), 7350-7356.
- (38) Wang, X.; Ren, N. Q.; Qi, H.; Ma, W. L.; Li, Y. F., Levels and distribution of brominated flame
 retardants in the soil of Harbin in China. *Journal of Environmental Sciences-China* 2009, *21*, (11),
 1541-1546.
- (39) Yun, S. H.; Addink, R.; McCabe, J. M.; Ostaszewski, A.; Mackenzie-Taylor, D.; Taylor, A. B.; Kannan,
 K., Polybrominated diphenyl ethers and polybrominated biphenyls in sediment and floodplain soils of
 the Saginaw River watershed, Michigan, USA. *Arch. Environ. Contam. Toxicol.* 2008, 55, (1), 1-10.
- (40) Eguchi, A.; Isobe, T.; Ramu, K.; Tue, N. M.; Sudaryanto, A.; Devanathan, G.; Viet, P. H.; Tana, R. S.;
 Takahashi, S.; Subramanian, A.; Tanabe, S., Soil contamination by brominated flame retardants in open
 waste dumping sites in Asian developing countries. *Chemosphere* 2013, *90*, (9), 2365-2371.
- 423