Supporting Information

For

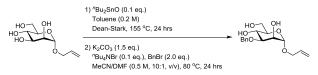
β -Stereoselective mannosylation using 2,6-lactones

Yusuke Hashimoto, Saki Tanikawa, Ryota Saito, Kaname Sasaki*

Department of Chemistry, Toho University, 2-2-1 Miyama, Funabashi 274-8510 Japan

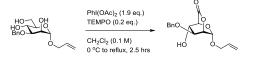
Compounds	Expt.	Spectra
Scheme 2	S4	_
Allyl 3- <i>O</i> -benzyl-α-D-mannopyranoside (2)	S4	S23
Allyl 3- <i>O</i> -benzyl-α-D-mannopyranurono-2,6-lactone (3)	S4	S24
Allyl 3,4-di- <i>O</i> -benzyl-α-D-mannopyranurono-2,6-lactone (4a)	S4	S26
Allyl 3-O-benzyl-4-O-tert-butyldimethylsilyl-α-D-mannopyranurono-2,6-lactone (4b)	S5	S28
3,4-Di-O-benzyl-D-mannopyranurono-2,6-lactone (S1)	S5	S30
3,4-Di-O-benzyl-α-D-mannopyranurono-2,6-lacton-1-yl diethylphosphite (5a)	S6	S32
3,4-Di- <i>O</i> -benzyl-α-D-mannopyranurono-2,6-lacton-1-yl iodide (5b)	S6	S34
3,4-Di-O-benzyl-D-mannopyranurono-2,6-lactone-1-yl trichloroacetimidate (5c)	S6	S37
3-O-Benzyl-4-O-tert-butyldimethylsilyl-D-mannopyranurono-2,6-lactone-1-yl	S7	S42
trichloroacetimidate (5d)		
Table 1	S7	_
Methyl 2,3,4-tri- <i>O</i> -benzyl-6- <i>O</i> -(3',4'-di- <i>O</i> -benzyl-β-D-mannopyranurono-2',6'-lacton-1'-yl)-	S7	S47
α-D-glucopyranoside (7aβ)		
Methyl 2,3,4-tri-O-benzyl-6-O-(3',4'-di-O-benzyl-α-D-mannopyranurono-2',6'-lacton-1'-yl)-	S7	S50
α-D-glucopyranoside (7aα)		
Table 2	S9	-
Methyl 2,3- <i>O</i> -isopropylidene-4- <i>O</i> -(3',4'-di- <i>O</i> -benzyl-β-D-mannopyranurono-2',6'-lacton-1'-yl)-	S9	S52
α-L-rhamnopyranoside (7bβ)		
Allyl 2-O-(3',4'-di-O-benzyl-β-D-mannopyranurono-2',6'-lacton-1'-yl)-	S10	S55
3- <i>O</i> -benzyl-4,6- <i>O</i> -benzylidene-α-D-mannopyranoside (7cβ)		
Methyl 2-O-(3',4'-di-O-benzyl-β-D-mannopyranurono-2',6'-lacton-1'-yl)-3-O-benzyl-	S10	S58
4,6- <i>O</i> -benzylidene-α-D-glucopyranoside (7dβ)		
Methyl 2,3,6-tri-O-benzyl-4-O-(3',4'-di-O-benzyl-β-D-mannopyranurono-2',6'-lacton-1'-yl)-	S11	S61
α-D-glucopyranoside (7eβ)		
Methyl 2,3,4-tri-O-benzyl-6-O-(3'-di-O-benzyl-4'-O-tert-butyldimethylsilyl-	S11	S64
β-D-mannopyranurono-2',6'-lacton-1'-yl)-α-D-glucopyranoside (7fβ)		
Methyl 2,3,4-tri-O-benzyl-6-O-(3'-di-O-benzyl-4'-O-tert-butyldimethylsilyl-	S11	S67
α-D-mannopyranurono-2',6'-lacton-1'-yl)-α-D-glucopyranoside (7fα)		
Scheme S1. Preparations of the authentic samples of the α -glycosides.	S12	-
2,6-Di-O-acethyl-3,4-di-O-benzyl-D-mannopyranosyl diphenylphosphate (S3)	S12	S69
Methyl 2,3-O-isopropylidene-4-O-(2',6'-di-O-acetyl-3',4'-di-O-benzyl-	S13	S71
α-D-mannopyranosyl)-α-L-rhamnopyranoside (S4b)		
Allyl 2-O-(2',6'-di-O-acetyl-3',4'-di-O-benzyl-α-D-mannopyranosyl)-	S14	S73
3-O-benzyl-4,6-O-benzylidene-α-D-mannopyranoside (S4c)		
Methyl 2-O-(2',6'-di-O-acetyl-3',4'-di-O-benzyl-α-D-mannopyranosyl)-	S14	S75
3-O-benzyl-4,6-O-benzylidene-α-D-glucopyranoside (S4d)		
Methyl 2,3-O-isopropylidene-4-O-(3',4'-di-O-benzyl-α-D-mannopyranosyl)-	S15	S77

α-L-rhamnopyranoside (S5b)		
Allyl 2-O-(3',4'-di-O-benzyl-α-D-mannopyranosyl)-3-O-benzyl-4,6-O-benzylidene-	S15	S79
α-D-mannopyranoside (S5c)		
Methyl 2-0-(3',4'-di-O-benzyl-α-D-mannopyranosyl)-	S15	S81
3- <i>O</i> -benzyl-4,6- <i>O</i> -benzylidene-α-D-glucopyranoside (S5d)		
Methyl 2,3,6-tri-O-benzyl-4-O-(3',4'-di-O-benzyl-α-D-mannopyranosyl)-	S16	S83
α-D-glucopyranoside (S5e)		
Methyl 2,3-O-isopropylidene-4-O-(3',4'-di-O-benzyl-α-D-mannopyranurono-2',6'-lacton-1'-yl)-	S16	S85
α-L-rhamnopyranoside (7bα)		
Allyl 2-O-(3',4'-di-O-benzyl-α-D-mannopyranurono-2',6'-lacton-1'-yl)-	S17	S87
3-O-benzyl-4,6-O-benzylidene-α-D-mannopyranoside (7cα)		
Methyl 2-O-(3',4'-di-O-benzyl-α-D-mannopyranurono-2',6'-lacton-1'-yl)-	S17	S89
3-O-benzyl-4,6-O-benzylidene-α-D-glucopyranoside (7dα)		
Methyl 2,3,6-tri-O-benzyl-4-O-(3',4'-di-O-benzyl-α-D-mannopyranurono-2',6'-lacton-1'-yl)-	S17	S91
α-D-glucopyranoside (7eα)		
Scheme 3	S18	-
Methyl 2,3,4-tri-O-benzyl-6-O-(3',4'-di-O-benzyl-β-D-mannopyranosyl)-α-D-glucopyranoside (8)	S18	S93
Methyl 2,3,4-tri-O-benzyl-6-O-(methyl(3',4'-di-O-benzyl-β-D-mannopyranosyl)uronate)-	S18	S95
α-D-glucopyranoside (9)		
Table 3	S19	-
3,4-Di-O-benzyl-α-D-mannopyranurono-2,6-lacton-1-yl diphenylphosphate (10)	S19	S97
3-(3',4'-Di- <i>O</i> -benzyl-β-D-mannopyranurono-2',6'-lacton-1'-yl)propene (11)	S19	S100
Table 4	S20	-
Scheme S2. Preparations of 2,6-anhydro sugar 12.	S20	-
Ethyl 1-thio-3,4-di-O-benzyl-6-O-tosyl-α-D-mannopyranoside (S7)	S20	S103
Ethyl 1-thio-3,4-di- <i>O</i> -benzyl-2,6-anhydro-α-D-mannopyranoside (S8)	S21	S105
3 ,4-Di- <i>O</i> -benzyl-2,6-anhydro-β-D-mannopyranosyl trichloroacetimidate (12)	S21	S107


General Information

Analytical thin layer chromatography (TLC) was performed using Merck KGaA TLC 60F-254 plates (0.25 mm), and visualization was accomplished by 10 % sulfuric acid in EtOH or PMA (Phosphomolybdic acid), followed by heating or UV irradiation (254 nm). Specific rotations were measured on an automatic polarimeter with a path length of 50 mm in the solvent specified. Concentrations are given in g/100 mL. Optical rotations were measured on a JASCO P-2200 photoelectric polarimeter. ¹H and ¹³C NMR spectra were recorded on a JEOL Ltd. JNM-ECP400 series (400 MHz). Chemical shifts (δ) are reported in parts par million (ppm) downfield or upfield from tetramethylsilane (δ 0.00), (CD₃)₂CO (δ 2.05) or CHCl₃ (δ 7.26), integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, and m = multiplet) and coupling constants (Hz). ¹³C chemical shifts are reported in ppm downfield or upfield from (CD₃)₂CO (δ 29.8, 206.3) and CDCl₃ (δ 77.36). High-resolution mass spectra (HRMS) were recorded on a JEOL Ltd. AccuTOFCS JIMS-T100CS with an electrospray ionization (ESI) source coupled. Silica-gel column chromatography was performed on FUJI SILYSIA CHEMICAL Ltd. Silica Gel PSQ60B 46-50 µm (spherical, neutral). HPLC analysis was performed JASCO 860-CO (Column Oven), JASCO

880-31 (Solvent Mixing Module), JASCO 880-50 (3-Line Degasser), JASCO 880-PU (Intelligent HPLC Pump), JASCO 875-UV (Intelligent UV/Vis Detector, 254 nm) and JASCO 807-IT (Integrator).

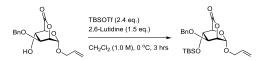

Scheme 2

Allyl 3-O-benzyl-α-D-mannopyranoside (2)

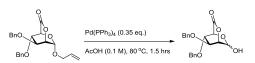
Under Ar atmosphere, to a solution of $1^{[1]}$ (6.38 g, 29.0 mmol) in toluene (145.0 ml) was added "Bu₂SnO (0.72 g, 2.90 mmol) at room temperature and the mixture was refluxed and stirred for 24 hrs. The mixture was cooled to room temperature and concentrated *in vacuo*. Under Ar atmosphere, to a solution of crude product in MeCN (52.7 ml) and DMF (5.3 ml) were added K₂CO₃ (6.01 g, 43.5 mmol) and "Bu₄NBr (0.93 g, 2.90 mmol) at room temperature. After stirring for 10 min, BnBr (6.94 ml, 58.0 mmol) was added and the reaction was stirred at 80 °C for 24 hrs. After the mixture was cooled to room temperature, it was firtrated through Slicagel pad and concentrated *in vacuo*. The residue was purified by flash column chromatography (50 g, Hexane \rightarrow Hexane/EtOAc = 3/1 \rightarrow Hexane/EtOAc = 1/1 \rightarrow Hexane/EtOAc = 3/7), which gave the title compound **2** (3.65 g, 41%) in 2 steps as brown oil. The spectra of the obtained compound is identical to the reported ones.^[2]

Allyl 3-O-benzyl-α-D-mannopyranurono-2,6-lactone (3)

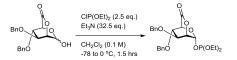
Under Ar atmosphere, to a solution of **2** (387.0 mg, 1.25 mmol) and PhI(OAc)₂ (0.76 g, 2.37 mmol) in anhydrous CH₂Cl₂ (12.5 ml) was added TEMPO (39.1 mg, 250.0 µmol) at 0 °C. After stirring for 30 min, reaction temperature was raised to reflux and the mixture was stirred for 2 hrs. After the TLC analysis showed the completion of reaction, the reaction was quenched by 10% Na₂S₂O₃ aq. and the mixture was extracted with CH₂Cl₂. The combined organic layer was washed with water and brine, dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by flash column chromatography (10 g, Hexane \rightarrow Hexane/EtOAc = 9/1 \rightarrow Hexane/EtOAc = 4/1), which gave the title compound **3** as yellow oil (206.0 mg, 54%). R_f = 0.37 (Hexane/EtOAc = 2/1, v/v); $[\alpha]^{20}_{D}$ = +37.1 (*c* 0.7, CHCl₃); ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.39-7.26 (m, 5H, Ar-H), 5.87 (dddd, $J_{\beta\gamma trans}$ = 14.8 Hz, $J_{\beta\gamma cis}$ = 9.6 Hz, $J_{\beta\alpha l}$ = 4.8 Hz, $J_{\beta\alpha 2}$ = 6.0 Hz, 1H, H-β), 5.28 (d, $J_{\beta\gamma trans}$ = 14.8 Hz, I_{H} , H- γ_{trans}), 5.25 (d, $J_{\beta\gamma cis}$ = 9.6 Hz, 1H, H- γ_{cis}), 5.19 (d, $J_{1,2}$ = 3.2 Hz, 1H, H-1), 4.78 (ddd, $J_{2,1}$ = 3.2 Hz, $J_{2,3}$ = 1.2 Hz, $J_{2,4}$ = 2.4 Hz, 1H, H-2), 4.64 & 4.59 (ABq, J = 11.6 Hz, 2H, PhCH₂), 4.37 (dd, $J_{4,2}$ = 2.4 Hz, $J_{4,5}$ = 0.8 Hz, 1H, H-4), 4.34 & 4.31 (dd, $J_{\alpha 1,\alpha 2}$ = 12.6 Hz, $J_{\alpha 1,\beta}$ = 4.8 Hz, 1H, H-4), 1.3 & 4.10 (dd, $J_{\alpha 1,\alpha 2}$ = 12.6 Hz, $I_{\alpha 1,\beta}$ = 6.0 Hz, 1H, H- α 2), 4.02 (d, $J_{3,2}$ = 1.2 Hz, 1H, H-3), 3.97 (d, $J_{5,4}$ = 0.8 Hz, 1H, H-5), 3.00 (br, 1H, -OH); ¹³C NMR (100 MHz, CDCl₃, TMS) δ 168.5, 136.9, 132.8, 128.6, 128.2, 127.9, 119.0, 95.6, 75.8, 74.9, 74.1, 72.4, 70.8, 70.5; HRMS (ESI) Calcd for C₁₆H₁₈O₆Na [M+Na]⁺: 329.1001, found: 329.1010.


Allyl 3,4-di-O-benzyl-α-D-mannopyranurono-2,6-lactone (4a)

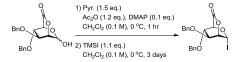
Under Ar atmosphere, to 3 (21.9 mg, 71.5 µmol), TriBOT (11.4 mg, 28.6 µmol) and activated 5 Å molecular sieves (150


mg) was added anhydrous 1,4-dioxane (1.43 ml) at room temperature. After stirring for 30 min, TfOH (1.3 μl, 14.3 μmol) was added at room temperature, and the mixture was stirred for 12 hrs. The reaction was quenched by Et₃N, the mixture was filtrated through Celite pad and concentrated *in vacuo*. The residue was purified by open column chromatography (7 g, Hexane/EtOAc = 4/1), which gave the title compound **4a** (21.4 mg, 75%) as colorless oil. $R_f = 0.57$ (Hexane/EtOAc = 4/1, v/v); $[\alpha]^{20}_{D} = +28.2$ (*c* 0.2, CHCl₃); ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.34-7.31 (m, 10H, Ar-H), 5.89 (dddd, $J_{\beta,\gamma trans} = 17.2$ Hz, $J_{\beta,\gamma cis} = 10.4$ Hz, $J_{\beta,\alpha 2} = 6.4$ Hz, $J_{\beta,\alpha l} = 4.8$ Hz, 1H, H_β), 5.29 (d, $J_{\beta,\gamma trans} = 17.2$ Hz, 1H, H- γ trans), 5.22 (d, $J_{\beta,\gamma cis} = 10.4$ Hz, 1H, H- γ _{cis}), 5.20-5.19 (m, 1H, H-1), 4.76 (s, 1H, H-2), 4.63 & 4.49 (ABq, J = 12.0 Hz, 2H, PhCH₂), 4.50 (s, 1H, H-5), 4.37 & 4.34 (dd, $J_{\alpha l,\alpha 2} = 12.4$ Hz, $J_{\alpha l,\beta} = 4.8$ Hz, 1H, H- α 1), 4.24 (s, 1H, H-4), 4.12 & 4.08 (dd, $J_{\alpha 2,\alpha l} = 12.4$ Hz, $J_{\alpha 2,\beta} = 6.4$ Hz, 1H, H- α 2), 3.77 (s, 1H, H-3); ¹³C NMR(100 MHz, CDCl₃, TMS) δ 168.4, 137.1, 133.4, 128.6, 128.2, 128.2, 128.0, 127.9, 118.2, 95.7, 79.6, 75.5, 74.7, 71.2, 71.1, 69.8; HRMS (ESI) Calcd for C₂₃H₂₄NaO₆ [M+Na]⁺: 419.1471, found: 419.1465.

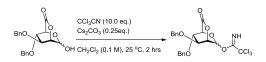
Allyl 3-O-benzyl-4-O-tert-butyldimethylsilyl-α-D-mannopyranurono-2,6-lactone (4b)


Under Ar atmosphere, to a solution of **3** (0.52 g, 1.7 mmol) and 2,6-lutidine (0.30 ml, 2.6 mmol) in anhydrous CH₂Cl₂ (1.7 ml) was added TBSOTf (0.94 ml, 4.0 mmol) at 0 °C and the mixture was stirred for 3 hrs. The mixture was poured into sat. NaHCO₃ aq. and extracted with CH₂Cl₂. The combined organic layer was washed with water and brine, dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by flash column chromatography (10 g, Hexane \rightarrow Hexane/EtOAc = 19/1), which gave the title compound **4b** as yellow oil (0.40 g, 95%). R_f = 0.67 (Hexane/EtOAc = 4/1, v/v); $[\alpha]^{20}_{D}$ = +15.5 (*c* 0.3, CHCl₃); ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.40-7.27 (5H, m), 5.89 (dddd, $J_{\beta,\gamma trans}$ = 17.2 Hz, $J_{\beta,\gamma cis}$ = 14.8 Hz, $J_{\beta,\alpha 2}$ = 6.4 Hz, 1H, H- β), 5.12 (d, $J_{\gamma trans,\beta}$ = 17.2 Hz, 1H, H- γ trans), 5.24 (d, $J_{\beta,\gamma cis}$ = 14.8 Hz, 1H, H- γ cis), 5.08 (s, 1H, H-1), 4.70 (s, 1H, H-2), 4.62 & 4.57 (ABq, *J* = 11.2 Hz, 2H, PhCH₂), 4.34 & 4.31 (dd, $J_{\alpha 1,\alpha 2}$ = 12.6 Hz, $J_{\alpha 1,\beta}$ = 4.8 Hz, 1H, H- α 1), 4.16 (s, 1H, H-4), 4.02 (s, 1H, H-3), 4.08 & 4.05 (dd, $J_{\alpha 1,\alpha 2}$ = 12.6 Hz, 1H, H- α 2), 3.93 (s, 1H, H-5), 0.91 (s, 9H, C(CH₃)₃), 0.11 (s, 6H, Si(CH₃)₂); ¹³C NMR (100 MHz, CDCl₃, TMS) δ 168.9, 137.2, 133.45, 128.6, 128.1, 127.9, 117.9, 95.4, 75.0, 74.9, 74.3, 71.2, 69.2, 25.7, 18.0, -4.6, -4.8; HRMS (ESI) Calcd for C₂₂H₃₂O₆SiNa [M+Na]⁺: 443.1866, found: 443.1873.

3,4-Di-O-benzyl-D-mannopyranurono-2,6-lactone (S1)


Under Ar atmosphere, to a solution of allyl glycoside **4a** (407.5 mg, 1.03 mmol) in AcOH (10.3 ml) was added Pd(PPh₃)₄ (416.6 mg, 360.0 µmol) at room temperature. The mixture was degassed, and then warmed up to 80 °C. The mixture was stirred for 1.5 hrs. The mixture was filtilated through Celite pad and concentrated *in vacuo*. The residue was purified by column chromatography (15 g, Hexane/EtOAc = 1/1), which gave the title compound **S1** (346.6 mg, 95%, mixture of α-and β-anomers) as yellow oil. $R_f = 0.51$ (Hexane/EtOAc = 1/1, v/v); ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.34-7.30 (m, 20H, Ar-H), 5.40-5.39 (m, 0.3H), 5.18 (s, 0.7H), 4.76-4.73 (m, 1H), 4.63-4.62 (m, 5H), 4.19 (s, 0.4H), 3.77-3.76 (m, 1H), 3.64 (s, 0.6H); ¹³C NMR (100 MHz, CDCl₃, TMS) δ 168.8, 136.6, 136.6, 128.8, 128.7, 128.7, 128.7, 128.5, 128.4, 128.3, 128.3, 128.3, 128.3, 128.2, 128.1, 128.0, 91.3, 90.4, 79.1, 77.8, 77.4, 75.6, 73.8, 71.5, 71.5, 71.4, 71.1, 71.0, 70.9; HRMS (ESI) Calcd for $C_{20}H_{20}NaO_6$ [M+Na]⁺: 379.1158, found: 379.1141.

3,4-Di-O-benzyl-a-D-mannopyranurono-2,6-lacton-1-yl diethyl phosphite (5aa)


Under Ar atmosphere, to a solution of hemiacetal **S1** (109.0 mg, 0.31 mmol) and Et₃N (0.32 ml, 2.29 mmol) in anhydrous CH₂Cl₂ (3.06 ml) was added diethyl chlorophosphite (0.11 ml, 0.76 mmol) at -78 °C and the mixture was gradually warmed up to 0 °C, and stirred for 2 hrs. Et₃N (1.06 ml, 7.65 mmol) was added at 0 °C, and the mixture was extracted with ice-cooled CH₂Cl₂. The organic layer was washed with cold sat. NaHCO₃ aq. and brine, dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by flash column chromatography (10 g, Hexane/EtOAc = 9/1 \rightarrow Hexane/EtOAc = 4/1 + 5% Et₃N), which gave the α -anomer **5a** α as colorless syrup (29.0 mg, 20%). R_f = 0.45 (Hexane/EtOAc = 4/1, v/v); [α]²⁰_D = -46.0 (*c* 0.2, CHCl₃); ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.36-7.29 (m, 10H, Ar-H), 5.61-5.59 (m, 1H, H-1), 4.75 (s, 1H, H-2), 4.64 & 4.48 (ABq, *J* = 11.8 Hz, 2H, PhCH₂), 4.59 & 4.52 (ABq, *J* = 11.8 Hz, 2H, PhCH₂), 4.54 (s, 1H, H-5), 3.95-3.86 (m, 4H, CH₂ × 2), 3.80 (s, 1H, H-4), 3.71 (s, 1H, H-3), 1.28-1.24 (m, 6H, CH₃); ¹³C NMR (100 MHz, CDCl₃, TMS) δ 168.1, 136.6, 136.6, 128.7, 128.7, 128.4, 128.3, 128.2, 128.0, 89.8, 89.7, 79.3, 77.6, 71.4, 71.1, 71.1, 59.1, 59.0, 58.9, 16.9, 16.9, 16.8, 16.8; HRMS (ESI) Calcd for C₂₄H₂₉NaO₈P [M+Na]⁺: 499.1498, found: 499.1485.

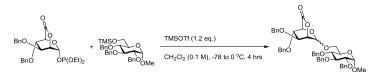
3,4-Di-O-benzyl-α-D-mannopyranurono-2,6-lacton-1-yl iodide (5bα)

Under Ar atmosphere, to a solution of hemiacetal **S1** (61.0 mg, 171.2 µmol), Pyr. (20.7 µl, 256.8 µmol) and Ac₂O (19.4 µl, 205.4 µmol) in anhydrous CH₂Cl₂ (1.71 ml) was added DMAP (2.1 mg, 17.1 µmol) at 0 °C. The mixture was stirred for 1 hr. The reaction was quenched by water. The mixture was extracted with CH₂Cl₂, and the organic layer was washed with water, 1 M KHSO₄ aq. and brine, dried over Na₂SO₄ and concentrated *in vacuo*. Under Ar atmosphere, to a solution of the residue (66.9 mg) in anhydrous CH₂Cl₂ (1.71 ml) was added TMSI (26.7 µl, 188.3 µmol) at 0 °C and the mixture was stirred for 3 days. The mixture was co-evaporated with toluene for 3 times. The mixture was purified by open column chromatography (7 g, Hexane/EtOAc = 4/1), which gave the pure α -anomer **5ba** as brown syrup (18.4 mg, 23% in 2 steps) and anomeric mixture **5ba** as brown syrup (5.6 mg, 7% in 2 steps). For **5ba**: R_f = 0.43 (Hexane/EtOAc = 4/1, v/v); $[\alpha]^{20}_{D}$ = -149.5 (*c* 0.8, CHCl₃); ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.38-7.29 (m, 10H, Ar-H), 6.68 (s, 1H, H-1), 4.90 (s, 1H, H-2), 4.59 & 4.50 (ABq, *J* = 12.0 Hz, 2H, PhCH₂), 4.59 & 4.46 (ABq, *J* = 12.0 Hz, 2H, PhCH₂), 4.46 (s, 1H, H-5), 3.86 (s, 1H, H-4), 3.78 (s, 1H, H-3); ¹³C NMR (100 MHz, CDCl₃, TMS) δ 165.5, 136.3, 136.3, 128.8, 128.8, 128.6, 128.5, 128.2, 128.1, 80.2, 80.1, 71.6, 71.3, 71.2, 58.2; HRMS (ESI) Calcd for C₂₀H₁₉INaO₅ [M+Na]⁺: 489.0175, found: 489.0157. For **5ba**: ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.38-7.29 (m, 10H, H-1), 5.29 & 4.90 (m, 1H, H-2), 4.64-4.44 (m, 5H, H-5, Ph2CH₂×2), 4.40 & 3.86 (s, 1H, H-4), 3.80-3.77 (s, 1H, H-3)

3,4-Di-O-benzyl-D-mannopyranurono-2,6-lactone-1-yl trichloroacetimidate (5c)

Under Ar atmosphere, to a solution of hemiacetal **S1** (98.4 mg, 196.0 μ mol) and CCl₃CN (0.20 ml, 1.96 mmol) in anhydrous CH₂Cl₂ (1.96 ml) was added Cs₂CO₃ (17.3 mg, 49.1 μ mol) at room temperature. After the TLC analysis showed the completion of reaction, the reaction mixture was filtrated through Celite pad and concentrated *in vacuo*. The residue was

purified by open column chromatography (7 g, Petroleum ether/CHCl₃ = 1/19), which gave the title compound **5cα** (31.2 mg, 32%) and **5cβ** (20.8 mg, 19%) in 2 steps as colorless oil, each. For **5cα**: Colorless oil, $R_f = 0.29$ (Petroleum ether/CHCl₃ = 1/9, v/v); $[\alpha]^{20}_{D} = +25.6$ (*c* 0.2, CHCl₃); ¹H NMR (400 MHz, CDCl₃, TMS) δ 8.70 (s, 1H, NH), 7.36-7.28 (m, 10H, Ar-H), 6.39 (d, $J_{1,2} = 3.3$ Hz, 1H, H-1), 5.00 (ddd, $J_{2,1} = 3.3$ Hz, $J_{2,3} = 1.0$ Hz, $J_{2,4} = 1.9$ Hz, 1H, H-2), 4.65 (dd, $J_{5,3} = 1.9$ Hz, $J_{5,4} = 0.8$ Hz, 1H, H-5), 4.62 & 4.47 (ABq, J = 12.0 Hz, 2H, PhCH₂), 4.56 & 4.56 (ABq, J = 11.6 Hz, 2H, PhCH₂), 4.23 (dd, $J_{4,2} = 1.9$ Hz, $J_{4,3} = 1.6$ Hz, 1H, H-4), 3.84 (dd, $J_{3,4} = 4.6$ Hz, $J_{3,5} = 1.9$ Hz, 1H, H-3); ¹³C NMR (100 MHz, CDCl₃, TMS) δ 167.4, 160.4, 136.7, 136.5, 128.7, 128.6, 128.6, 128.5, 128.4, 128.2, 128.0, 92.8, 78.9, 73.5, 73.4, 72.5, 71.2, 71.1; HRMS (ESI) Calcd for C₂₂H₂₀Cl₃NO₆Na [M+Na]⁺: 522.0254, found: 522.0226. For **5cβ**: Colorless oil, $R_f = 0.52$ (Petroleum ether/CHCl₃ = 1/9, v/v); $[\alpha]^{20}_{D} = -15.2$ (*c* 0.3, CHCl₃); ¹H NMR (400 MHz, CDCl₃, TMS) δ 8.67 (s, 1H, NH), 7.37-7.30 (m, 10H, Ar-H), 6.30 (s, 1H, H-1), 5.10 (s, 1H, H-2), 4.66 & 4.49 (ABq, J = 11.4 Hz, 2H, PhCH₂), 4.65 (s, 1H, H-5), 4.62 & 4.54 (ABq, J = 12.0 Hz, 2H, PhCH₂), 3.85 (s, 1H, H-4), 3.80 (s, 1H, H-3); ¹³C NMR (100 MHz, CDCl₃, TMS) δ 167.2, 160.8, 136.4, 136.4, 128.8, 128.8, 128.7, 128.5, 128.4, 128.3, 128.2, 128.0, 93.5, 79.2, 77.2, 75.1, 71.7, 71.5, 71.2; HRMS (ESI) Calcd for C₂₂H₂₀Cl₃NO₆Na [M+Na]⁺: 522.0254, found: 522.0262. The NOE correlation observed between δ 6.30 and δ 3.80 confirmed the stereochemistry at C-1 to be β.


3-O-Benzyl-4-O-tert-butyldimethylsilyl-D-mannopyranurono-2,6-lactone-1-yl trichloroacetimidate (5d)

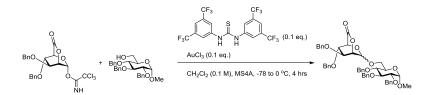
Under Ar atmosphere, to a solution of 4b (54.3 mg, 129.1 µmol) in AcOH (1.29 ml) was added Pd(PPh₃)₄ (44.8 mg, 38.7 µmol) at room temperature. The mixture was degassed, and then warmed to 80 °C. The mixture was stirred for 15 min. The mixture was filtilated through Celite pad and concentrated in vacuo. Under Ar atmosphere, to a solution of the crude product and CCl₃CN (0.13 ml, 1.29 mmol) in anhydrous CH₂Cl₂ (1.29 ml) was added Cs₂CO₃ (11.4 mg, 32.3 µmol) at room temperature. After the TLC analysis showed the completion of reaction, the reaction was filtrated through Celite pad and concentrated *in vacuo*. The residue was purified by open column chromatography (7 g, Hexane/CH₂Cl₂ = 3/7), which gave the title compound 5da (9.3 mg, 14% in 2 steps), 5d β (17.8 mg, 26% in 2 steps). For 5da: Colorless oil, $R_f = 0.33$ $(\text{Hexane/CH}_2\text{Cl}_2 = 3/7, \text{v/v}); [\alpha]^{20}_{D} = +54.5 (c \ 0.1, \text{CHCl}_3); ^{1}\text{H} \text{NMR} (400 \text{ MHz}, \text{CDCl}_3, \text{TMS}) \delta 8.67 (s, 1H, \text{NH}),$ 7.35-7.31 (m, 5H, Ar-H), 6.36 (m, 1H, H-1), 4.97 (s, 1H, H-2), 4.65 & 4.60 (ABq, J = 12.0 Hz, 2H, PhCH₂), 4.36 (s, 1H, H-5), 4.08 (s, 1H, H-4), 4.08 (s, 1H, H-3), 0.87 (s, 9H, C(CH₃)₃), 0.10 (s, 3H, -CH₃), 0.09 (s, 3H, -CH₃); ¹³C NMR (100 MHz, CDCl₃, TMS) & 167.7, 160.6, 136.5, 128.7, 128.4, 128.3, 93.2, 76.1, 75.9, 74.2, 73.2, 71.3, 25.7, 18.0, -4.7, -4.8; HRMS (ESI) Calcd for $C_{21}H_{28}Cl_3NO_6SiNa \ [M+Na]^+$: 546.0649, found: 546.0636. For 5d β : Colorless oil, $R_f = 0.59$ $(\text{Hexane/CH}_2\text{Cl}_2 = 3/7, \text{v/v}); [\alpha]^{20}_{\text{D}} = -11.6 (c \ 0.6, \text{CHCl}_3); ^{1}\text{H NMR} (400 \text{ MHz}, \text{CDCl}_3, \text{TMS}) \delta 8.66 (s, 1H, NH), 7.37-7.33$ (m, 5H, Ar-H), 6.29 (s, 1H, H-1), 5.12 (s, 1H, H-2), 4.65 & 4.60 (ABq, J = 12.0 Hz, 2H, PhCH₂), 4.36 (s, 1H, H-5), 4.07 (s, 1H, H-4), 3.67 (s, 1H, H-3), 0.90 (s, 9H, C(CH₃)₃), 0.13 (s, 6H, Si(CH₃)₂); ¹³C NMR (100 MHz, CDCl₃, TMS) & 167.6, 160.8, 136.4, 128.7, 128.4, 128.0, 93.7, 79.7, 75.6, 74.4, 74.3, 71.4, 25.7, 18.0, -4.58, -4.79; HRMS (ESI) Calcd for $C_{21}H_{28}Cl_3NO_6SiNa$ [M+Na]⁺: 546.0649, found: 546.0651. The NOE correlation observed between δ 6.29 and δ 3.67 confirmed the stereochemistry at C-1 to be β .


Table 1

Entry 1

Under Ar atmosphere, to a glycosyl phosphite **5a** α (16.7 mg, 35.1 µmol) and trimethylsilylated acceptor **6a**^{*[3]} (22.6 mg, 42.1 µmol) was added anhydrous CH₂Cl₂ (0.35 ml) at room temperature. After stirring for 30 min, TMSOTf (7.6 µl, 42.1 µmol) were added at -78 °C, and the mixture was stirred and warmed up to 0 °C over 4 hrs. The reaction was quenched by Et₃N at 0 °C and the mixture was concentrated *in vacuo*. The residue was purified by flash column chromatography (10 g, Hexane/EtOAc = 9/1 \rightarrow Hexane/EtOAc = 17/3 \rightarrow Hexane/EtOAc = 4/1). The ratio of α - and β -anomers was determined by NMR (25.5 mg, 52%, α : β = 1:9).

Entry 2


Under Ar atmosphere, to a glycosyl iodide **5ba** (16.0 mg, 36.7 µmol), glycosyl acceptor **6a**^[4] (18.7 mg, 40.4 µmol) and activated 4 Å molecular sieves (30 mg) was added anhydrous CH₂Cl₂ (0.37 ml) at room temperature. After stirring for 30 min, Ph₃PO (10.2 mg, 36.7 µmol) and DIPEA (6.4 µl, 36.7 µmol) were added at 0 °C, and the mixture was stirred for 4.5 days. The reaction was diluted with 10 mL of CH₂Cl₂. The mixture was filtrated through Celite pad and the mixture concentrated *in vacuo*. The residue was purified by flash column chromatography (10 g, Hexane only \rightarrow Hexane/EtOAc = 9/1 \rightarrow Hexane/EtOAc = 17/3 \rightarrow Hexane/EtOAc = 4/1), which gave the β-anomer (10.1 mg, 37%, β-only), and the α -anomer was not detected by ¹H NMR.

Entry 3

Under Ar atmosphere, to glycosyl iodide **5b** $\alpha\beta$ (9.8 mg, 21.0 µmol, $\alpha:\beta = 2:1$), glycosyl acceptor **6a** (10.7 mg, 23.1 µmol) and activated 4 Å molecular sieves (20 mg) was added anhydrous CH₂Cl₂ (0.21 ml) at room temperature. After stirring for 30 min, Ph₃PO (5.8 mg, 21.0 µmol) and DIPEA (3.7 µl, 21.0 µmol) were added at 0 °C. The mixture was stirred for 4.5 days. The reaction was diluted with 10 mL of CH₂Cl₂. The mixture was filtrated through Celite and concentrated *in vacuo*. The residue was purified by open column chromatography (7 g, Hexane/EtOAc = 7/3). The ratio of the α - and β -anomers was analyzed by ¹H NMR (3.0 mg, 37%, $\alpha:\beta = 1:2.3$).

Entry 4, 5

Under Ar atmosphere, to glycosyl imidate $5c\alpha$ or $5c\beta$, glycosyl acceptor 6a (1.2 equiv. to 5c) and activated 4 Å molecular sieves was added anhydrous CH₂Cl₂ (0.1 M to 5c) at room temperature. After stirring for 30 min, gold (III) chloride and 1,3-bis[3,5-bis(trifluoromethyl)phenyl] thiourea were added at -78 °C. The mixture was stirred and warmed up to 0 °C over 4 hrs. The reaction was quenched by Et₃N at 0 °C and diluted with 10 mL of CH₂Cl₂. The mixture was filtrated through

Celite pad and concentrated *in vacuo*. The ratio of the α - and β -anomers was analyzed by HPLC (column, Mightysil, RP-18 MS 150-4.6 (5 µm); eluent, CH₃CN/H₂O = 80/20; flow rate, 1.0 ml/min; $t_R \alpha$ -mannoside 13.400 min; $t_R \beta$ -mannoside 12.258 min).

Methyl 2,3,4-tri-*O*-benzyl-6-*O*-(3',4'-di-*O*-benzyl-β-D-mannopyranurono-2',6'-lacton-1'-yl)-α-D-glucopyranoside (7aβ)

Colorless oil, $R_f = 0.49$ (Hexane/EtOAc = 2:1, v/v); $[\alpha]^{20}_D = +78.7$ (*c* 0.3, CHCl₃); ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.34-7.27 (m, 25H, Ar-H), 4.98 & 4.46 (ABq, *J* = 11.2 Hz, 2H, PhCH₂), 4.85 & 4.48 (ABq, *J* = 11.4 Hz, 2H, PhCH₂), 4.78 & 4.62 (ABq, *J* = 10.8 Hz, 2H, PhCH₂), 4.77 & 4.53 (ABq, *J* = 12.4 Hz, 2H, PhCH₂), 4.76 (s, 1H, H-1'), 4.64 & 4.54 (ABq, *J* = 11.6 Hz, 2H, PhCH₂), 4.62 (s, 1H, H-2'), 4.55 (d, *J*_{1,2} = 3.6 Hz, 1H, H-1), 4.45 (s, 1H, H-5'), 4.01-3.96 (m, 1H, H-6), 3.98 (dd, *J*_{3,2} = 9.6 Hz, *J*_{3,4} = 9.6 Hz, 1H, H-3), 3.79-3.71 (m, 1H, H-5), 3.76 (s, 1H, H'-4), 3.59-3.54 (m, 1H, H-6), 3.55 (s, 1H, H'-3), 3.51 & 3.48 (dd, *J*_{2,3} = 9.6 Hz, *J*_{2,1} = 3.6 Hz, 1H, H-2), 3.40 (d, *J*_{4,3} = 9.6 Hz, 0.5H, H-4), 3.38-3.36 (m, 0.5H, H-4), 3.33 (s, 3H, -OCH₃); ¹³C NMR (100 MHz, CDCl₃, TMS) δ 168.2, 138.8, 138.4, 138.2, 136.7, 136.6, 128.7, 128.7, 128.5, 128.5, 128.4, 128.3, 128.2, 128.2, 128.0, 127.9, 127.8, 127.7, 97.9, 95.7, 82.1, 80.1, 79.6, 77.7, 77.6, 77.3, 76.5, 75.8, 74.8, 73.5, 71.4, 70.9, 70.9, 69.8, 67.2, 55.2; HRMS (ESI) Calcd for C₄₈H₅₀O₁₁Na [M+Na]⁺: 825.3251, found: 825.3225. The NOE correlation observed between δ 4.76 and δ 3.55 confirmed the stereochemistry at C-1 to be β.

Methyl 2,3,4-tri-*O*-benzyl-6-*O*-(3',4'-di-*O*-benzyl-α-D-mannopyranurono-2',6'-lacton-1'-yl)-α-D-glucopyranoside (7aα)

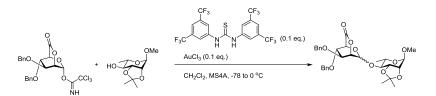
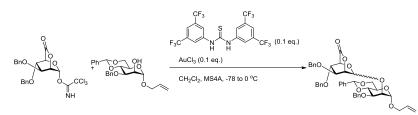

α-anomer: Colorless oil, $R_f = 0.43$ (Hexane/EtOAc = 2:1, v/v); $[α]^{20}_D = +4.1$ (*c* 0.2, CHCl₃); ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.39-7.13 (m, 25H, Ar-H), 5.22-5.21 (m, 1H, H-1'), 4.98 & 4.83 (ABq, *J* = 10.4 Hz, 2H, PhCH₂), 4.81 & 4.70 (ABq, *J* = 12.4 Hz, 2H, PhCH₂), 4.80 (s, 1H, H-2'), 4.67 (s, 2H, PhCH₂), 4.62 (d, *J*_{1,2} = 3.6 Hz, 1H, H-1), 4.54 & 4.43 (ABq, *J* = 11.8 Hz, 2H, PhCH₂), 4.46 (s, 1H, H-5'), 4.40 & 4.32 (ABq, *J* = 12.0 Hz, 2H, PhCH₂), 4.27-4.23 (m, 1H, H-6), 4.18 (s, 1H, H-3'), 3.96 (dd, *J*_{3,2} = 9.2 Hz, *J*_{3,4} = 9.2 Hz, 1H, H-3), 3.72-3.68 (m, 3H, H-4', H-5, H-6), 3.54-3.52 (m, 0.5H, H-4), 3.51 (d, *J*_{4,3} = 9.2 Hz, 0.5H, H-4), 3.49 (dd, *J*_{2,3} = 9.2 Hz, *J*_{2,1} = 3.6 Hz, 1H, H-2), 3.33 (s, 3H, -OCH₃); ¹³C NMR (100 MHz, CDCl₃, TMS) δ 168.2, 138.8, 138.4, 138.2, 136.8, 136.6, 128.6, 128.6, 128.5, 128.5, 128.2, 128.2, 128.1, 128.1, 127.9, 127.8, 98.3, 97.3, 82.0, 79.9, 79.5, 77.3, 76.0, 75.5, 75.2, 74.1, 73.4, 71.7, 71.2, 70.9, 69.7, 67.7, 55.3; HRMS (ESI) Calcd for C₄₈H₅₀O₁₁Na [M+Na]⁺: 825.3251, found: 825.3239.

Table 2

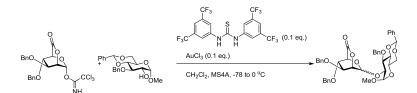
Under Ar atmosphere, to a glycosyl imidate $5c\alpha$ or $5d\alpha$, the glycosyl acceptor listed in Table 2 (1.2 equiv. to $5c\alpha$ or $5d\alpha$) and activated 4 Å molecular sieves was added anhydrous CH₂Cl₂ (0.1 M or 1.5 M to $5c\alpha$ or $5d\alpha$) at room temperature. After stirring for 30 min, gold (III) chloride (0.1 equiv.) and 1,3-bis[3,5-bis(trifluoromethyl)phenyl] thiourea (0.1 equiv.) were added at -78 °C, and the mixture was stirred and gradually warmed up to 0 °C. The reaction was quenched by Et₃N at 0 °C and diluted with 10 mL of CH₂Cl₂. The mixture was filtrated through Celite pad and concentrated *in vacuo*. The residue was purified by column chromatography.

Methyl

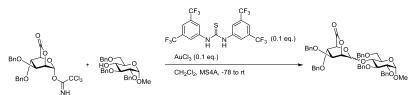

2,3-O-isopropylidene-4-O-(3',4'-di-O-benzyl-β-D-mannopyranurono-2',6'-lacton-1'-yl)-α-L-rhamnopyranoside (7bβ)

6b^[5] was used as an acceptor. The residue was purified by column chromatography (Hexane/EtOAc = 3/1). The ratio of αand β-anomers was analyzed by HPLC (column, Mightysil, RP-18 MS 150-4.6 (5 µm); eluent, CH₃CN/H₂O = 70/30; flow rate, 1.0 ml/min; $t_R \alpha$ -mannoside 8.847 min; $t_R \beta$ -mannoside 9.388 min). For **7b**β: Colorless oil, R_{*J*} = 0.57 (Hexane/EtOAc = 2:1, v/v); $[\alpha]^{20}_D$ = -41.7 (*c* 0.7, CHCl₃); ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.38-7.30 (m, 10H, Ar-H), 5.43-5.42 (m, 1H, H-1'), 4.85 (m, 2H, H-1, H-2'), 4.65 & 4.50 (ABq, *J* = 11.6 Hz, 2H, PhCH₂), 4.60 & 4.53 (ABq, *J* = 12.0 Hz, 2H, PhCH₂), 4.51 (s, 1H, H-5), 4.17 (d, *J*_{3,4} = 5.6 Hz, 0.5H, H-3), 4.17-4.15 (m, 0.5H, H-3), 4.10 (d, *J*_{2,3} = 5.6 Hz, 1H, H-2), 3.80 (s, 1H, H-4'), 3.70 (s, 1H, H-3'), 3.66-3.56 (m, 2H, H-4, H-5), 3.35 (s, 3H, -OCH₃), 1.53 (s, 3H, -CH₃), 1.34 (s, 3H, -CH₃), 1.23-1.21 (m, 3H, C-5); ¹³C NMR (100 MHz, CDCl₃, TMS) δ 168.5, 136.8, 136.7, 128.7, 128.4, 128.1, 127.9, 109.6, 97.9, 94.7, 79.8, 78.3, 78.2, 77.8, 77.3, 77.0, 76.2, 71.4, 71.1, 70.8, 63.9, 54.9, 28.1, 26.4, 17.4; HRMS (ESI) Calcd for C₃₄H₄₄O₁₂Na [M+Na]⁺: 579.2206, found: 579.2217. The NOE correlation observed between δ 5.43-5.42 and δ 3.70 confirmed the stereochemistry at C-1 to be β.

Allyl

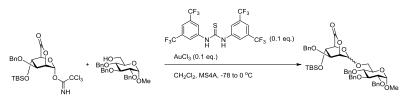

2-*O*-(3',4'-di-*O*-benzyl-β-D-mannopyranurono-2',6'-lacton-1'-yl)-3-*O*-benzyl-4,6-*O*-benzylidene-α-D-mannopyranosi de (7cβ)

6c^[6] was used as an acceptor. The residue was purified by column chromatography (Hexane/EtOAc = 3/1). The ratio of the α- and β-mixtures was analyzed by HPLC (column, Mightysil, RP-18 MS 150-4.6 (5 µm); eluent, CH₃CN/H₂O = 80/20; flow rate, 1.0 ml/min; t_R α-mannoside 10.200 min; t_R β-mannoside 7.500 min). For **7cβ**: Colorless oil, R_f = 0.55 (Hexane/EtOAc = 2:1, v/v); $[\alpha]^{20}_D$ = -14.5 (*c* 0.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.52-7.28 (m, 20H, Ar-H), 5.91-5.81 (dddd, $J_{\beta,\gamma}$ -trans = 18.8 Hz, $J_{\beta,\gamma}$ -cis = 10.4 Hz, $J_{\beta,\alpha 2}$ = 5.6 Hz, $J_{\beta,\alpha 1}$ = 4.6 Hz, 1H, CH_β), 5.63 (s, 1H, PhCH), 5.26 (d, $J_{\gamma-trans,\beta}$ = 18.8 Hz, 1H, H- γ trans), 5.21 (d, $J_{\gamma-cis,\beta}$ = 10.4 Hz, 1H, H- γ cis), 5.18 (s, 1H, H-1'), 4.91 (s, 1H, H-2'), 4.86 (s, 1H, H-1), 4.76 & 4.70 (ABq, J = 12.2 Hz, 2H, PhCH₂), 4.62 & 4.47 (ABq, J = 11.8 Hz, 2H, PhCH₂), 4.55 & 4.45 (ABq, J = 11.8 Hz, 2H, PhCH₂), 4.45 (s, 1H, H-5'), 4.27 (s, 1H, H-2), 4.24-4.22 (m, 1H, H-6), 4.16 (dd, $J_{\alpha 1,\alpha 2}$ = 12.6 Hz, $J_{\alpha 1,\beta}$ = 4.6 Hz, 1H, H-3), 3.94 (dd, $J_{\alpha 2,\alpha 1}$ = 12.6 Hz, $J_{\alpha 2,\beta}$ = 5.6 Hz, 1H, H-4'), 3.05 (d, $J_{3,4}$ = 9.2 Hz, 1H, H-3'); ¹³C NMR (100 MHz, CDCl₃, TMS) δ 167.8, 138.7, 137.6, 136.6, 136.5, 133.4, 128.9, 128.7, 128.5, 128.3, 128.2, 128.0, 127.6, 127.4, 126.1, 118.1, 101.5, 97.7, 93.8, 79.7, 78.6, 77.8, 77.3, 76.2, 74.4, 72.8, 72.3, 71.5, 71.1, 70.9, 68.8, 68.3, 64.3, 29.8; HRMS (ESI) Calcd for C4₃H₄₄O₁₁Na [M+Na]⁺: 759.2781, found: 759.2753. The NOE correlation observed between δ 5.18 and δ 3.63 confirmed the stereochemistry at C-1 to be β .


Methyl

2-*O*-(3',4'-di-*O*-benzyl-β-D-mannopyranurono-2',6'-lacton-1'-yl)-3-*O*-benzyl-4,6-*O*-benzylidene-α-D-glucopyranoside (7dβ)

6d^[7] was used as an acceptor. The residue was purified by column chromatography (Hexane/EtOAc = 3/1). The ratio of αand β-anomers was analyzed by HPLC (column, Mightysil, RP-18 MS 150-4.6 (5 µm); eluent, CH₃CN/H₂O = 80/20; flow rate, 1.0 ml/min; $t_R \alpha$ -mannoside 6.804 min; $t_R \beta$ -mannoside 6.292 min). For **7dβ**: Colorless oil, R_f = 0.35 (Hexane/EtOAc = 3:1, v/v); [α]²⁰_D = -21.5 (*c* 1.2, CHCl₃); ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.49-7.27 (m, 20H, Ar-H), 5.57 (s, 1H, PhCH), 5.18 (s, 1H, H-1'), 4.95 & 4.63 (ABq, *J* = 11.8 Hz, 2H, PhCH₂), 4.76 (d, $J_{1.2}$ = 3.6 Hz, 1H, H-1), 4.63 & 4.47 (ABq, *J* = 12.0 Hz, 2H, PhCH₂), 4.59 (s, 1H, H-2'), 4.48 & 4.39 (ABq, *J* = 11.8 Hz, 2H, PhCH₂), 4.45 (s, 1H, H-5'), 4.29 (dd, $J_{6.6}$ = 10.0 Hz, $J_{6.5}$ = 4.4 Hz, 1H, H-6), 4.04 (dd, $J_{2.3}$ = 9.2 Hz, $J_{3.4}$ = 9.2 Hz, 1H, H-3), 3.86 (ddd, $J_{5.6}$ = 10.0 Hz, $J_{5.7}$ = 9.2 Hz, $J_{5.6}$ = 4.4 Hz, 1H, H-5), 3.78 (dd, $J_{2.3}$ = 9.2 Hz, $J_{2.1}$ = 3.6 Hz, 1H, H-2), 3.75 (s, 1H, H-4'), 3.74 (dd, $J_{6.6}$ = 10.0 Hz, $J_{6.5}$ = 10.0 Hz, $J_{6.5}$ = 10.0 Hz, $J_{6.5}$ = 10.0 Hz, $I_{6.5}$ = 10.0 Hz, $I_{6.5}$ = 10.0 Hz, $I_{6.5}$ = 10.0 Hz, $I_{6.5}$ = 10.0 Hz, $I_{7.7}$ = 7.76, 7.62, 7.53, 71.5, 71.1, 71.0, 69.1, 62.3, 55.8; HRMS (ESI) Calcd for C₄₁H₄₂O₁₁Na [M+Na]⁺: 733.2625, found: 733.2642. The NOE correlation observed between δ 5.18 and δ 3.47 confirmed the stereochemistry at C-1 to be β.


Methyl 2,3,6-tri-*O*-benzyl-4-*O*-(3',4'-di-*O*-benzyl-β-D-mannopyranurono-2',6'-lacton-1'-yl)-α-D-glucopyranoside (7eβ)

6e^[8] was used as an acceptor. After getting the crude mixture, acetylation was performed for expediting purification by standard procedure using Ac₂O and DMAP in pyr./CH₂Cl₂. Under Ar, to a solution of residue in anhydrous CH₂Cl₂, anhydrous Pyr. and Ac₂O (1.0 equiv. to 6e) was added DMAP (0.6 mg, 4.4 µmol) at 0 °C. After the TLC analysis showed the completion of acetylation, the mixture was extracted with CH_2Cl_2 , and the organic layer was washed with water, 1 M KHSO₄ aq. and brine, dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by column chromatography (Hexane/EtOAc = 2/1). The mixture of α - and β -anomers was analyzed by HPLC (column, Mightysil, RP-18 MS 150-4.6 (5 µm); eluent, CH₃CN/H₂O = 80/20; flow rate, 1.0 ml/min; $t_R \alpha$ -mannoside 12.521 min; $t_R \beta$ -mannoside 10.554 min). For 7eβ: Colorless oil, $R_f = 0.32$ (Hexane/Acetone = 7:3, v/v); $[\alpha]^{20}_{D} = -6.5$ (c 0.3, CHCl₃); ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.40-7.16 (m, 25H, Ar-H), 5.24 (s, 1H, H-1'), 4.89 & 4.80 (ABq, J = 9.8 Hz, 2H, PhCH₂), 4.80 & 4.65 (ABq, J = 12.2 Hz, 2H, PhCH₂), 4.65 (s, 1H, H-2'), 4.62 & 4.45 (ABq, J = 11.2 Hz, 2H, PhCH₂), 4.59 (d, J_{1,2} = 3.6 Hz, 1H, H-1), 4.58 & 4.38 (ABq, J = 11.4 Hz, 2H, PhCH₂), 4.46 (s, 1H, H-5'), 4.33 & 4.24 (ABq, J = 11.6 Hz, 2H, PhCH₂), 3.97 (dd, J_{3,4} = 9.2 Hz, J_{3,2} = 9.2 Hz, 1H, H-3), 3.84-3.81 (m, 0.5 H, H-4), 3.80 (d, *J*_{4,3} = 9.2 Hz, 0.5H, H-4), 3.82-3.79 (m, 1H, H-6), 3.75-3.71 (m, 1H, H-5 & H-4'), 3.61-3.58 (m, 1H, H-6), 3.50 (dd, $J_{2,3} = 9.2$, $J_{2,1} = 3.6$ Hz, 1H, H-2), 3.41 (s, 1H, H-3'), 3.37 (s, 3H, -OCH₃); ¹³C NMR (100 MHz, CDCl₃, TMS) δ 168.3, 138.4, 138.0, 137.8, 136.7, 136.7, 128.7, 128.6, 128.5, 128.4, 128.4, 128.4, 128.3, 128.2, 128.1, 128.1, 128.0, 127.7, 127.6, 98.3, 96.5, 80.8, 79.6, 79.3, 77.7, 76.1, 75.9, 75.3, 73.5, 73.4, 71.1, 70.9, 70.8, 69.2, 68.3, 55.3; HRMS (ESI) Calcd for C₄₈H₅₀O₁₁Na [M+Na]⁺: 825.3251, found: 825.3266. The NOE correlation observed between δ 5.24 and δ 3.41 confirmed the stereochemistry at C-1 to be β .

Methyl

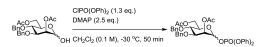
2,3,4-tri-*O*-benzyl-6-*O*-(3'-di-*O*-benzyl-4'-*O*-tert-butyldimethylsilyl-D-mannopyranurono-2',6'-lacton-1'-yl)-α-D-gluco pyranoside (7fα and β)

Glycosyl imidate $5d\alpha$ and glycosyl acceptor 6a were used. The residue was purified by column chromatography (Hexane/EtOAc = $4/1 \rightarrow 2/1$). For **7fB**: Colorless oil, $R_f = 0.46$ (Hexane/EtOAc = 3/1, v/v); $[\alpha]^{20}_D = +18.1$ (c 0.6, CHCl₃); ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.34-7.27 (m, 20H, Ar-H), 4.99 & 4.80 (ABq, *J* = 11.0 Hz, 2H, PhCH₂), 4.87 & 4.56 (ABq, J = 11.2 Hz, 2H, PhCH₂), 4.78 & 4.65 (ABq, J = 11.6 Hz, 2H, PhCH₂), 4.73 (s, 1H, H-1'), 4.64 (s, 1H, H-2'), 4.60 & 4.55 (ABq, J = 11.8 Hz, 2H, PhCH₂), 4.57 (d, $J_{1,2} = 3.6$ Hz, 1H, H-1), 4.17 (s, 1H, H-5'), 4.00 (d, $J_{3,2} = 9.6$ Hz, 0.5H, H-3), 3.99-3.95 (m. 2.5H, H-3, H-4', H-6), 3.79-3.75 (m, 1H, H-5), 3.59-3.55 (m, 1H, H-6), 3.51 (dd, *J*_{2,3} = 9.6 Hz, *J*_{2,1} = 3.2 Hz, 1H, H-2), 3.42 (s, 1H, H-3'), 3.40-3.36 (m, 1H, H-4), 3.35 (s, 3H, -OCH₃), 0.90 (s, 9H, -C(CH₃)₃), 0.11 (s, 3H, -CH₃), 0.11 (s, 3H, -CH₃); ¹³C NMR (100 MHz, CDCl₃, TMS) & 168.7, 138.8, 138.4, 138.2, 136.7, 128.7, 128.5, 128.5, 128.3, 128.2, 128.0, 128.0, 127.9, 127.9, 127.8, 127.7, 97.9, 95.6, 82.1, 80.2, 80.1, 77.8, 77.3, 76.0, 75.8, 74.8, 74.5, 74.5, 73.5, 71.1, 69.8, 67.1, 55.2, 25.7, 18.1, -4.5, -4.8; HRMS (ESI) Calcd for C₄₇H₅₈O₁₁SiNa [M+Na]⁺: 849.3646, found: 849.3655. The NOE correlation observed between δ 4.73 and δ 3.42 confirmed the stereochemistry at C-1 to be β . For 7f α : Colorless oil, $R_f =$ 0.38 (Hexane/EtOAc = 3/1, v/v); $[\alpha]^{20}_{D}$ = -12.4 (c 0.9, CHCl₃); ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.36-7.20 (m, 20H, Ar-H), 5.24-5.23 (m, 1H, H-1'), 4.99 & 4.83 (ABq, J = 10.8 Hz, 2H, PhCH₂), 4.81 & 4.69 (ABq, J = 12.0 Hz, 2H, PhCH₂), 4.78 & 4.55 (ABq, J = 10.4 Hz, 2H, PhCH₂), 4.73 (s, 1H, H-2'), 4.60 & 4.53 (ABq, J = 12.0 Hz, 2H, PhCH₂), 4.57 (d, J_{1,2} = 3.2 Hz, 1H, H-1), 4.21 (s, 1H, H-5'), 4.06 (dd, *J*_{6,6} = 11.6 Hz, *J*_{6,5} = 3.6 Hz, 1H, H-6), 4.03 (s, 1H, H-3'), 3.99 (s, 1H, H-4'), 3.97 (dd, *J*_{3,2} = 9.2 Hz, *J*_{3,4} = 9.2 Hz, 1H, H-3), 3.80 (dd, *J*_{6,6} = 11.6 Hz, *J*_{6,5} = 2.2 Hz, 1H, H-6), 3.69 (ddd, *J*_{5,4} = 9.2 Hz, *J*_{5,6} =3.6 Hz, $J_{5,6}$ = 2.2 Hz, 1H, H-5), 3.47 (dd, $J_{2,3}$ = 9.2 Hz, $J_{2,1}$ = 3.2 Hz, 1H, H-2), 3.44 (dd, $J_{4,3}$ = 9.2 Hz, $J_{4,5}$ = 9.2 Hz, 1H, H-4), 3.32 (s, 3H, -OMe), 0.80 (s, 9H, -C(CH₃)₃), 0.03 (s, 3H, -CH₃), 0.03 (s, 3H, -CH₃);¹³C NMR (100 MHz, CDCl₃, TMS) 8 168.7, 138.8, 138.2, 138.1, 136.9, 128.6, 128.6, 128.5, 128.5, 128.2, 128.1, 128.1, 128.0, 127.9, 127.7, 98.1, 97.1, 81.9, 80.0, 77.7, 77.3, 76.6, 75.9, 75.3, 75.3, 74.9, 74.7, 73.4, 71.1, 70.0, 67.4, 55.3, 25.7, 18.1, -4.6, -4.8; HRMS (ESI) Calcd for C₄₇H₅₈O₁₁SiNa [M+Na]⁺: 849.3646, found: 849.3635.

$B_{\text{Bno}}^{\text{Bno}} \xrightarrow{\text{Bno}} B_{\text{Bno}}^{\text{Bno}} \xrightarrow{\text{Bno}} B_{\text{Bno}}^{\text{Bno}} \xrightarrow{\text{Bno}} B_{\text{Bno}}^{\text{Bno}} \xrightarrow{\text{Bno}} B_{\text{Bno}}^{\text{Bno}} \xrightarrow{\text{Bno}} B_{\text{Bno}}^{\text{Bno}} \xrightarrow{\text{Bno}} G_{\text{Bno}}^{\text{Bno}} \xrightarrow{\text{Bno}} G_{\text{Bno}} \xrightarrow{\text{Bno}} G_{\text{Bno}} \xrightarrow{\text{Bno}} G_{\text{Bno}} \xrightarrow{\text{Bno}} G$				
S2	S3	S4b-d S5b-e	^{BnÓ} 7bα-eα ^{ÓR²}	
	S2	S 3	7α	
b	45.6 mg, 44%	22.0 mg, 78%	4.4 mg, 31%	
c	34.0 mg, 27%	8.7 mg, 33%	26.9 mg, 69%	
d	42.4 mg, 53%	25.9 mg, 75%	13.9 mg, 64%	
e	Not isolated	12.0 mg, 10% in 2 steps.	9.2 mg, 77%	

- AcO OAC

NaOMe NaOMe


[°]

Scheme S1. Preparations of the authentic samples of the α -glycosides.

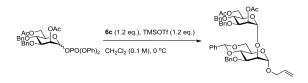
CIPO(OPh)₂ DMAP AcO OAc

Aco OAc

2,6-Di-O-acethyl-3,4-di-O-benzyl-D-mannopyranosyl diphenylphosphate (S3)



Under Ar atmosphere, to a solution of hemiacetal **S2**^[9] (1.03 g, 2.31 mmol) in anhydrous CH₂Cl₂ (23.1 ml) was added diphenyl chlorophosphate (0.62 ml, 3.00 mmol) and DMAP (0.71 g, 5.78 mmol) at -30 °C and the mixture was stirred for 50 min. The reaction was quenched by clashed ice. The mixture was extracted with CH₂Cl₂. The combined organic layer was washed with sat. NaHCO₃ aq. brine and dried over Na₂SO₄. The extracted organic layer was concentrated *in vacuo*. The residue was purified by flash column chromatography (10 g, hexane \rightarrow hexane/EtOAc = 7/3), which gave the title compound **S3** as yellow syrup (1.20 g, 81%, mixture of α - and β -anomers). R_f = 0.46 (Hexane/EtOAc = 2:1, v/v); ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.37-7.20 (m, 20H, Ar-H), 5.89-5.88 & 5.64 (m, 1H, H-1), 5.50-5.48 & 5.39 (m, 1H, H-2), 4.89-4.43 (m, 8H, PhCH₂×4), 4.30-4.23 (m, 1H, H-5), 4.13-4.10 (m, 1H, H-4), 3.97-3.94 (m, 2H, H-3 & H-6), 3.79-3.63 (m, 1H, H-6), 2.16 & 2.12 (m, 3H, -CH₃), 2.00-1.95 (m, 3H, -CH₃); ¹³C NMR (100 MHz, CDCl₃, TMS) δ 170.7, 169.8, 150.4, 137.7, 137.4, 130.0, 128.6, 128.2, 128.2, 128.1, 125.8, 120.5, 120.1, 96.8, 75.4, 73.2, 72.1, 72.0, 67.8, 67.7, 62.7, 20.9, 20.8; HRMS (ESI) Calcd for C₃₆H₃₇NaO₁₁P [M+Na]⁺: 699.1971, found: 699.1973.


Procedure for the reactions from S3 to S4

Under Ar atmosphere, to a glycosyl phosphate S3 and glycosyl acceptor 6b-d (1.2 equiv. to S3) was added anhydrous CH_2Cl_2 (0.1 M to S3) at room temperature. After stirring for 15 min, TMSOTf (1.2 equiv. to S3) were added at 0 °C and the mixture was stirred. After the TLC analysis showed the completion of reaction, the reaction was quenched by Et_3N at 0 °C. The mixture was poured to water, and extracted with CH_2Cl_2 . The organic layer was washed with water and brine, dried over Na_2SO_4 and concentrated *in vacuo*. The residue was purified by flash column chromatography, which gave the title compound S4.

Methyl 2,3-*O*-isopropylidene-4-*O*-(2',6'-di-*O*-acetyl-3',4'-di-*O*-benzyl-α-D-mannopyranosyl)-α-L-rhamnopyranoside (S4b)

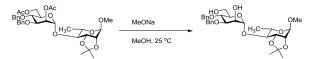
6b was used as an acceptor. The residue was purified by flash column chromatography (Hexane/EtOAc = 9/1 \rightarrow Hexane/EtOAc = 4/1 \rightarrow Hexane/EtOAc = 7/3). Colorless oil; $R_f = 0.46$ (Hexane/EtOAc = 2:1, v/v); $[\alpha]^{20}_{D} = +4.5$ (*c* 1.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.34-7.29 (m, 10H, Ar-H), 5.31 (dd, $J_{2'1'} = 1.6$ Hz, $J_{2'3'} = 3.2$ Hz, 1H, H-2'), 4.96 (d, $J_{1'2'} = 1.6$ Hz, 1H, H-1'), 4.90 & 4.55 (ABq, J = 10.4 Hz, 2H, PhCH₂), 4.83 (s, 1H, H-1), 4.70 & 4.56 (ABq, J = 11.2 Hz, 2H, PhCH₂), 4.52 (dd, $J_{6'6'} = 12.0$ Hz, $J_{6'5'} = 2.4$ Hz, $J_{5'6'} = 2.4$ Hz, $J_{5'6'} = 2.4$ Hz, $J_{5'6'} = 2.0$ Hz, 1H, H-6'), 4.22 (dd, $J_{6'6'} = 12.0$ Hz, $J_{6'5'} = 2.0$ Hz, 1H, H-6'), 4.16 (ddd, $J_{5'6'} = 9.6$ Hz, $J_{5'6'} = 2.4$ Hz, $J_{5'6'} = 2.0$ Hz, 1H, H-5'), 4.08 (d, J = 5.6 Hz, 1H, H-2), 4.02 (dd, $J_{3,2} = 5.6$ Hz, $J_{3,4} = 7.2$ Hz, 1H, H-3), 3.98 (dd, $J_{3'2'} = 3.2$ Hz, $J_{3'4'} = 9.6$ Hz, 1H, H-3'), 3.89 (dd, $J_{4'3'} = 9.6$ Hz, $J_{4'5'} = 9.6$ Hz, 1H, H-4'), 3.67-3.60 (m, 1H, H-5), 3.36 (s, 3H, -OCH₃), 3.34 (dd, $J_{4,3} = 7.2$ Hz, 0.5H, H-4), 3.33-3.32 (m, 0.5H, H-4), 2.16 (s, 3H, -OAc), 2.07 (s, 3H, -OAc), 1.51 (s, 3H, -CH3), 1.30 (s, 3H, -CH3), 1.28-1.27 (m, 3H, C-5); ¹³C NMR (100 MHz, CDCl₃, TMS) δ 170.9, 170.6, 138.1, 137.9, 128.5, 128.3, 128.1, 128.0, 127.9, 109.3, 98.5, 98.0, 81.2, 78.1, 76.7, 76.0, 75.4, 73.7, 71.9, 69.6, 68.8, 64.6, 63.0, 54.9, 28.2, 26.4, 21.2, 21.0, 17.5; HRMS (ESI) Calcd for C₃₀H₄₀O₁₀ [M+Na]⁺: 667.2731, found: 667.2748.

6c was used as an acceptor. The residue was purified column chromatography (Hexane/EtOAc = 13/7). Colorless oil; R_f = 0.53 (Hexane/EtOAc = 3/1, v/v); [α]²⁰_D = +20.5 (*c* 0.7, CHCl₃); ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.51-7.27 (m, 20H, Ar-H), 5.86 (dddd, $J_{\beta,\gamma trans} = 17.2$ Hz, $J_{\beta,\gamma cis} = 10.4$ Hz, $J_{\beta,\alpha 2} = 5.6$ Hz, $J_{\beta,\alpha l} = 4.8$ Hz, 1H, H-β), 5.64 (s, 1H, PhCH), 5.59 (s, 1H, H-2'), 5.25 (d, $J_{\gamma trans,\beta} = 17.2$ Hz, 1H, H- γ_{trans}), 5.20 (d, $J_{\gamma cis,\beta} = 10.4$ Hz, 1H, H- γ_{cis}), 5.12 (s, 1H, H-1'), 4.90 & 4.54 (ABq, J = 10.4 Hz, 2H, PhCH₂), 4.86 & 4.65 (ABq, J = 12.0 Hz, 2H, PhCH₂), 4.83 (s, 1H, H-1), 4.78 & 4.56 (ABq, J = 10.8 Hz, 2H, PhCH₂), 4.36-4.28 (m, 2H, H-6', H-6'), 4.15 (dd, $J_{\alpha l,\alpha 2} = 12.8$ Hz, $J_{\alpha l,\beta} = 4.8$ Hz, 1H, H-α1), 4.07-4.05 (m, 1H, H-3'), 4.03 (m, 2H, H-2, H-5), 3.99-3.97 (m, 3H, H-4, H-5, H-α1), 3.84-3.80 (m, 2H, H-3, H-6), 3.75-3.70 (m 1H, H-4'), 2.13 (s, 3H, -CH₃), 2.06 (s, 3H, -CH₃); ¹³C NMR (100 MHz, CDCl₃, TMS) δ 170.8, 169.9, 138.5, 137.9, 137.9, 137.6, 133.4, 129.0, 128.5, 128.4, 128.3, 128.1, 127.9, 127.6, 127.5, 126.1, 117.8, 101.6, 100.0, 99.0, 79.2, 78.0, 77.4, 76.6, 75.7, 75.5, 74.2, 73.2, 71.9, 70.3, 68.8, 68.3, 68.2, 64.0, 63.6, 21.1, 20.9; HRMS (ESI) Calcd for C₄₇H₅₂O₁₃ [M+Na]⁺: 847.3306, found: 847.3314.

Methyl

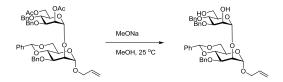
Allyl

2-*O*-(2',6'-di-*O*-acetyl-3',4'-di-*O*-benzyl-α-D-mannopyranosyl)-3-*O*-benzyl-4,6-*O*-benzylidene-α-D-glucopyranoside (S4d)

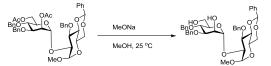


6d was used as an acceptor. The residue was purified by column chromatography (Hexane/EtOAc = 13/7). Colorless oil; $R_f = 0.49$ (Hexane/EtOAc = 2:1, v/v); $[\alpha]^{20}_{D} = +28.2$ (*c* 0.3, CHCl₃); ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.50-7.05 (m, 20H, Ar-H), 5.44 (dd, $J_{2',3'} = 3.6$, $J_{2',1'} = 1.6$ Hz, 1H, H-2'), 4.95 (d, $J_{1',2'} = 1.6$ Hz, 1H, H-1'), 4.92 & 4.54 (ABq, J = 11.0 Hz, 2H, PhCH₂), 4.86 (d, J = 3.6 Hz, 1H, H-1), 4.79 & 4.64 (ABq, J = 10.8 Hz, 2H, PhCH₂), 4.72 & 4.54 (ABq, J = 11.2 Hz, 2H, PhCH₂), 4.32-4.29 (m, 1H, H-6), 4.19-4.13 (m, 3H, H-6', H-6', H-5'), 4.05 (dd, $J_{3',4'} = 9.2$, $J_{3',2'} = 3.6$ Hz, 1H, H-3'), 3.96-3.94 (m, 0.5H, H-4), 3.92 (d, $J_{4,3} = 9.2$ Hz, 0.5H, H-4), 3.88-3.81 (m, 1H, H-5), 3.83 (dd, $J_{2,3} = 9.2$ Hz, $J_{2,1} = 3.6$ Hz, 1H, H-2), 3.79-3.73 (m, 2H, H-4' & H-6), 3.64 (dd, $J_{3,2} = 9.2$ Hz, $J_{3,4} = 9.2$ Hz, 1H, H-3), 3.46 (s, 3H, -OCH₃), 2.16 (s, 3H, -OAc), 2.03 (s, 3H, -OAc); ¹³C NMR (100 MHz, CDCl₃, TMS) δ 170.7, 170.4, 138.4, 137.9, 137.8, 137.4, 128.4, 128.1, 127.9, 127.7, 126.0, 101.4, 97.2, 94.8, 82.4, 78.0, 75.6, 75.2, 74.2, 73.8, 71.9, 69.9, 69.1, 68.8, 63.0, 62.3, 55.5, 21.2, 20.9; HRMS (ESI) Calcd for C₄₅H₅₀O₁₃ [M+Na]⁺: 821.3149, found: 821.3153.

Procedure for the reactions from S4 to S5


To **S4b-d** was added 0.1 M solution of MeONa in MeOH (1.0 equiv. to **S4**) at room temperature and the mixture was stirred for 30 min. To the mixture was added protonic ion-exchanger resin, AMBERLYST 15 (H^+), until the pH of the mixture became about 7. The resin was removed by filtration through a cotton pad, and the filtrate was concentrated *in vacuo*. The residue was purified by column chromatography to give **S5**.

Methyl 2,3-O-isopropylidene-4-O-(3',4'-di-O-benzyl-α-D-mannopyranosyl)-α-L-rhamnopyranoside (S5b)


S4b was employed. The residue was purified by column chromatography (Hexane/EtOAc = 7/13). Colorless oil; $R_f = 0.69$ (CHCl₃/MeOH = 9:1, v/v); $[\alpha]^{20}_D$ = +21.4 (*c* 0.6, CHCl₃); ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.35-7.29 (m, 10H, Ar-H), 4.94 (s, 1H, H-1'), 4.86 & 4.62 (ABq, *J* = 11.2 Hz, 2H, PhCH₂), 4.84 (s, 1H, H-1), 4.72 & 4.62 (ABq, *J* = 11.4 Hz, 2H, PhCH₂), 4.10-4.07 (m, 2H, H-2 & H-3), 3.99 (br, 1H, H-2'), 3.94-3.93 (m, 1H, H-5'), 3.87-3.84 (m, 2H, H-3' & H-6'), 3.75-3.71 (m, 2H, H-4' & H-6'), 3.66-3.59 (m, 1H, H-5), 3.36 (s, 1H, -OMe), 3.31-3.29 (m, 1H, H-4), 2.76 (br, 1H, -OH), 2.56 (s, 1H, -OH), 1.52 (s, 3H, -CH3), 1.31 (s, 3H, -CH3), 1.26-1.24 (m, 3H, C-5); ¹³C NMR (100 MHz, CDCl₃, TMS) δ 138.2, 137.8, 128.7, 128.5, 128.2, 128.1, 128.1, 128.0, 109.3, 100.8, 98.0, 83.0, 80.0, 75.9, 75.2, 74.6, 72.4, 72.4, 68.8, 64.3, 62.3, 54.9, 28.0, 26.2, 17.6, 14.3; HRMS (ESI) Calcd for C₃₄H₄₄O₁₂ [M+Na]⁺: 583.2519, found: 583.2505.

Allyl 2-O-(3',4'-di-O-benzyl-α-D-mannopyranosyl)-3-O-benzyl-4,6-O-benzylidene-α-D-mannopyranoside (S5c)

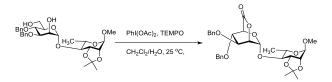
S4c was employed. The residue was purified by column chromatography (Hexane/EtOAc = 1/1). Colorless oil; $R_f = 0.55$ (Hexane/EtOAc = 1:2, v/v); $[\alpha]^{20}_D$ = +32.9 (*c* 0.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.52-7.27 (m, 20H, Ar-H), 5.86 (dddd, $J_{\beta,\gamma trans} = 17.2$ Hz, $J_{\beta,\gamma cis} = 10.4$ Hz, $J_{\beta,\alpha I} = 4.8$ Hz, $J_{\beta,\alpha 2} = 4.6$ Hz, 1H, H-β), 5.62 (s, 1H, PhCH), 5.25 (d, $J_{\gamma trans,\beta}$ = 17.2 Hz, 1H, H- γ trans), 5.20 (d, $J_{\gamma cis,\beta} = 10.4$ Hz, 1H, H- γ cis), 5.16 (s, 1H, H-1'), 4.88 & 4.65 (ABq, *J* = 10.8 Hz, 2H, PhCH₂), 4.86 (d, *J* = 1.6 Hz, H-1), 4.83 & 4.68 (ABq, *J* = 12.0 Hz, 2H, PhCH₂), 4.73 (s, 2H, PhCH₂), 4.26-4.20 (m, 2H, H-2', H-3), 4.13 (dd, $J_{\alpha 1,\alpha 2} = 12.8$ Hz, $J_{\alpha 1,\beta} = 4.8$ Hz, 1H, H- α 1), 4.04-4.00 (m, 3H, H-2, H-5, H-6), 3.97-3.92 (m, 1H, H-3'), 3.94 (dd, $J_{\alpha 2,\alpha l} = 12.8$ Hz, $J_{\alpha 2,\beta} = 4.6$ Hz, 1H, H- α 2), 3.86-3.83 (m, 1H, H-4'), 3.81-3.73 (m, 5H, H-4, H-6, H-5', H-6', H-6'), 2.52 (br, 1H, -OH), 1.98 (br, 1H, -OH); ¹³C NMR (100 MHz, CDCl₃, TMS) δ 138.4, 138.1, 137.9, 137.6, 129.0, 128.6, 128.6, 128.5, 128.3, 128.2, 128.0, 127.9, 127.6, 127.6, 126.1, 117.8, 101.6, 98.9, 79.7, 79.1, 77.3, 75.9, 75.4, 74.2, 73.3, 72.2, 72.2, 68.9, 68.4, 68.1, 64.1, 62.1; HRMS (ESI) Calcd for C4₃H₄₈O₁₁ [M+Na]⁺: 763.3094, found: 763.3089.

Methyl 2-O-(3',4'-di-O-benzyl-a-D-mannopyranosyl)-3-O-benzyl-4,6-O-benzylidene-a-D-glucopyranoside (85d)

S4d was employed. The residue was purified by column chromatography (Hexane/EtOAc = 1/4). Colorless oil; $R_f = 0.55$ (Hexane/EtOAc = 1/4, v/v); [α]²⁰_D = +23.0 (*c* 0.3, CHCl₃); ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.49-7.07 (m, 20H, Ar-H), 5.58 (s, 1H, PhCH), 5.02 (s, 1H, H-1[']), 4.90-4.87 (m, 1H, H-1), 4.89 & 4.65 (ABq, *J* = 11.0 Hz, 2H, PhCH₂), 4.81 & 4.67 (ABq, *J* = 10.6 Hz, 2H, PhCH₂), 4.71 (s, 2H, PhCH₂), 4.32-4.28 (m, 1H, H-6), 4.17 (s, 1H, H-2[']), 4.00-3.81 (m, 7H, H-3['], H-5['], H-6['], H-6['], H-2, H-3, H-6), 3.77-3.64 (m, 3H, H-4['], H-4, H-5), 3.44 (s, 3H, -OCH₃), 2.63 (br, 1H, -OH), 1.69 (br, 1H, -OH); ¹³C NMR (100 MHz, CDCl₃, TMS) δ 138.7, 137.9, 137.9, 137.4, 129.0, 128.7, 128.6, 128.4, 128.3, 128.0, 127.9, 127.9, 127.8, 127.7, 126.0, 101.3, 97.1, 96.1, 82.3, 79.9, 76.9, 75.7, 75.1, 73.8, 73.7, 72.2, 71.7, 69.1, 68.6, 62.4, 61.6, 55.4; HRMS (ESI) Calcd for C₄₁H₄₆O₁₁ [M+Na]⁺: 737.2938, found: 737.2950.

Methyl 2,3,6-tri-O-benzyl-4-O-(3',4'-di-O-benzyl-α-D-mannopyranosyl)- α-D-glucopyranoside (S5e)

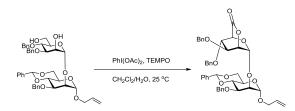
 $B_{\text{B}0}^{\text{A}\text{CO}} \underbrace{\bigcap_{\text{t}}^{\text{OAC}}}_{\text{t}} OPO(OPh)_2 2) \text{ MeONa, MeOH (0.05 M), 25 °C, 45 min} \underbrace{D_{\text{B}0}^{\text{HO}} \underbrace{O_{\text{B}0}^{\text{OH}}}_{\text{B}0} \underbrace{O_{\text{OH}}}_{\text{B}0} \underbrace{O_{\text{B}0}^{\text{OH}}}_{\text{B}0} \underbrace{O_{\text{B}0}^{O$


Under Ar atmosphere, to a glycosyl phosphate **S3** (100.1 mg, 155.2 µmol) and glycosyl acceptor **6e** (79.3 mg, 186.3 µmol) was added anhydrous CH₂Cl₂ (1.55 ml) at room temperature. After stirring for 15 min, TMSOTf (28.0 µl, 155.2 µmol) were added at 0 °C and the mixture was stirred for 30 min. After the TLC analysis showed the completion of reaction, the reaction was quenched by Et₃N at 0 °C. The mixture was poured to water, and extracted with CH₂Cl₂. The organic layer was washed with water and brine, dried over Na₂SO₄ and concentrated *in vacuo*. To the crude product was added 0.05 M MeONa in MeOH (3.0 ml) at room temperature and the mixture was stirred for 45 min. To the mixture was added protonic ion-exchanger resin, AMBERLYST 15 (H⁺), until the pH of the mixture became about 7. The resin was removed by filtration through a cotton pad, and the filtrate was concentrated *in vacuo*. The residue was purified by open column chromatography (7 g, Hexane/EtOAc = 1/1 → Hexane/EtOAc = 2/3) to afford **S5e** as colorless oil (12.0 mg, 10% in 2 steps.). R_f = 0.27 (Hexane/EtOAc = 1:1, v/v); $[\alpha]^{20}_{D}$ = +36.6 (*c* 0.6, CHCl₃); ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.33-7.30 (m, 25H, Ar-H), 5.31 (s, 1H, H-1'), 5.04-5.01 (m, 1H), 4.86-4.83 (m, 1H), 4.75-4.72 (m, 1H), 4.61-4.51 (m, 9H), 3.88-3.84 (m, 2H), 3.76-3.62 (m, 10H), 3.55-3.51 (m, 1H), 3.39 (s, 3H, -OCH₃); ¹³C NMR (100 MHz, CDCl₃, TMS) δ 138.5, 138.3, 138.1, 138.0, 128.6, 128.6, 128.5, 128.4, 128.2, 128.1, 127.8, 127.6, 127.6, 101.3, 97.8, 81.8, 80.3, 79.7, 75.6, 75.2, 74.0, 73.6, 73.3, 72.7, 72.1, 69.8, 69.0, 68.9, 62.1, 55.4; HRMS (ESI) Calcd for C₄₈H₅₄O₁₁ [M+Na]⁺: 829.3564, found: 829.3588.

Procedure for the reaction from S5 to 7

To **S5b-e** and PhI(OAc)₂ (3.5 equiv. to **S5**) in CH₂Cl₂ and H₂O (0.1 M to **S5**, 2/1, v/v) was added TEMPO (0.2 equiv. to **S5**) at room temperature and the mixture was stirred. After the TLC analysis showed the completion of reaction, the reaction was quenched by 10% Na₂S₂O₃ aq. and the mixture was extracted with CH₂Cl₂. The organic layer was washed with water and brine, dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by column chromatography, which gave the title compound **7\alphab-e**.

Methyl

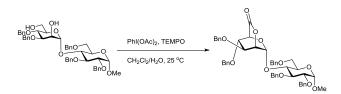


S5b was used. The residue was purified by column chromatography (Hexane/EtOAc = 3/1). Colorless oil, $R_f = 0.57$ (Hexane/EtOAc = 2:1, v/v); $[\alpha]^{20}_D = +7.1$ (*c* 0.9, CHCl₃); ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.35-7.29 (m, 10H, Ar-H), 5.43-5.42 (m, 1H, H-1'), 4.83 (s, 1H, H-1), 4.69 (s, 1H, H-2'), 4.67 & 4.49 (ABq, *J* = 11.8 Hz, 2H, PhCH₂), 4.58 (s, 1H, H-5'), 4.55 & 4.51 (ABq, *J* = 11.8 Hz, 2H, PhCH₂), 4.35 (dd, *J*_{3,2} = 6.0 Hz, *J*_{3,4} = 6.8 Hz, 1H, H-3), 4.14 (s, 1H, H-3'), 4.09 (d, *J*_{2,3} = 6.0 Hz, 1H, H-2), 3.69-3.61 (m, 1H, H-5), 3.37 (s, 1H, -OCH₃), 3.35-3.34 (m, 0.5H, H-4), 3.34 (d, *J*_{4,3} = 6.8 Hz, 0.5H, H-4), 1.53 (s, 3H, -CH₃), 1.35 (s, 3H, -CH₃), 1.16-1.15 (m, 3H, C-5); ¹³C NMR (100 MHz, CDCl₃, TMS) δ 168.3, 137.1, 137.0, 128.6, 128.2, 128.1, 127.9, 109.5, 98.2, 96.8, 83.2, 79.7, 77.3, 76.7, 75.8, 75.4, 74.1, 71.6, 71.1, 71.0, 63.8, 55.0, 28.1, 26.3, 17.8; HRMS (ESI) Calcd for C₃₄H₄₄O₁₂Na [M+Na]⁺: 579.2206, found: 579.2215.

Allyl

2-*O*-(3',4'-di-*O*-benzyl-α-D-mannopyranurono-2',6'-lacton-1'-yl)-3-*O*-benzyl-4,6-*O*-benzylidene--α-D-mannopyranosi de (7cα)

S5c was used. The residue was purified by column chromatography (Hexane/EtOAc = 3/1). Colorless oil; $R_f = 0.66$ (Hexane/EtOAc = 2:1, v/v); $[α]^{20}_D$ = +30.0 (*c* 0.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.52-7.30 (m, 20H, Ar-H), 5.87 (dddd, $J_{\beta,\gamma trans} = 19.2$ Hz, $J_{\beta,\gamma cis} = 11.2$ Hz, $J_{\beta,\alpha l} = 6.0$ Hz, $J_{\beta,\alpha 2} = 5.2$ Hz, 1H, H-β), 5.60 (s, 1H, PhCH), 5.47-5.46 (s, 1H, H-1'), 5.17 (d, $J_{\gamma trans,\beta} = 19.2$ Hz, 1H, H- γ_{trans}), 5.13 (d, $J_{\gamma cis,\beta} = 11.2$ Hz, 1H, H- γ_{cis}), 4.92 (s, 1H, H-2'), 4.88 (d, $J_{l,2} = 1.6$ Hz, 1H, H-1), 4.83 & 4.68 (ABq, J = 12.0 Hz, 2H, PhCH₂), 4.61 & 4.50 (ABq, J = 11.6 Hz, 2H, PhCH₂), 4.56 & 4.47 (ABq, J = 11.6 Hz, 2H, PhCH₂), 4.49 (s, 1H, H-5'), 4.25-4.22 (m, 1H, H-6), 4.18-4.17 (m, 0.5H, H-2), 4.17 (d, $J_{2,l} = 1.6$ Hz, 0.5H, H-2), 3.99-3.92 (m, 3H, H-3, H-4, H-α1), 3.81-3.72 (m, 3H, H-3', H-5, H-6), 3.67 (dd, $J_{\alpha l,\alpha 2} = 12.8$ Hz, $J_{\alpha l,\beta} = 6.0$ Hz, 1H, H-α1); ¹³C NMR (100 MHz, CDCl₃, TMS) δ 138.4, 138.2, 137.6, 137.1, 137.0, 133.7, 129.0, 128.6, 128.6, 128.3, 128.2, 128.2, 128.0, 127.9, 127.7, 126.1, 117.4, 101.6, 99.5, 96.9, 79.7, 79.4, 77.3, 75.9, 75.4, 74.8, 73.8, 73.6, 71.6, 71.3, 70.9, 69.0, 68.2, 63.8; HRMS (ESI) Calcd for C₄₃H₄₄O₁₁Na [M+Na]⁺: 759.2781, found: 759.2775.


Methyl

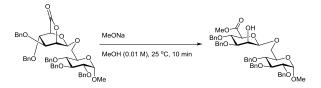
2-*O*-(3',4'-di-*O*-benzyl-α-D-mannopyranurono-2',6'-lacton-1'-yl)-3-*O*-benzyl-4,6-*O*-benzylidene--α-D-glucopyranosid e (7dα)

S5d was used. The residue was purified by column chromatography (Hexane/EtOAc = 7/3). Colorless oil; $R_f = 0.16$ (Hexane/EtOAc = 3:1, v/v); $[\alpha]^{20}_{D}$ = +21.5 (*c* 1.2, CHCl₃); ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.45-7.21 (m, 20H, Ar-H), 5.55 (s, 1H, PhCH), 5.34 (d, $J_{1',2'}$ = 2.8 Hz, 1H, H-1'), 4.89 (d, $J_{1,2}$ = 3.6 Hz, 1H, H-1), 4.78 & 4.71 (ABq, *J* = 11.4 Hz, 2H, PhCH₂), 4.77 (d, $J_{2',1'}$ = 3.6 Hz, 1H, H-2'), 4.53 & 4.46 (ABq, *J* = 12.2 Hz, 2H, PhCH₂), 4.51 (s, 1H, H-5'), 4.48 & 4.41 (ABq, *J* = 11.8 Hz, 2H, PhCH₂), 4.31 (s, 1H, H-3'), 4.29 (dd, $J_{6,6}$ = 10.0 Hz, $J_{6,5}$ = 4.4 Hz, 1H, H-6), 4.06(dd, $J_{3,2}$ = 9.2, $J_{2,1}$ = 3.6 Hz, H-2), 3.93 (dd, $J_{3,2}$ = 9.2 Hz, $J_{3,4}$ = 9.2 Hz,1H, H-3), 3.81 (ddd, $J_{5,6}$ = 10.0 Hz, $J_{5,4}$ = 9.2 Hz, $J_{5,6}$ = 4.4 Hz, 1H, H-5), 3.75 (dd, $J_{6,6}$ = 10.0, $J_{6,5}$ = 4.4 Hz, 1H, H-6), 3.60 (dd, $J_{4,3}$ = 9.2 Hz, $J_{4,5}$ = 9.2 Hz, 1H, H-4), 3.42 (s, 3H, -OCH₃); ¹³C NMR (100 MHz, CDCl₃, TMS) δ 168.1, 138.9, 137.4, 137.0, 136.9, 128.6, 128.2, 128.2, 128.0, 127.5, 126.1, 101.4, 97.8, 94.3, 81.5, 79.4, 77.3, 77.0, 76.9, 75.9, 75.0, 74.2, 71.9, 71.0, 71.0, 69.0, 62.5, 55.3; HRMS (ESI) Calcd for C₄₁H₄₂O₁₁Na [M+Na]⁺: 733.2625, found: 733.2642.

Methyl 2,3,6-tri-*O*-benzyl-4-*O*-(3',4'-di-*O*-benzyl-α-D-mannopyranurono-2',6'-lacton-1'-yl)- α-D-glucopyranoside (7eα)

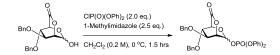
S5e was used. The residue was purified by column chromatography (Hexane/EtOAc = 3/1). Colorless oil; $R_f = 0.64$ (Hexane/EtOAc = 2:1, v/v); $[α]^{20}_D$ = +33.5 (*c* 0.6, CHCl₃); ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.40-7.22 (m, 25H, Ar-H), 5.41-5.40 (m, 1H, H-1'), 4.99 & 4.60 (ABq, *J* = 11.6 Hz, 2H, PhCH₂), 4.75 & 4.64 (ABq, *J* = 10.6 Hz, 2H, PhCH₂), 4.62 (d, $J_{1,2} = 3.6$ Hz, 1H, H-1), 4.72 & 4.62 (ABq, *J* = 11.4 Hz, 2H, PhCH₂), 4.53 & 4.37 (ABq, *J* = 12.2 Hz, 2H, PhCH₂), 4.45 & 4.36 (ABq, *J* = 11.8 Hz, 2H, PhCH₂), 4.40 & 4.31 (ABq, *J* = 12.2 Hz, 2H, PhCH₂), 4.35 (s, 1H, H-5'), 4.07 (s, 1H, H-2'), 4.02 (s, 1H, H-3'), 3.87 (d, $J_{3,2} = 9.2$ Hz, 0.5H, H-3), 3.86-3.84 (m, 0.5 H, H-3), 3.80-3.75 (m, 2H, H-4 & H-6), 3.68 (s, 1H, H-4'), 3.65-3.60 (m, 2H, H-5 & H-6), 3.53 (dd, $J_{2,3} = 9.2$, $J_{2,1} = 3.6$ Hz, 1H, H-2), 3.39 (s, 3H, -OCH₃); ¹³C NMR (100 MHz, CDCl₃, TMS) δ 168.3, 138.5, 138.5, 137.9, 137.1, 136.7, 128.8, 128.6, 128.3, 128.2, 128.1, 128.1, 127.9, 127.9, 127.5, 97.9, 97.9, 81.2, 80.1, 79.8, 76.4, 75.6, 74.9, 74.4, 73.4, 73.3, 71.6, 71.3, 71.0, 69.5, 68.3, 55.4; HRMS (ESI) Calcd for C₄₈H₅₄O₁₁Na [M+Na]⁺: 825.3251, found: 825.3241.

Scheme 3

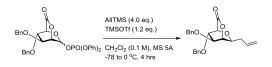

Methyl 2,3,4-tri-O-benzyl-6-O-(3',4'-di-O-benzyl-β-D-mannopyranoyl)-α-D-glucopyranoside (8)

To a solution of **7a** β (12.1 mg, 12.6 µmol) in MeOH (0.15 ml) was added NaBH₄ (5.7 mg, 150.7 µmol) at room temperature and the mixture was stirred for 10 min. After the TLC analysis showed the completion of reaction, the mixture was poured to water, and extracted with CH₂Cl₂. The organic layer was washed with water and brine, dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by column chromatography (10 g, Hexane/EtOAc = 1/2), which gave the title compound **8** as colorless oil (9.9 mg, 82%). R_f = 0.44 (Hexane/EtOAc = 1/3, v/v); [α]²⁰_D = +21.5 (*c* 0.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.38-7.22 (m, 25H, Ar-H), 5.00 & 4.81 (ABq, *J* = 10.8 Hz, 2H, PhCH₂), 4.91 & 4.63 (ABq, *J* = 10.8 Hz, 2H, PhCH₂), 4.86 & 4.55 (ABq, *J* = 11.6 Hz, 2H, PhCH₂), 4.78 & 4.65 (ABq, *J* = 11.0 Hz, 2H, PhCH₂), 4.73 & 4.68 (ABq, *J* = 12.0 Hz, 2H, PhCH₂), 4.55 (s, 1H, H-1'), 4.14 (s, 1H, H-1), 4.02-3.97 (m, 2H, H-3', H-6), 3.92-3.91 (m, 1H, H-2), 3.85-3.80 (m, 2H, H-3, H-5), 3.78-3.69 (m, 3H, H-5', H-6, H-6), 3.58-3.54 (m, 1H, H-6'), 3.53-3.44 (m, 3H, H-3, H-2', H-4'), 3.34 (s, 3H, -OCH₃), 3.24-3.20 (m, 1H, H-4); ¹³C NMR (100 MHz, CDCl₃, TMS) δ 138.8, 138.4, 138.2, 138.1, 137.8, 128.6, 128.6, 128.5, 128.2, 128.0, 128.0, 127.9, 127.7, 100.1, 100.0, 98.0, 82.2, 81.2, 79.9, 77.3, 75.8, 75.4, 75.3, 74.8, 74.2, 73.5, 71.6, 69.9, 68.3, 68.3, 62.3, 55.3; HRMS (ESI) Calcd for C₄₈H₅₄O₁₁Na [M+Na]⁺: 829.3564, found: 829.3549.

Methyl


2,3,4-tri-O-benzyl-6-O-(methyl(3',4'-di-O-benzyl-β-D-mannopyranosyl)uronate)-α-D-glucopyranoside (9)

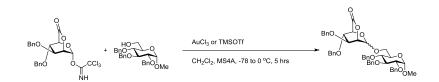
To **7aβ** (10.0 mg, 12.5 µmol) was added 0.01 M solution of MeONa in MeOH (1.25 ml) at room temperature and the mixture was stirred for 10 min. To the mixture was added protonic ion-exchanger resin, AMBERLYST 15 (H⁺), until the pH of the mixture became about 7. The resin was removed by filtration through a cotton pad, and the filtrate was concentrated *in vacuo*. The residue was purified by column chromatography (7 g, Hexane/EtOAc = 1/1), which gave the title compound **9** as colorless oil (7.9 mg, 76%). $R_f = 0.47$ (Hexane/EtOAc = 1/1, v/v); $[\alpha]^{20}_D = +13.3$ (*c* 0.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.35-7.23 (m, 25H, Ar-H), 4.99 & 4.81 (ABq, *J* = 11.4 Hz, 2H, PhCH₂), 4.86 & 4.53 (ABq, *J* = 11.4 Hz, 2H, PhCH₂), 4.84 & 4.62 (ABq, *J* = 11.0 Hz, 2H, PhCH₂), 4.73 & 4.68 (ABq, *J* = 12.0 Hz, 2H, PhCH₂), 4.54 (d, *J*_{1/2'} = 3.6 Hz, 1H, H-1'), 4.17-4.13 (m, 1H, H-4), 4.14 (s, 1H, H-1), 4.09-4.06 (m, 1H, H-6), 3.98 (dd, *J*_{3/2'} = 9.6 Hz, *J*_{3/4'} = 9.6 Hz, 1H, H-3'), 3.89 (s, 1H, H-2), 3.76-3.73 (m, 2H, H-5, H-5'), 3.68 (s, 3H, COOCH₃), 3.53-3.50 (m, 1H, H-6), 3.49 (dd, *J*_{2/3'} = 9.6 Hz, *J*_{2/1'} = 3.6 Hz, 1H, H-2), 2.45 (br, 1H, -0H); ¹³C NMR (100 MHz, CDCl₃, TMS) δ 168.8, 138.8, 138.4, 138.1, 138.0, 137.8, 128.6, 128.6, 128.5, 128.5, 128.5, 128.2, 128.2, 128.1, 128.0, 127.9, 127.8, 127.7, 100.4, 97.9, 82.2, 80.0, 79.9, 77.6, 77.3, 75.8, 75.3, 75.1, 74.8, 74.6, 73.5, 71.7, 69.8, 68.5, 68.0, 55.2, 52.5; HRMS (ESI) Calcd for C₄₉H₅₄O₁₂Na [M+Na]⁺: 857.3513, found: 857.3493.


Table 3

3,4-Di-O-benzyl-α-D-mannopyranurono-2,6-lacton-1-yl diphenylphosphate (10)

Under Ar atmosphere, to a solution of hemiacetal **S1** (81 mg, 0.23 mmol) and 1-methylimidazole (50 µl, 0.57 mmol) in anhydrous CH₂Cl₂ (1.1 ml) was added diphenyl chlorophosphate (90 µl, 0.46 mmol) at 0 °C and the mixture was stirred for 1.5 hrs. The reaction was quenched by clashed ice. The mixture was extracted with CH₂Cl₂. The combined organic layer was washed with brine, dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by flash column chromatography (10 g, hexane \rightarrow hexane/EtOAc = 4/1), which gave the title compound **10** as colorless syrup (0.11 g, 83%). For the α -anomer: R_f = 0.62 (Hexane/EtOAc = 2/1, v/v); $[\alpha]^{20}_{D}$ = -41.4 (*c* 0.3, CHCl₃); ¹H NMR (400 MHz, (CD₃)₂CO) δ 7.44-7.27 & 7.25-7.24 (m, 20H, Ar-H), 6.26-6.25 (m, 1H, H-1), 5.22 (s, 1H, H-2), 4.76 (s, 1H, H-5), 4.75 & 4.66 (ABq, *J* = 12.0 Hz, 2H, PhCH₂), 4.73 & 4.65 (ABq, *J* = 12.0 Hz, 2H, PhCH₂), 4.06 (s, 1H, H-3), 3.91 (s, 1H, H-4); ¹³C NMR (100 MHz, (CD₃)₂CO) δ 167.2, 150.6, 150.5, 150.5, 137.6, 137.6, 130.1, 130.0, 128.4, 128.4, 128.2, 128.0, 128.0, 127.9, 125.7, 125.7, 94.6, 94.6, 79.2, 77.3, 76.6, 76.5, 71.8, 70.9; HRMS (ESI) Calcd for C₃₂H₂₉NaO₉P [M+Na]⁺: 611.1447, found: 611.1459. For **5ba** β : ¹H NMR (400 MHz, (CD₃)₂CO, TMS) δ 7.44-7.24 (m, 20H, Ar-H), 6.25-6.21 (m, 1H, H-1), 5.22 & 5.15 (m, 1H, H-2), 4.81-4.55 (m, 5H, H-5, Ph2CH₂×2), 4.20 & 4.06 (m, 1H, H-3), 3.95 & 3.91 (m, 1H, H-4).

Procedures for Table 3



Under Ar atmosphere, to donor 10α or $10\alpha\beta$, AllTMS (4.0 equiv. to 10) and activated 5 Å molecular sieves was added anhydrous CH₂Cl₂ (0.46 ml) at room temperature. After stirring for 30 min, TMSOTf (1.2 equiv. to 10) were added at -78 °C. The mixture was stirred and warmed up to 0 °C over 4 hrs. The reaction was quenched by Et₃N at 0 °C. The mixture was filtrated through Celite pad and concentrated *in vacuo*. The residue was diluted with CH₂Cl₂, and the solution was washed with water and brine, dried over Na_2SO_4 and concentrated *in vacuo*, which gave the title compound **11** as colorless oil without further purification.

3-(3',4'-Di-O-benzyl-β-D-mannopyranurono-2',6'-lacton-1-yl)propene (11)

R_f = 0.60 (Hexane/EtOAc = 3/1, v/v); $[\alpha]^{20}_{D}$ = -11.7 (*c* 0.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.35-7.29 (m, 10H, Ar-H), 5.78-5.67 (dddd, $J_{\beta,\gamma trans}$ = 18.0 Hz, $J_{\beta,\gamma cis}$ = 9.6 Hz, $J_{\beta,\alpha l}$ = 8.0 Hz, $J_{\beta,\alpha 2}$ = 7.6 Hz, 1H, H_β), 5.17 (d, $J_{\beta,\gamma trans}$ = 18.0 Hz, 1H, H-γ trans), 5.16 (d, $J_{\beta,\gamma cis}$ = 9.6 Hz, 1H, H-γ_{cis}), 4.67 (s, 1H, H-2), 4.65 & 4.49 (ABq, *J* = 12.6 Hz, 2H, PhCH₂), 4.65 & 4.48 (ABq, *J* = 12.0 Hz, 2H, PhCH₂), 4.46 (s, 1H, H-5), 3.90 (dd, $J_{H-1,\alpha l}$ = 6.8 Hz, $J_{H-1,\alpha 2}$ = 6.4 Hz, 1H, H-1), 3.82 (s, 1H, H-4), 3.63 (s, 1H, H-3), 2.49-2.42 & 2.36-2.29 (ddd, $J_{\alpha l,\alpha 2}$ = 13.2 Hz, $J_{\alpha l,\beta}$ = 8.0 Hz, $J_{\alpha 2,\beta}$ = 7.6 Hz, $J_{H-1,\alpha l}$ = 6.8 Hz, $J_{H-1,\alpha l}$ = 6.4 Hz, 2H, $H_{\alpha l,\alpha 2}$); ¹³C NMR (100 MHz, CDCl₃, TMS) δ 169.0, 136.8, 136.7, 132.1, 128.7, 128.2, 128.0, 119.5, 79.6, 78.9, 75.4, 72.0, 71.2, 70.7, 36.3; HRMS (ESI) Calcd for C₂₃H₂₄NaO₅ [M+Na]⁺: 403.1521, found: 403.1523. The NOE correlation observed between δ 3.90 and δ 3.63 confirmed the stereochemistry at C-1 to be β.

Table 4

Under Ar atmosphere, to glycosyl imidate **5ca**, glycosyl acceptor **6a** (1.2 equiv. to **5ca**) and activated 4 Å molecular sieves in the presence or absence of 1,3-bis[3,5-bis(trifluoromethyl) phenyl]thiourea (0.1 equiv. to **5ca**) was added anhydrous CH₂Cl₂ at room temperature. After stirring for 30 min, gold (III) chloride or TMSOTf (0.1 equiv. to **5ca**) was added at -78 °C. The mixture was stirred and warmed up to 0 °C over 5 hrs. The reaction was quenched by Et₃N at 0 °C and diluted with 10 mL of CH₂Cl₂. The diluted solution was filtrated through Celite pad and the filtrate was concentrated *in vacuo*. The reaction mixture was analyzed by HPLC (column, Mightysil, RP-18 MS 150-4.6 (5 µm); eluent, CH₃CN/H₂O = 80/20; flow rate, 1.0 ml/min; *t*_R α -mannoside 13.400 min; *t*_R β -mannoside 12.258 min).

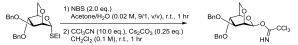
Scheme S2. Preparations of 2,6-anhydro sugar 12.

$$\begin{array}{c} \underset{BnO}{\overset{HO}{\overset{}}{\underset{Set}{\overset{}}{\underset{CH_2Cl_2}{\overset{}}{\underset{CH_2Cl_2}{\overset{}}{\underset{BnO}{\overset{}}{\underset{BnO}{\overset{}}{\underset{Set}{\overset{}}{\underset{BnO}{\overset{}}{\underset{Set}{\overset{}}{\underset{BnO}{\atop}}{\underset{BnO}{\overset{}}{\underset{}}{}}{\underset{BnO}{\overset{}}{$$

Ethyl 1-thio-3,4-di-O-benzyl-6-O-tosyl-α-D-mannopyranoside (S7)

$$\begin{array}{c} \text{HO} & \text{OH} \\ \text{BnO} & \text{TsCl} \left(4.0 \text{ eq.} \right), \text{DMAP} \left(0.1 \text{ eq.} \right) \\ \text{Set} & \begin{array}{c} \text{TsCl} \left(4.0 \text{ eq.} \right), \text{DMAP} \left(0.1 \text{ eq.} \right) \\ \text{CH}_2 \text{Cl}_2 \left(0.1 \text{ M} \right), \text{rt}, 1 \text{ hr} \end{array} \\ \begin{array}{c} \text{BnO} & \text{TsO} \\ \text{BnO} & \text{Set} \end{array} \end{array}$$

Under Ar atmosphere, to a solution of **S6**^[10] (47.1 mg, 116.4 µmol), TsCl (88.8 mg, 465.7 µmol) in anhydrous CH₂Cl₂ (1.16 ml) was added Et₃N (32.3 µl, 232.9 µmol) and DMAP (1.4 mg, 11.6 µmol) at room temperature. The mixture was stirred for 1 hr. The mixture was poured into sat. NaHCO₃ aq. and extracted with CH₂Cl₂. The organic layer was washed with water and brine, dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by flash column chromatography (7 g, hexane/EtOAc = 2/1), which gave the title compound **S7** as colorless oil (48.0 mg, 74%). R_f = 0.33 (Hexane/EtOAc = 3/1, v/v); [α]²⁰_D = +25.1 (*c* 0.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.78-7.76 (m, 2H, Ar-H), 7.32-7.20 (m, 12H, Ar-H), 5.25 (d, *J*_{1,2} = 1.2 Hz, 1H, H-1), 4.83 & 4.48 (ABq, *J* = 10.8 Hz, 2H, PhCH₂), 4.66 & 4.62 (ABq, *J* = 11.6 Hz, 2H, PhCH₂), 4.28-4.22 (m, 2H, H-6. H-6), 4.20-4.16 (m, 1H, H-5), 4.04 (dd, *J*_{2,1} = 1.2 Hz, *J*_{2,3} = 3.2 Hz, 1H, H-2), 3.79 (dd, *J*_{3,2})

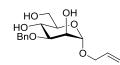

= 3.2 Hz, $J_{3,4}$ = 9.2 Hz, 1H, H-3), 3.74 (d, $J_{4,3}$ = 9.2 Hz, 0.5H, H-4), 3.73-3.70 (m, 0.5H, H-4), 2.63 (m, 1H, -OH), 2.60-2.42 (m, 2H, CH₂), 2.41(s, 3H, -CH₃), 1.24-1.20 (m, 3H, -CH₃); ¹³C NMR (100 MHz, CDCl₃, TMS) δ 144.8, 137.9, 137.5, 133.0, 129.8, 128.7, 128.5, 128.2, 128.1, 128.1, 128.0, 83.3, 80.4, 75.2, 73.8, 72.1, 69.8, 69.7, 68.9, 24.9, 21.7, 14.8; HRMS (ESI) Calcd for C₂₉H₃₄NaO₇S₂ [M+Na]⁺: 581.1644, found: 581.1642.

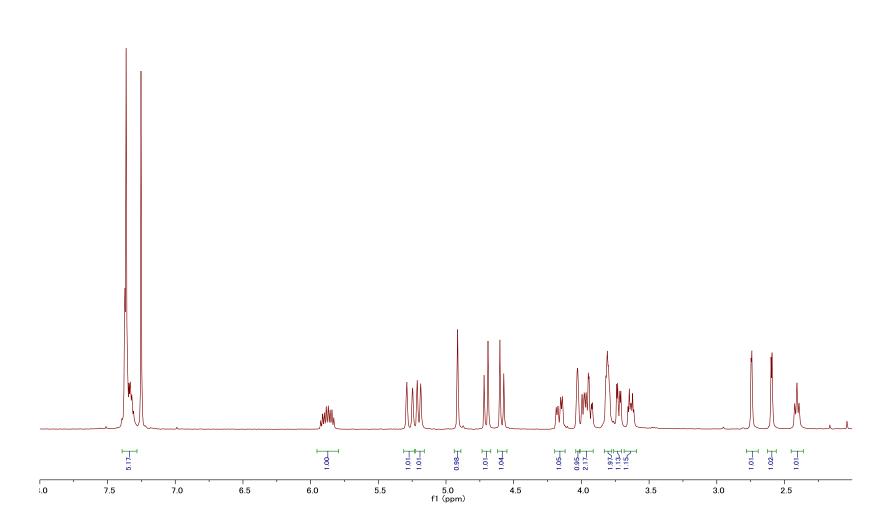
Ethyl 1-thio-3,4-di-O-benzyl-2,6-anhydro-α-D-mannopyranoside (S8)

Under Ar atmosphere, to a solution of **S7** (23.4 mg, 41.9 µmol) in anhydrous DMF (0.84 ml) was added NaH (2.2 mg, 50.3 µmol, 55%) at 0 °C and the mixture was stirred for 30 min. The reaction was quenched by MeOH (1.0 ml). The mixture was poured to water, and extracted with CH₂Cl₂. The organic layer was washed with water and brine, dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by column chromatography (7 g, Hexane/EtOAc = 3/1), which gave the title compound **S8** as colorless oil (12.1 mg, 75%). $R_f = 0.44$ (Hexane/EtOAc = 2/1, v/v); $[\alpha]^{20}_D = +5.6$ (*c* 0.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.37-7.28 (m, 10H, Ar-H), 5.46-5.45 (m, 1H, H-1), 4.63 & 4.51 (ABq, *J* = 11.6 Hz, 2H, PhCH₂), 4.63 & 4.57 (ABq, *J* = 12.4 Hz, 2H, PhCH₂), 4.20-4.17 (m, 0.5H, H-6), 4.18 (d, *J*_{6.6} = 10.0 Hz, 0.5H, H-6), 4.07 (s, 1H, H-2), 4.04-4.03 (m, 2H, H-3, H-5), 3.85 (d, *J*_{6.6} = 10.0 Hz, 1H, H-6), 3.66 (s, 1H, H-4), 2.74 (q, *J* = 7.2 Hz, 2H, CH₂), 1.32 (t, *J* = 7.2 Hz, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃, TMS) δ 137.9, 137.7, 128.5, 128.5, 128.2, 128.1, 128.0, 127.8, 83.6, 80.8, 79.2, 71.0, 70.6, 70.4, 69.6, 67.1, 26.5, 15.4; HRMS (ESI) Calcd for C₂₂H₂₆NaO₄S [M+Na]⁺: 409.1450, found: 409.1453.

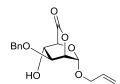
3,4-Di-O-benzyl-2,6-anhydro-β-D-mannopyranosyl trichloroacetimidate (12)

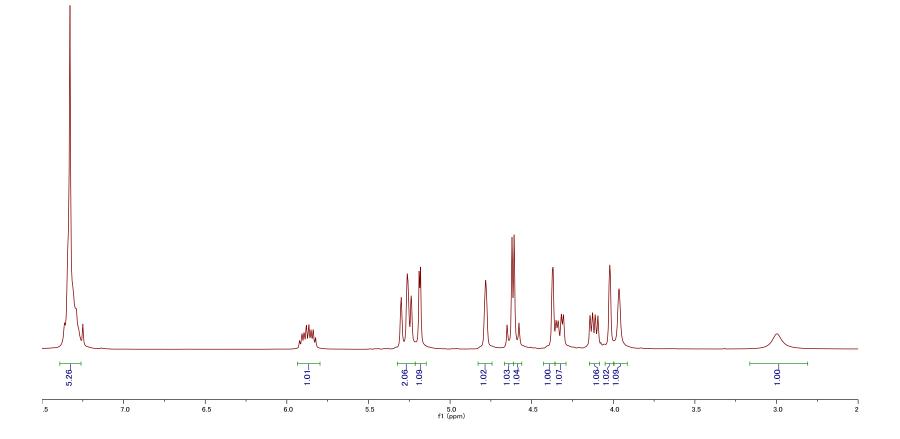
To a solution of **S8** (78.7 mg, 196.4 µmol) in acetone (42.4 ml) and H₂O (4.7 ml) was added NBS (0.34 g, 1.88 mmol) at room temperature and the mixture was stirred for 1 hr. After the TLC analysis showed the completion of reaction, the reaction was quenched by 10% Na₂S₂O₃ aq. The mixture was extracted with CH₂Cl₂, and the organic layer was washed with water and brine, dried over Na₂SO₄ and concentrated *in vacuo*. Under Ar atmosphere, to a solution of the crude product and CCl₃CN (0.94 ml, 9.42 mmol) in anhydrous CH₂Cl₂ (9.4 ml) was added Cs₂CO₃ (83.1 mg, 235.6 µmol) at room temperature. After the TLC analysis showed the completion of reaction, the reaction mixture was filtrated through Celite pad. The filtrate was concentrated *in vacuo*. The residue was purified by open column chromatography (20 g, Hexane/EtOAc = 3/1), which gave the title compound **12** (84.5 mg, 18% in 2 steps) as colorless oil. R_f = 0.38 (Hexane/EtOAc = 3/1, v/v); $[\alpha]^{20}_{D}$ = +43.2 (*c* 0.3, CHCl₃); ¹H NMR (400 MHz, CDCl₃, TMS) δ 8.56 (s, 1H, -NH), 7.37-7.31 (m, 10H, Ar-H), 6.17 (s, 1H, H-1), 4.69 & 4.58 (ABq, *J* = 11.8 Hz, 2H, PhCH₂), 4.66 & 4.55 (ABq, *J* = 11.6 Hz, 2H, PhCH₂), 4.31 (s, 1H, H-2), 4.23 (s, 1H, H-5), 3.91-3.89 (m, 1H, H-6), 3.82 (s, 1H, H-4), 3.79 (s, 1H, H-3), 3.34 (s, 3H, -OMe), 3.24-3.20 (m, 1H, H-4); ¹³C NMR (100 MHz, CDCl₃, TMS) δ 161.1, 137.5, 137.4, 128.7, 128.6, 128.1, 128.1, 97.5, 80.9, 80.1, 71.1, 70.9, 69.9, 68.0, 67.0; HRMS (ESI) Calcd for C₂₂H₂₂Cl₃NNaO₅ [M+Na]⁺: 508.0461, found: 508.0475. The NOE correlation observed between δ 6.17 and δ 3.79 confirmed the stereochemistry at C-1 to be β .

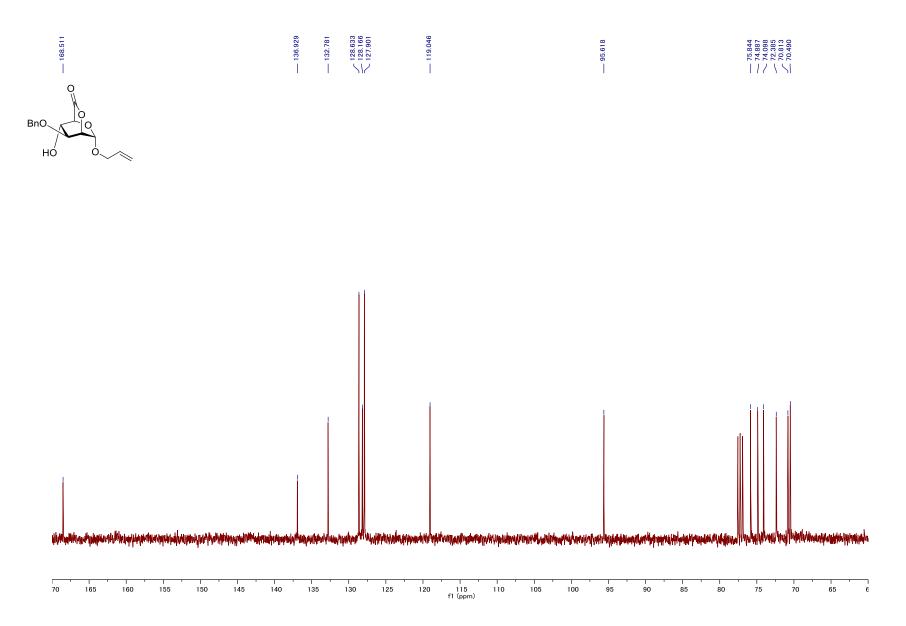

References

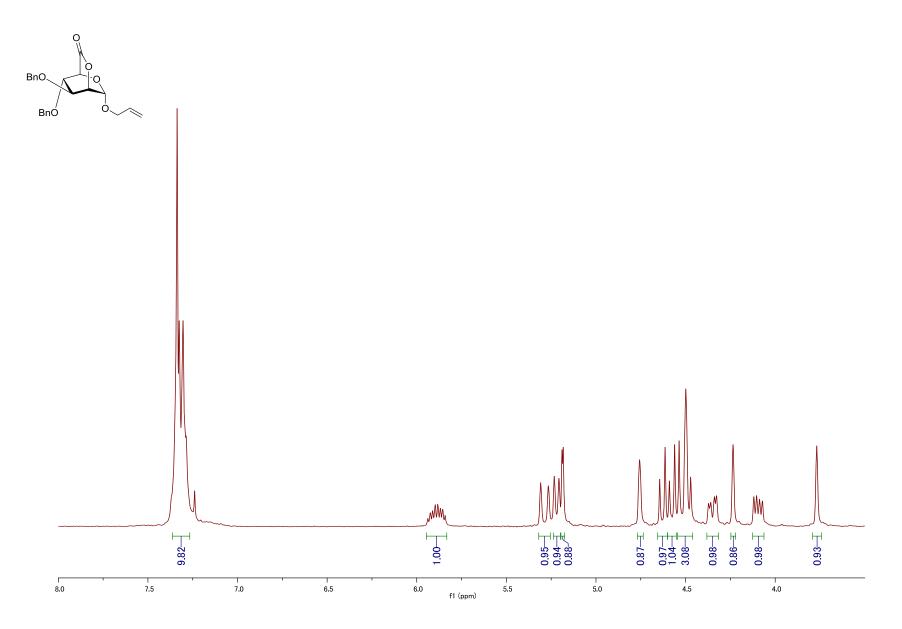

Winnik, M. F.; Carver, P. J.; Krepinsky, J. J. J. Org. Chem. 1982, 47, 2701-2707.
 Pekari, K.; Tailler, D.; Weingart, R.; Schmidt, R. R. J. Org. Chem. 2001, 66, 7432-7442.

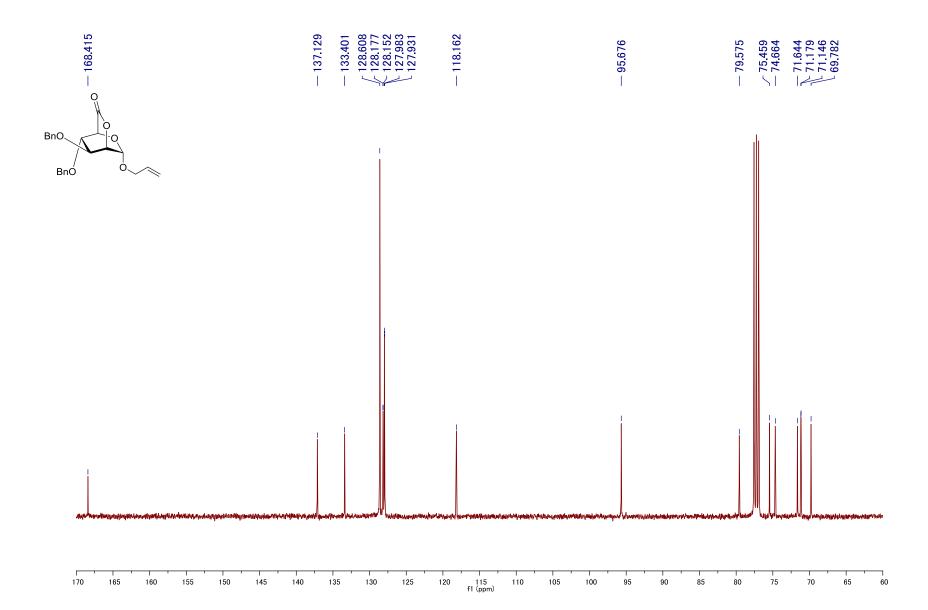
[3] Fei, C. P.; Chan, T. H. Tetrahedron Lett. 1987, 28, 849-852.

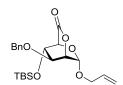

- [4] Agarwal, A.; Vanlar, Y. D. Carbohydr. Res. 2005, 340, 1661-1667.
- [5] van Summeren, R. P.; Feringa, B. L.; Minnaard, A. J. Org. Biomol. Chem. 2005, 3, 2524-2533.
- [6] Tanaka, K.; Fujii, Y.; Tokimoto, H.; Mori, Y.; Tanaka, S.; Bao, G.; Siwu, E. R. O.; Nakayabu, A.; Fukase, K. *Chem. Asian J.* **2009**, *4*, 574-580.
- [7] Wang, C.; Lee, J. Luo, S.; Fan, H.; Pai, C.; Yang, W.; Lu, L.; Hung, S. *Angew. Chem. Int. Ed.* 2002, *41*, 2360-2362.
 [8] Dasgupta, F.; Anderson, L. *Carbohydr. Res.* 1990, *202*, 239-255.
- [0] 2 wogupus, 1., 1 macroon, 2. Currony an rost 1990, 202, 209 200.
- [9] Zhu, X.; D, P.; Cai, M. Tetrahedron. Asymmetry 1996, 7, 2833-2838.
- [10] Verduyn, R.; Beliën, J. J. A.; Dreef-Tromp, C. M.; van der Marel, G. A. Tetrahedron Lett. 1991, 32, 6637-6640.

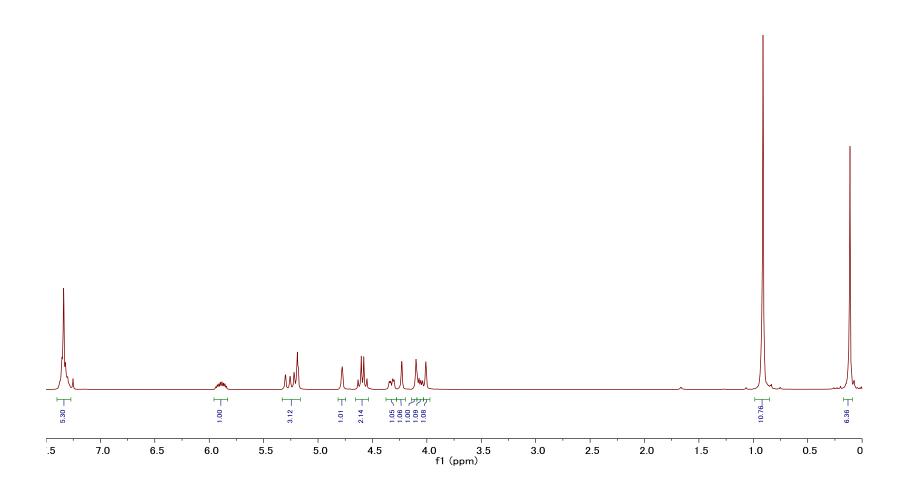

Allyl 3-*O*-benzyl-α-D-mannopyranoside (2)^[2] ¹H NMR (400 MHz, CDCl₃)

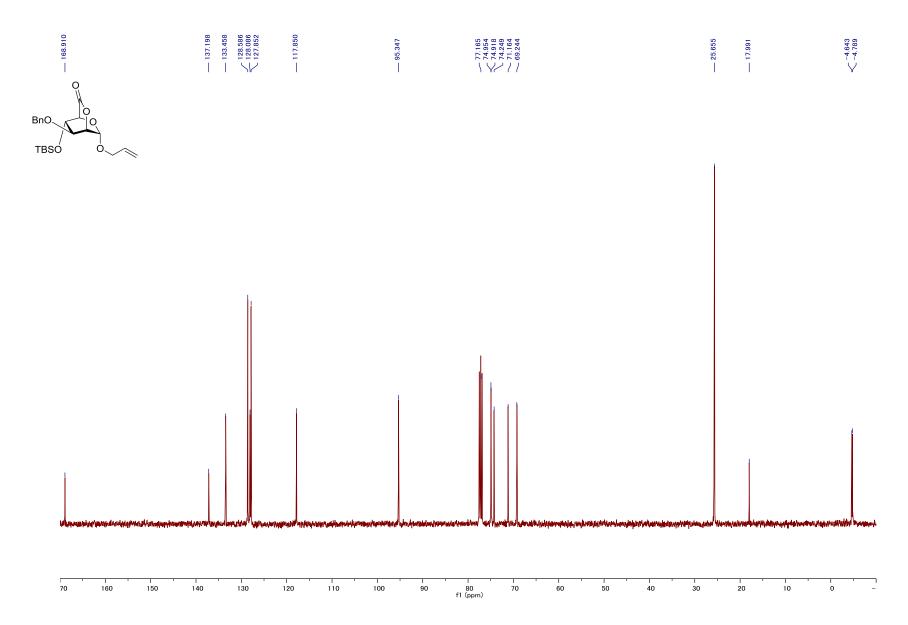


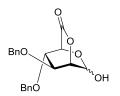


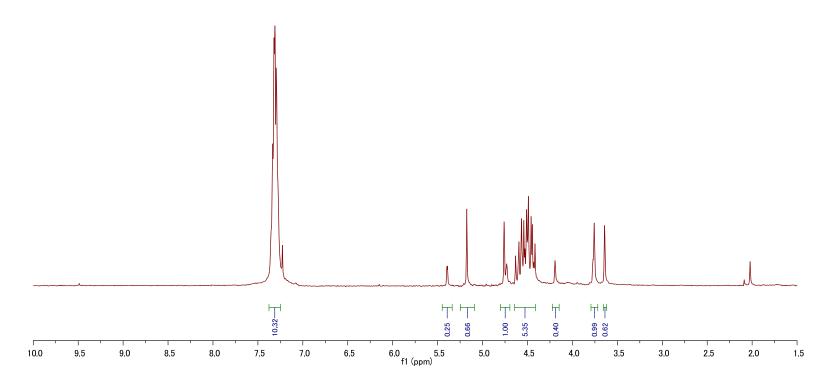

Allyl 3-*O*-benzyl-α-D-mannopyranurono-2,6-lactone (3) ¹H NMR (400 MHz, CDCl₃)

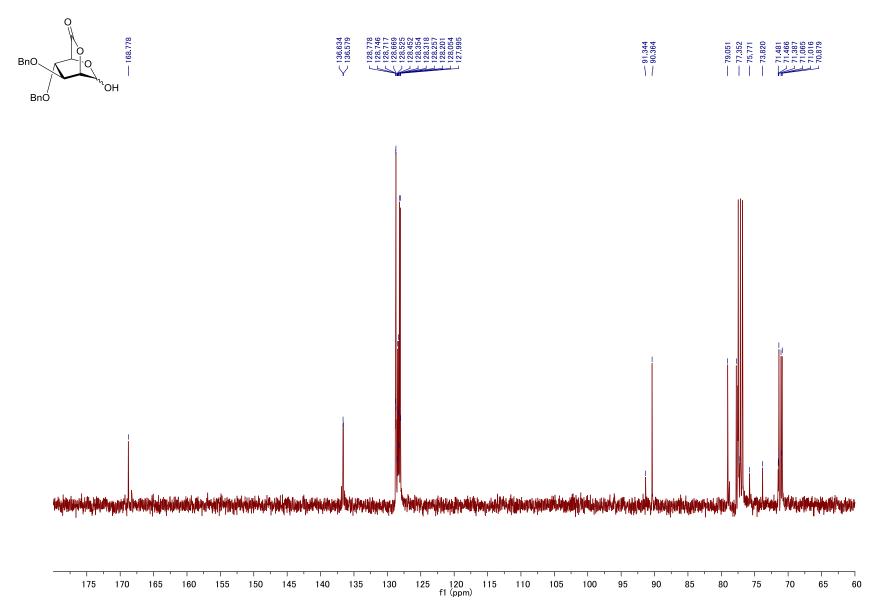




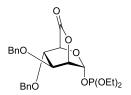


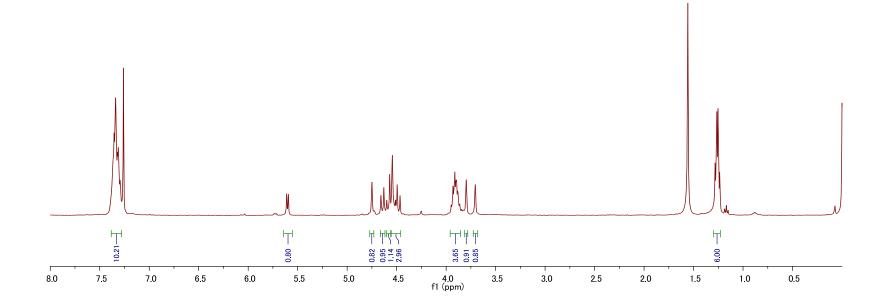


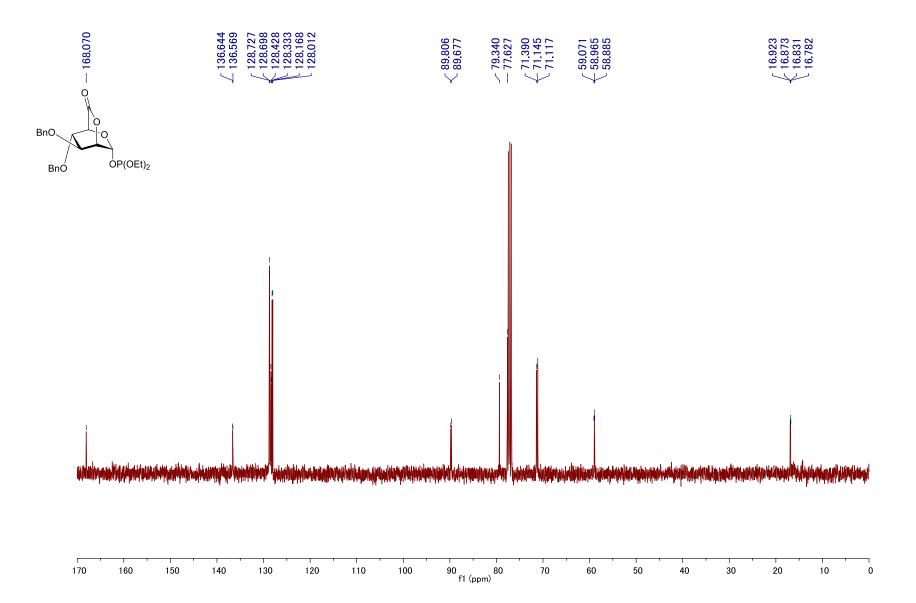




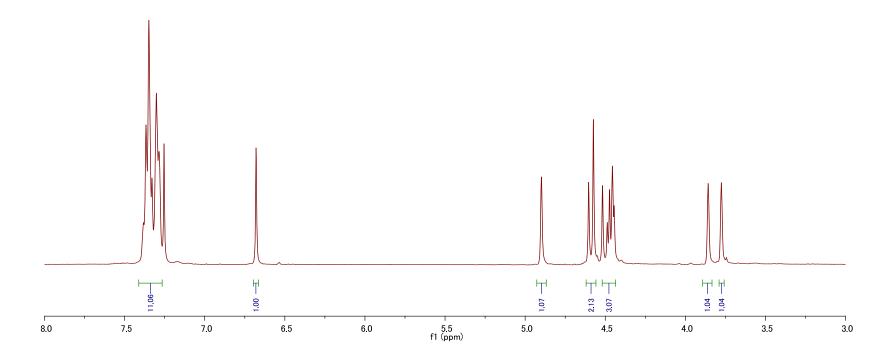
3,4-Di-O-benzyl-D-mannopyranurono-2,6-lactone (S1) ¹H NMR (400 MHz, CDCl₃)

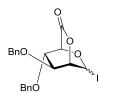


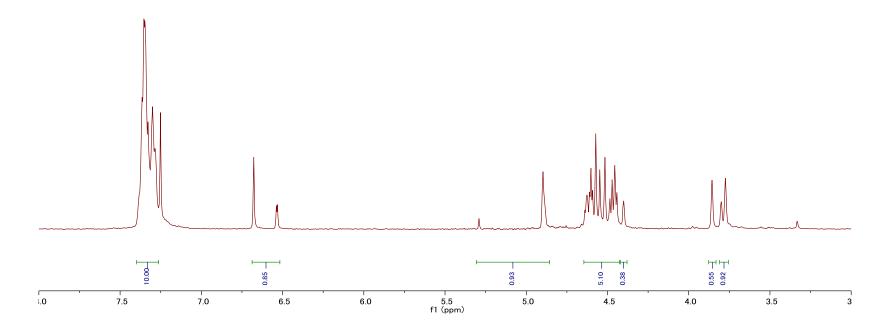


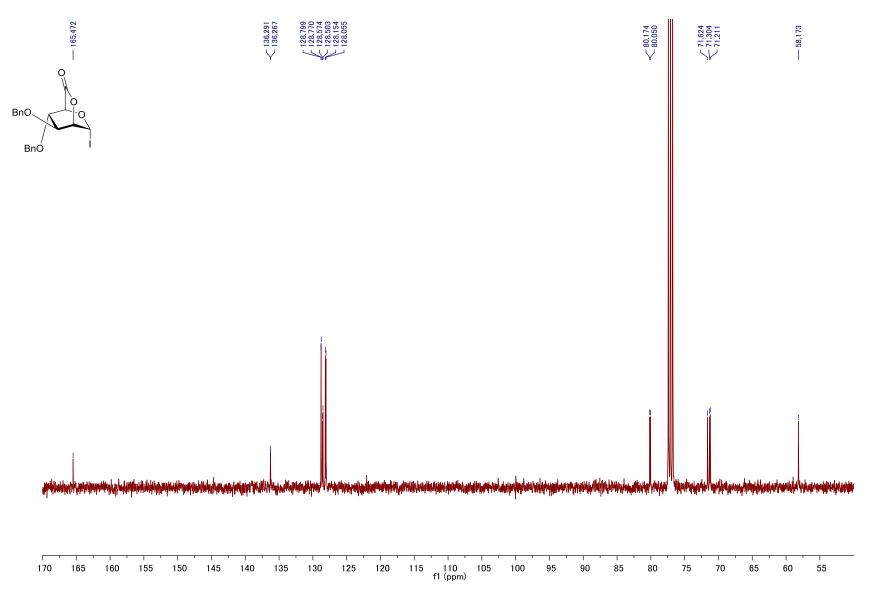

3,4-Di-O-benzyl-D-mannopyranurono-2,6-lactone (S1) ¹³C NMR (100 MHz, CDCl₃)

3,4-Di-*O*-benzyl-α-D-mannopyranurono-2,6-lacton-1-yl diethylphosphite (5a) ¹H NMR (400 MHz, CDCl₃)

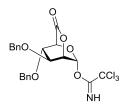


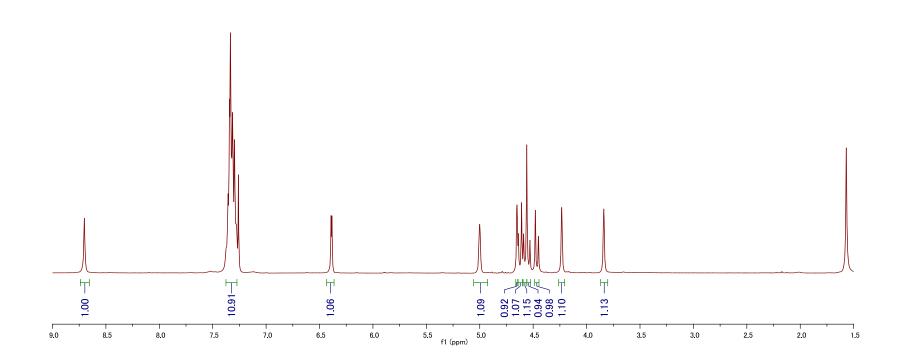



3,4-Di-*O*-benzyl-α-D-mannopyranurono-2,6-lacton-1-yl iodide (5bα) ¹H NMR (400 MHz, CDCl₃)

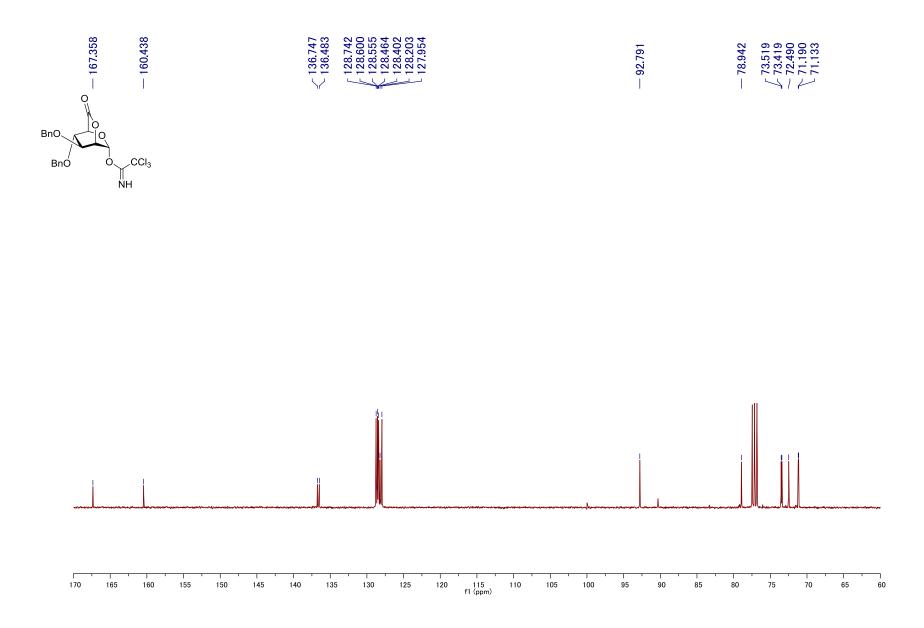


3,4-Di-*O*-benzyl-α-D-mannopyranurono-2,6-lacton-1-yl iodide (5bαβ) ¹H NMR (400 MHz, CDCl₃)

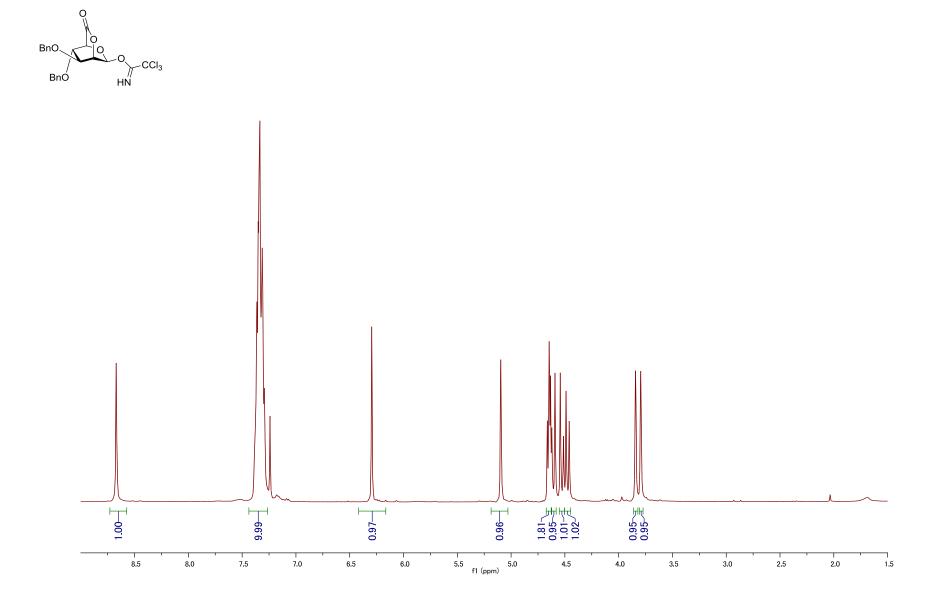


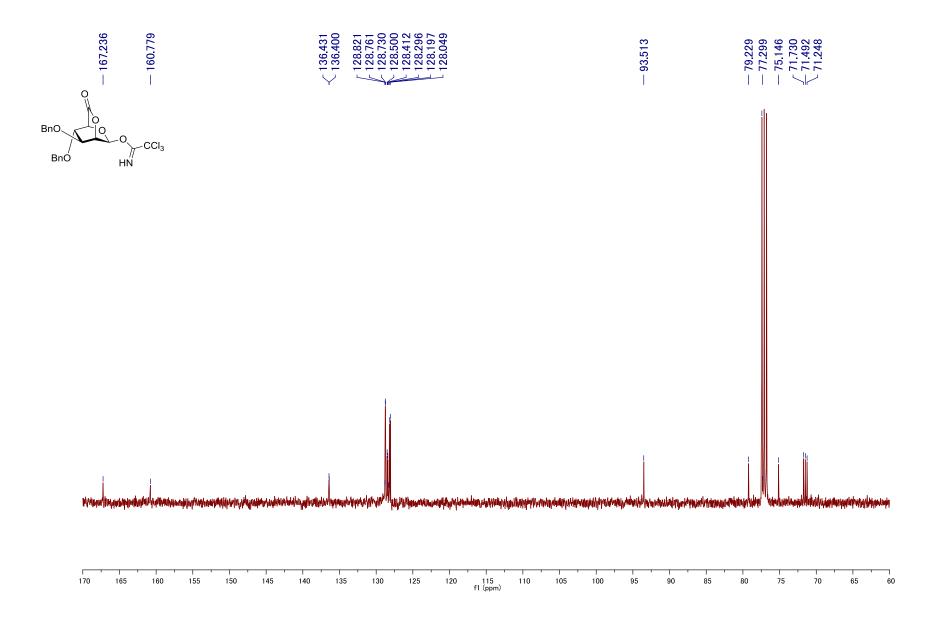


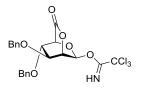
3,4-Di-*O*-benzyl-α-D-mannopyranurono-2,6-lacton-1-yl iodide (5b) ¹³C NMR (100 MHz, CDCl₃)

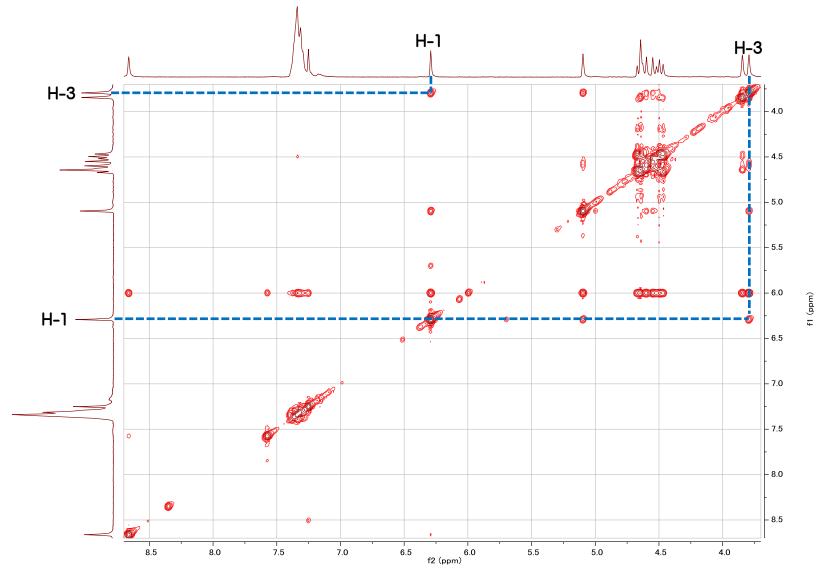


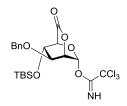
3,4-Di-*O*-benzyl-α-D-mannopyranurono-2,6-lactone-1-yl-trichloroacetimidate (5cα) ¹H NMR (400 MHz, CDCl₃)

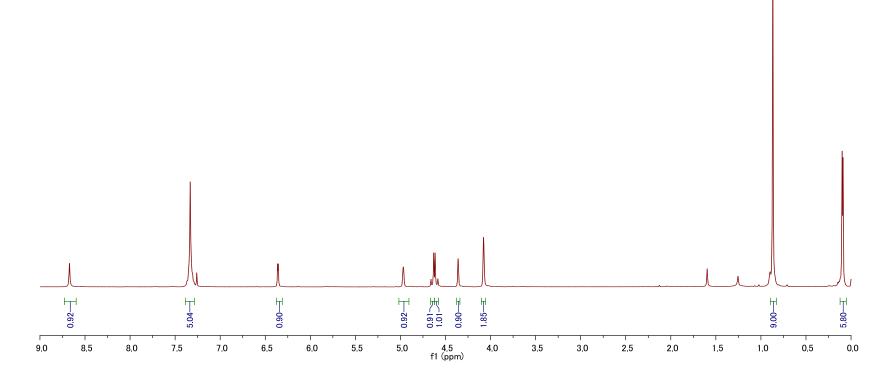


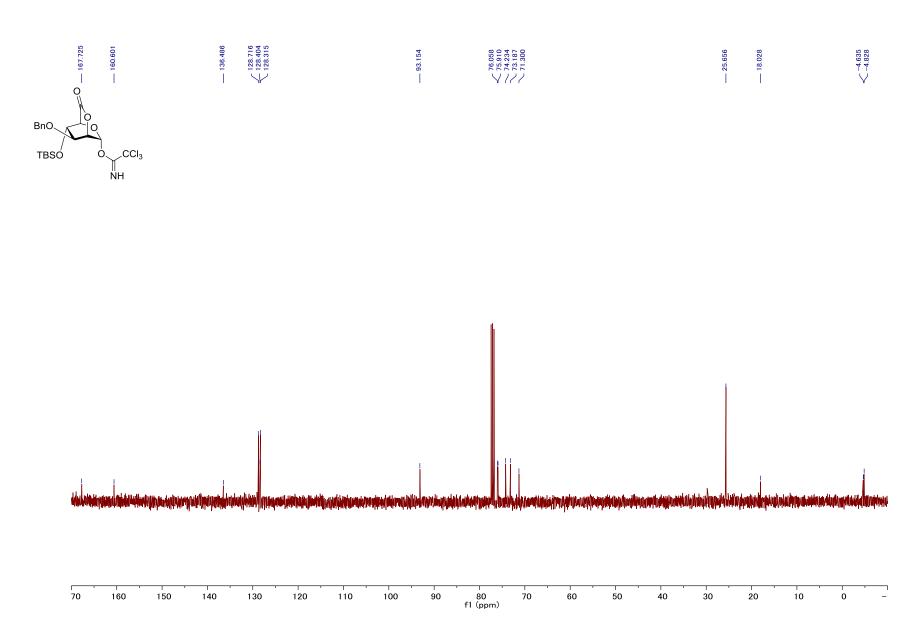

3,4-Di-*O*-benzyl-α-D-mannopyranurono-2,6-lactone-1-yl-trichloroacetimidate (5cα) ¹³C NMR (100 MHz, CDCl₃)



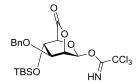

3,4-Di-*O*-benzyl-β-D-mannopyranurono-2,6-lactone-1-yl trichloroacetimidate (5cβ) ¹H NMR (400 MHz, CDCl₃)

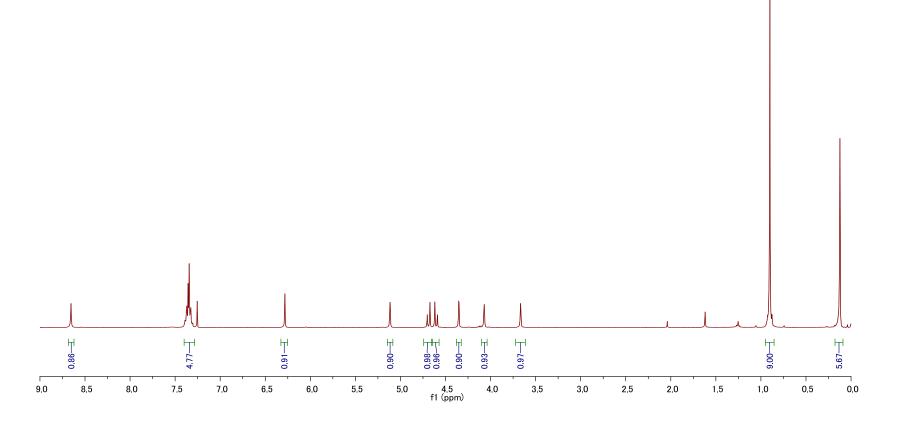

3,4-Di-*O*-benzyl-β-D-mannopyranurono-2,6-lactone-1-yl-trichloroacetimidate (5cα) ¹³C NMR (100 MHz, CDCl₃)

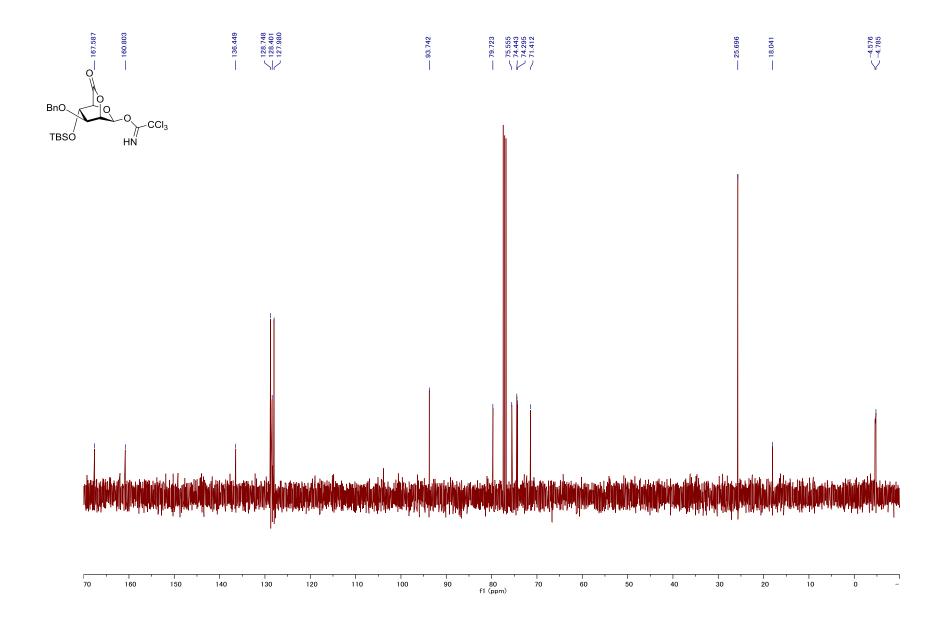




3-O-Benzyl-4-O-tert-butyldimethylsilyl-a-D-mannopyranurono-2,6-lactone-1-yl-trichloroacetimidate (5da) ¹H NMR (400 MHz, CDCl₃)

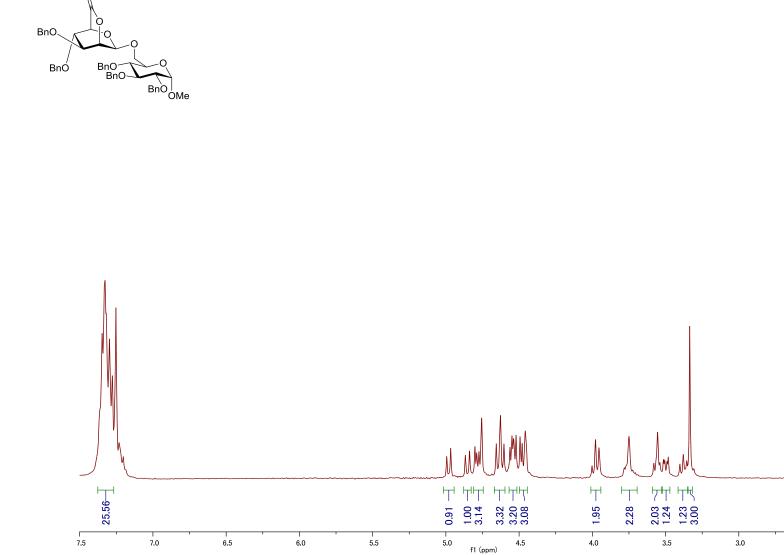






3-O-Benzyl-4-*O-tert*-butyldimethylsilyl-α-D-mannopyranurono-2,6-lactone-1-yl-trichloroacetimidate (5dα) ¹³C NMR (100 MHz, CDCl₃)

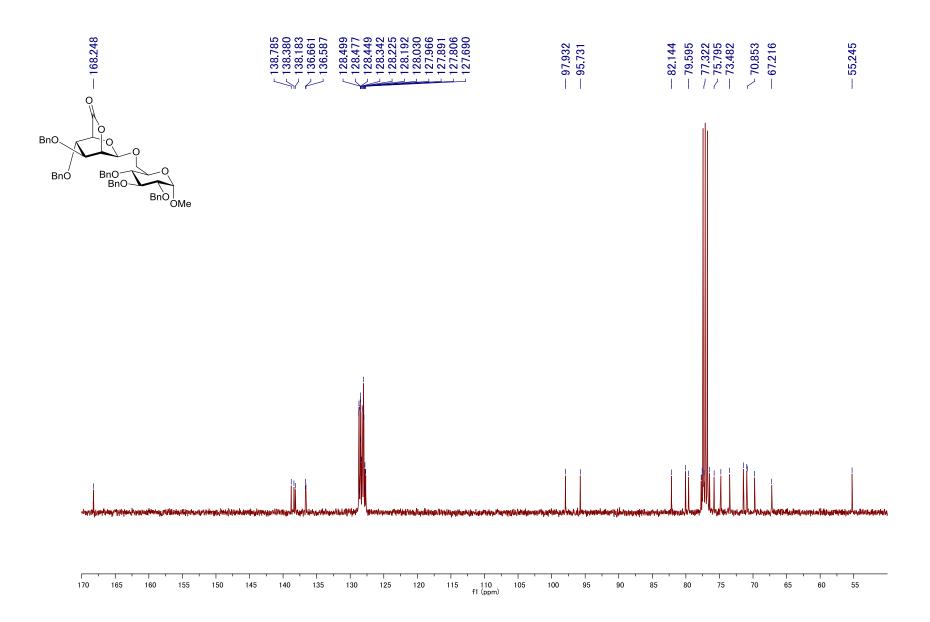
3-O-Benzyl-4-*O-tert*-butyldimethylsilyl-β-D-mannopyranurono-2,6-lactone-1-yl-trichloroacetimidate (5dβ) ¹H NMR (400 MHz, CDCl₃)

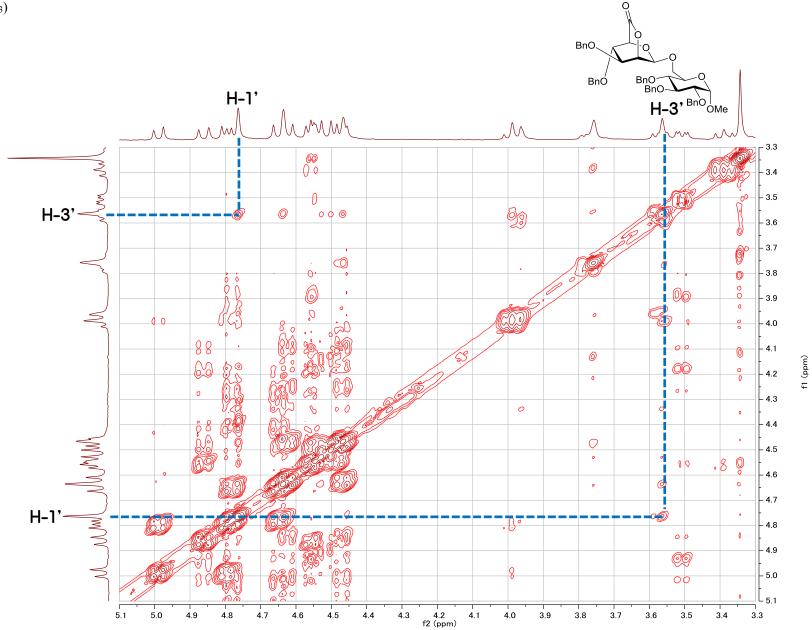


3-O-Benzyl-4-*O-tert*-butyldimethylsilyl-β-D-mannopyranurono-2,6-lactone-1-yl-trichloroacetimidate (5dβ) ¹³C NMR (100 MHz, CDCl₃)

3-O-Benzyl-4-*O-tert*-butyldimethylsilyl-β-D-mannopyranurono-2,6-lactone-1-yl-trichloroacetimidate (5dβ) ¹H-¹H NOESY (400 MHz, CDCl₃)

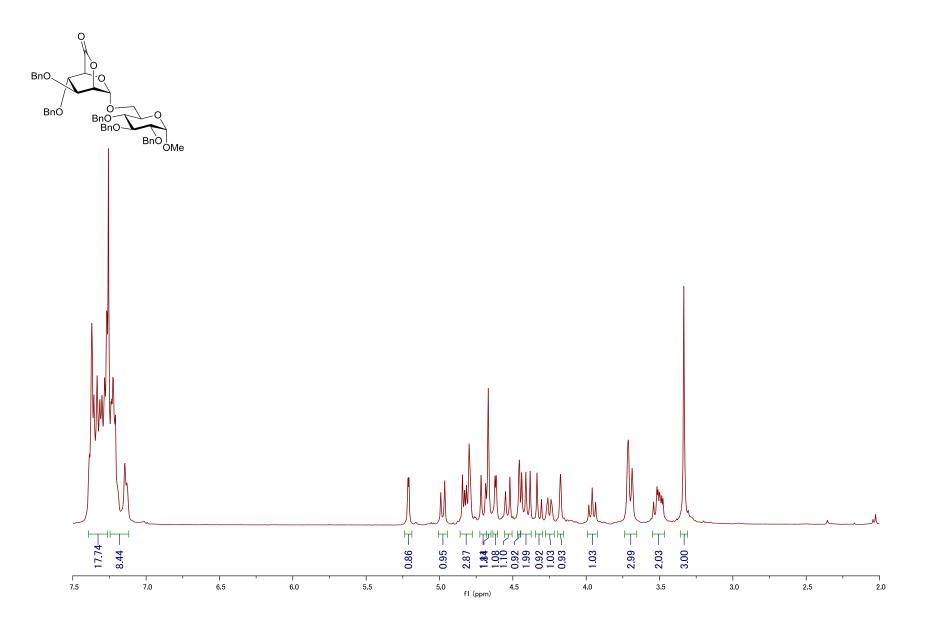
Methyl 2,3,4-tri-*O*-benzyl-6-*O*-(3',4'-di-*O*-benzyl-β-D-mannopyranurono-2',6'-lacton-1'-yl)-α-D-glucopyranoside (7aβ) ¹H NMR (400 MHz, CDCl₃)

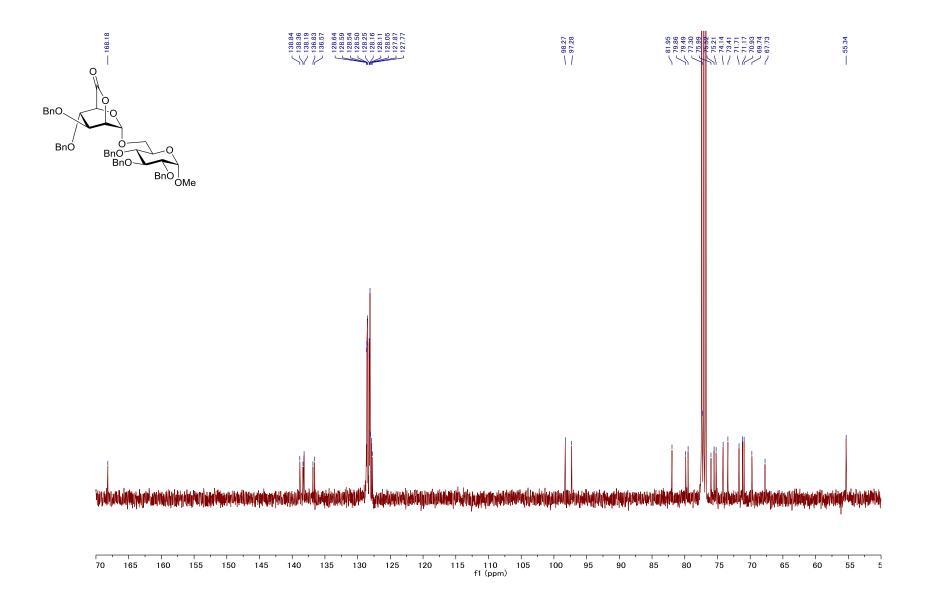


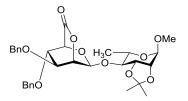

0

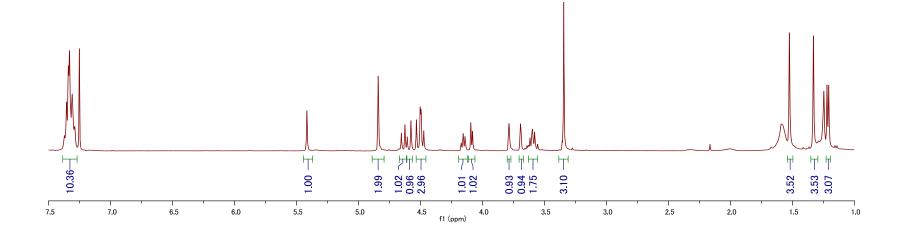
2.0

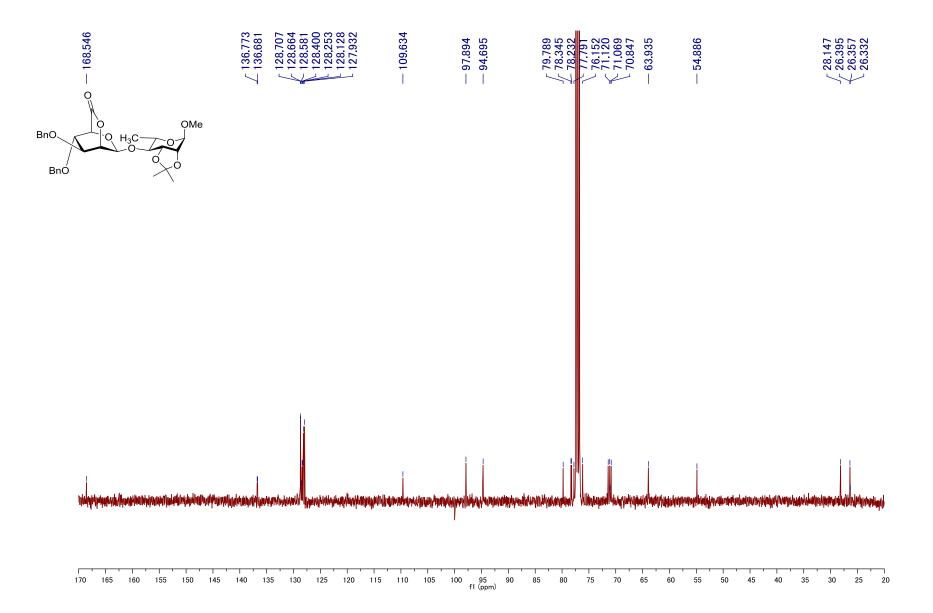
2.5


Methyl 2,3,4-tri-*O*-benzyl-6-*O*-(3',4'-di-*O*-benzyl-β-D-mannopyranurono-2',6'-lacton-1'-yl)-α-D-glucopyranoside (7aβ) ¹³C NMR (100 MHz, CDCl₃)



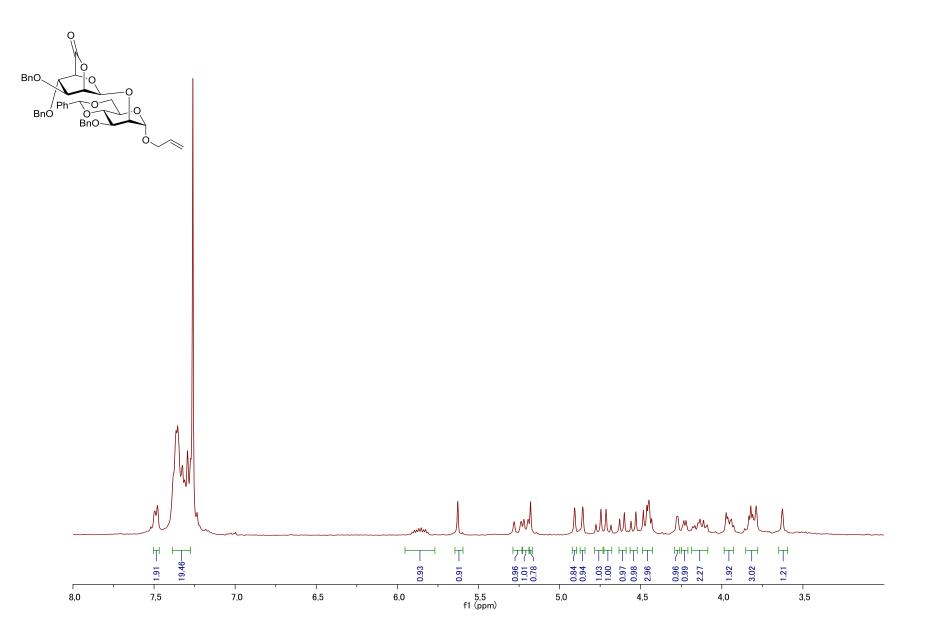

Methyl 2,3,4-tri-*O*-benzyl-6-*O*-(3',4'-di-*O*-benzyl-β-D-mannopyranurono-2',6'-lacton-1'-yl)-α-D-glucopyranoside (7aβ) ¹H-¹H NOESY (400 MHz, CDCl₃)


Methyl 2,3,4-tri-*O*-benzyl-6-*O*-(3',4'-di-*O*-benzyl-α-D-mannopyranurono-2',6'-lacton-1'-yl)-α-D-glucopyranoside (7aα) ¹H NMR (400 MHz, CDCl₃)

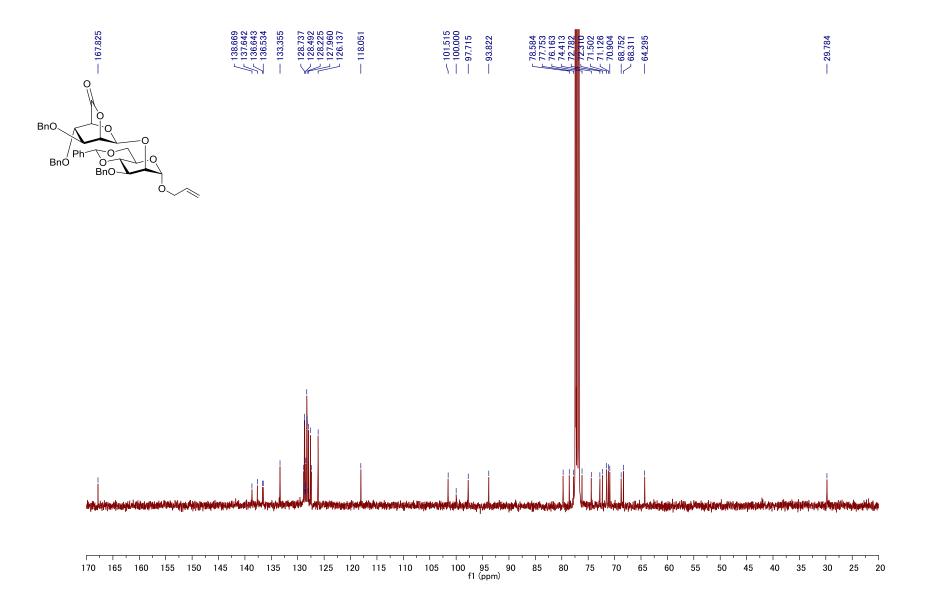


Methyl 2,3-*O*-isopropylidene-4-*O*-(3',4'-di-*O*-benzyl-β-D-mannopyranurono-2',6'-lacton-1'-yl)-α-L-rhamnopyranoside (7bβ) ¹H NMR (400 MHz, CDCl₃)

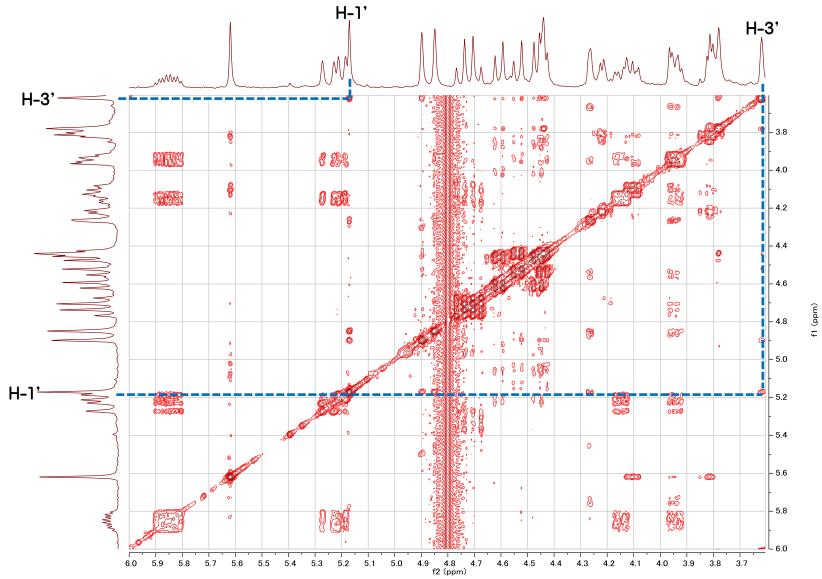
2,3-O-isopropylidene-4-O-(3',4'-di-O-benzyl-β-D-mannopyranurono-2',6'-lacton-1'-yl)-α-L-rhamnopyranoside (7bβ) ¹³C NMR (100 MHz, CDCl₃)



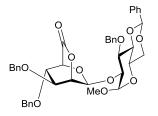
OMe BnO_\ BnÓ H-1' H-3' $\wedge l$ Λ - 3.3 0 0 3.4 - 3.5 - 3.6 H-3' 0 0 00 - 3.7 00 - 3.8 - 3.9 б - 4.0 0 - 4.1 - 4.2 0 00 0 Õ@ 0 $() \circ)$ - 4.3 (i) 0 f1 (ppm) - 4.4 \bigcirc - 4.5 N 6 0. - 4.6 - 4.7 0 - 4.8 0 0 00 0 - 4.9 - 5.0 - 5.1 - 5.2 - 5.3 H-1' -- 5.4 - 5.5 5.3 5.5 5.4 5.2 5.1 5.0 4.9 4.6 4.5 4.4 4.3 4.2 f2 (ppm) 3.4 3.3 4.8 4.7 4.1 4.0 3.9 3.8 3.7 3.6 3.5

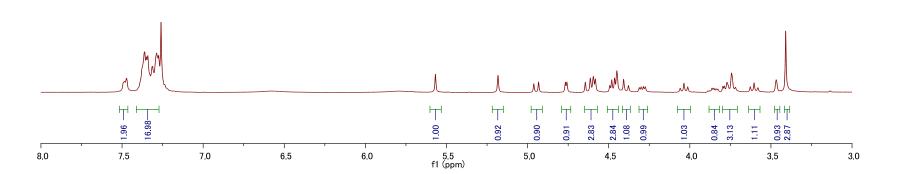

Allyl

2-O-(3',4'-di-O-benzyl-β-D-mannopyranurono-2',6'-lacton-1'-yl)-3-O-benzyl-4,6-O-benzylidene-α-D-mannopyranoside (7cβ) ¹H NMR (400 MHz, CDCl₃)

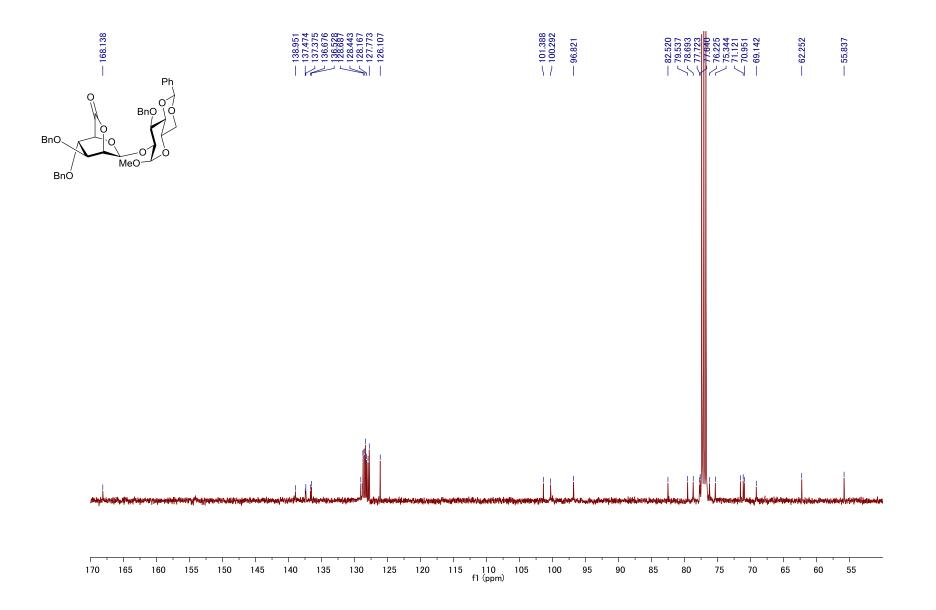

Allyl

2-O-(3',4'-di-O-benzyl-β-D-mannopyranurono-2',6'-lacton-1'-yl)-3-O-benzyl-4,6-O-benzylidene-α-D-mannopyranoside (7cβ) ¹³C NMR (100 MHz, CDCl₃)

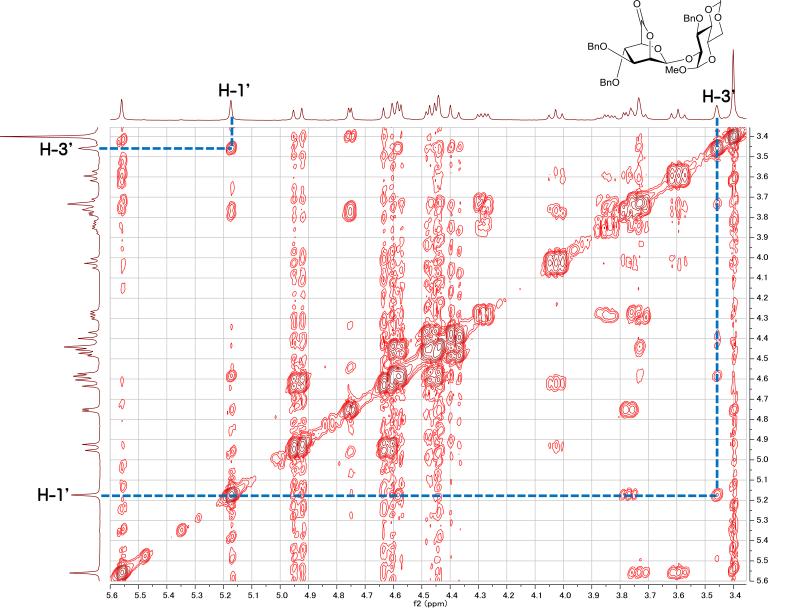




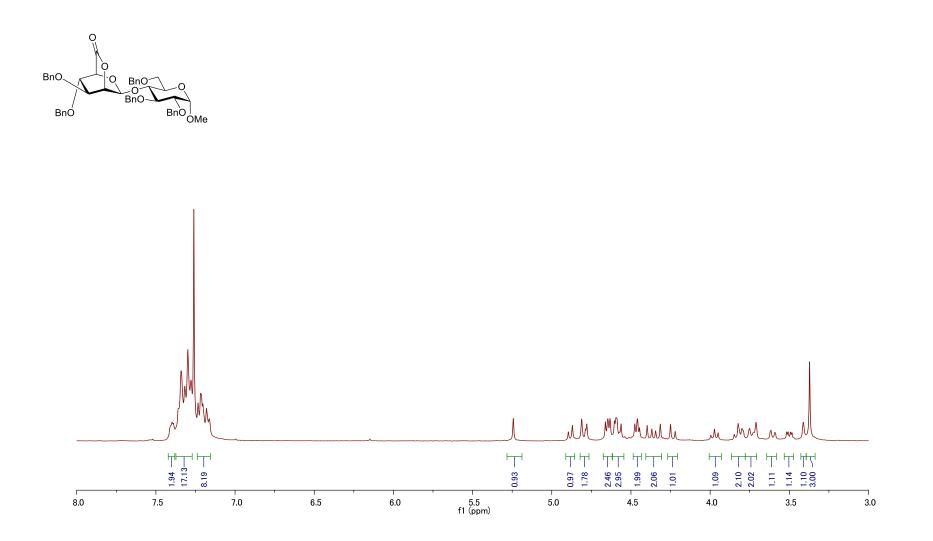
Allyl 2-*O*-(3',4'-di-*O*-benzyl-β-D-mannopyranurono-2',6'-lacton-1'-yl)-3-*O*-benzyl-4,6-*O*-benzylideneα-D-mannopyranoside (7cβ) ¹H-¹H NOESY (400 MHz, CDCl₃)

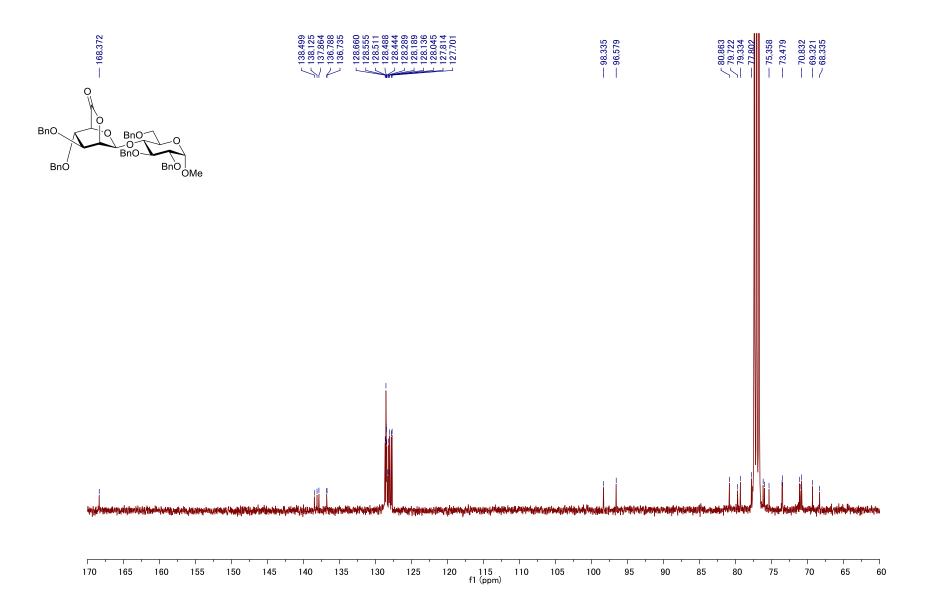


2-O-(3',4'-di-O-benzyl-β-D-mannopyranurono-2',6'-lacton-1'-yl)-3-O-benzyl-4,6-O-benzylidene-α-D-glucopyranoside (7dβ) ¹H NMR (400 MHz, CDCl₃)

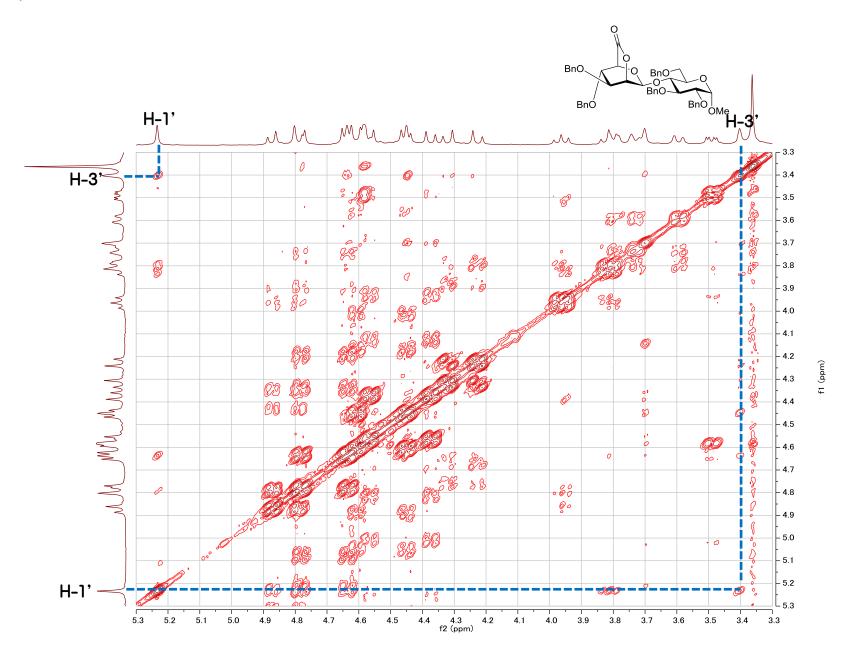


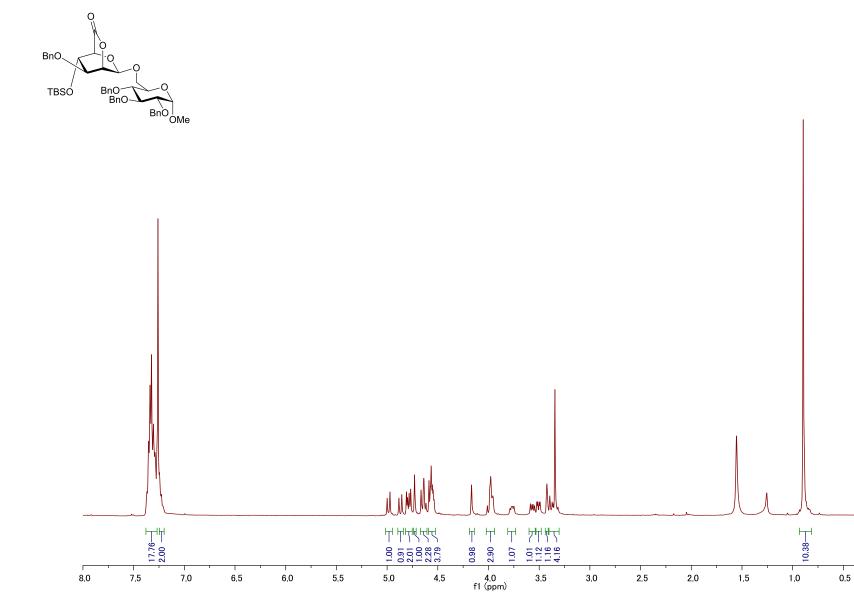
2-O-(3',4'-di-O-benzyl-β-D-mannopyranurono-2',6'-lacton-1'-yl)-3-O-benzyl-4,6-O-benzylidene-α-D-glucopyranoside (7dβ) ¹³C NMR (100 MHz, CDCl₃)


Methyl 2-*O*-(3',4'-di-*O*-benzyl-β-D-mannopyranurono-2',6'-lacton-1'-yl)-3-*O*-benzyl-4,6-*O*-benzylideneα-D-glucopyranoside (7dβ) ¹H-¹H NOESY (400 MHz, CDCl₃)


f1 (ppm)

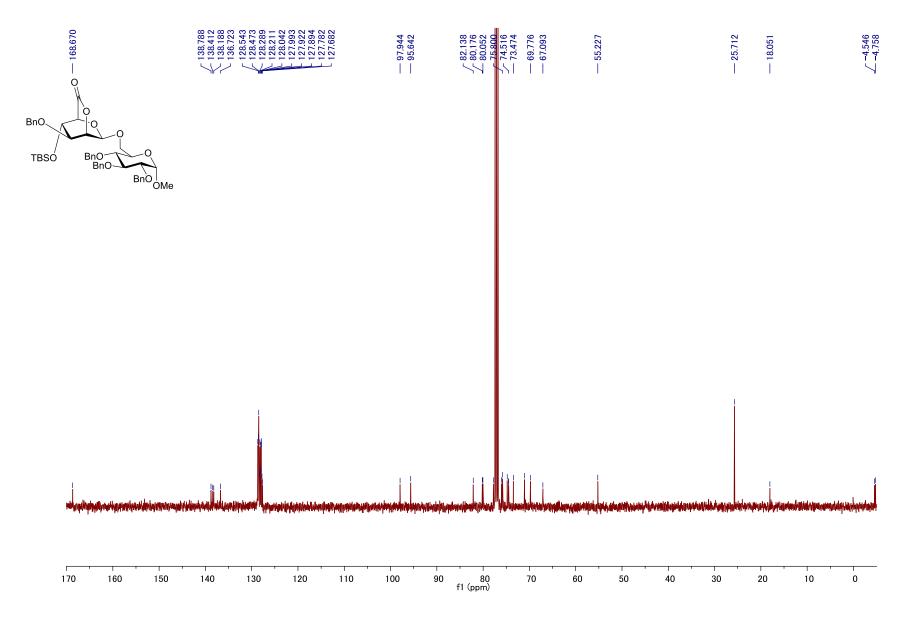
Ph

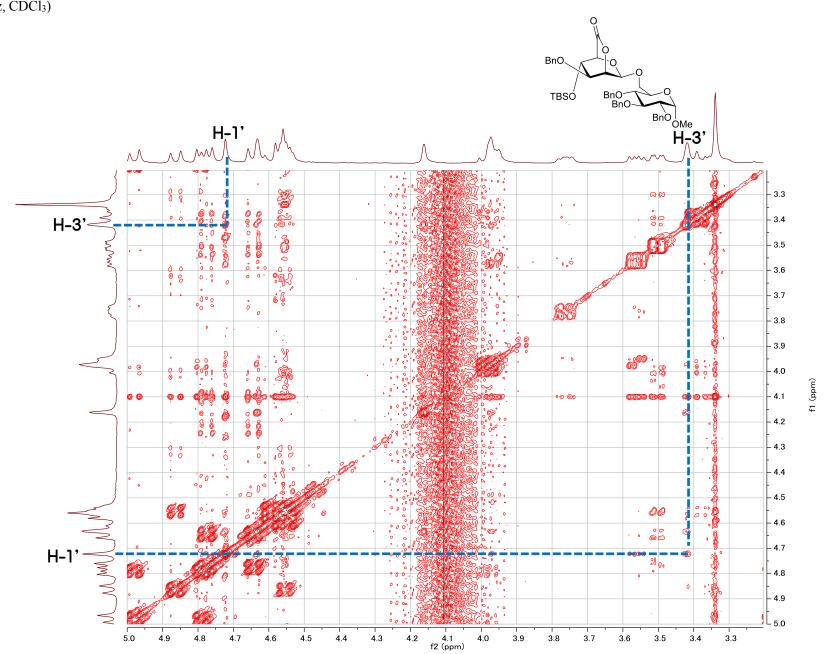

Methyl 2,3,6-tri-*O***-benzyl-**4-*O***-(3',4'-di-***O***-benzyl-**β-D-mannopyranurono-2',6'-lacton-1'-yl)-α-D-glucopyranoside (7eβ) ¹H NMR (400 MHz, CDCl₃)


Methyl 2,3,6-tri-*O*-benzyl-4-*O*-(3',4'-di-*O*-benzyl-β-D-mannopyranurono-2',6'-lacton-1'-yl)-α-D-glucopyranoside (7eβ) ¹³C NMR (100 MHz, CDCl₃)

Methyl 2,3,6-tri-*O*-benzyl-4-*O*-(3',4'-di-*O*-benzyl-β-D-mannopyranurono-2',6'-lacton-1'-yl)-α-D-glucopyranoside (7eβ) ¹H-¹H NOESY (400 MHz, CDCl₃)

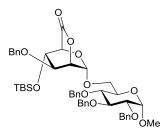
2,3,4-tri-*O*-benzyl-6-*O*-(3'-di-*O*-benzyl-4'-*O*-tert-butyldimethylsilyl-β-D-mannopyranurono-2',6'-lacton-1'-yl)-α-D-glucopyranoside (7fβ) ¹H NMR (400 MHz, CDCl₃)

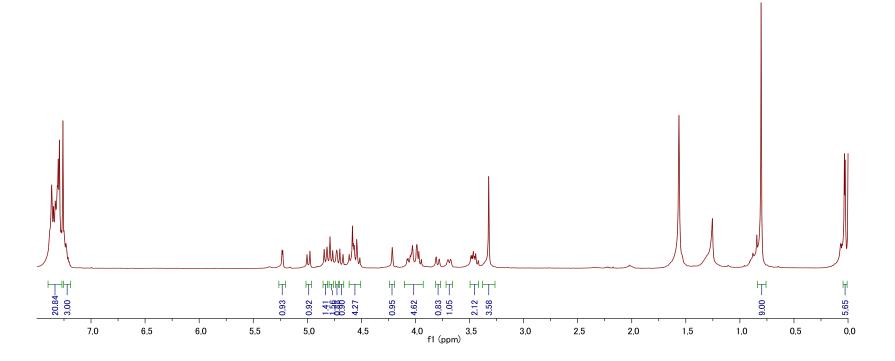



ቸ

5.94

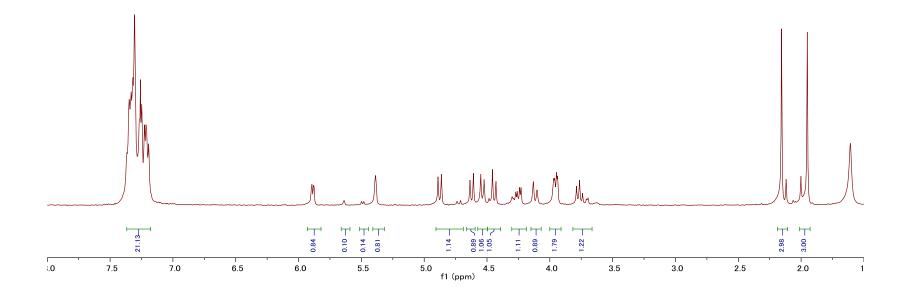
0.0


2,3,4-tri-*O*-benzyl-6-*O*-(3'-di-*O*-benzyl-4'-*O*-tert-butyldimethylsilyl-β-D-mannopyranurono-2',6'-lacton-1'-yl)-α-D-glucopyranoside (7fβ) ¹³C NMR (100 MHz, CDCl₃)

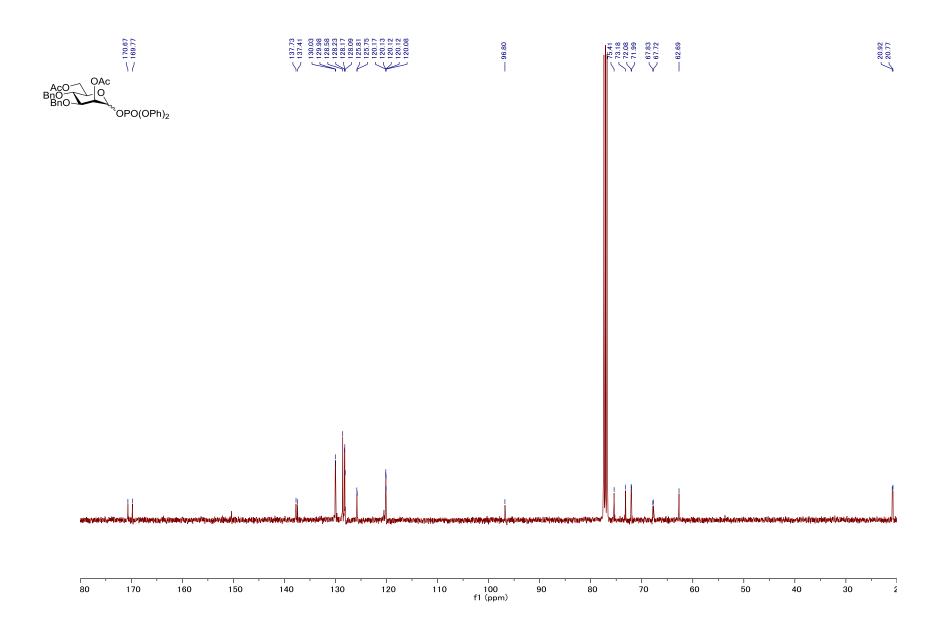


Methyl 2,3,4-tri-*O*-benzyl-6-*O*-(3'-di-*O*-benzyl-4'-*O*-tert-butyldimethylsilyl-β-D-mannopyranurono-2',6'-lacton-1'-yl)-α-D-glucopyranoside (7fβ) ¹H-¹H NOESY (400 MHz, CDCl₃)

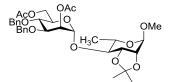
2,3,4-tri-O-benzyl-6-O-(3'-di-O-benzyl-4'-O-tert-butyldimethylsilyl-a-D-mannopyranurono-2',6'-lacton-1'-yl)-a-D-glucopyranoside (7fa) ¹H NMR (400 MHz, CDCl₃)

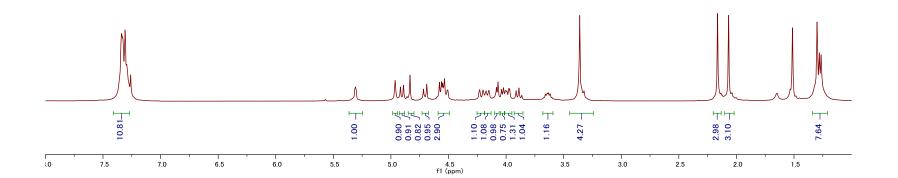


2,3,4-tri-O-benzyl-6-O-(3'-di-O-benzyl-4'-O-tert-butyldimethylsilyl-α-D-mannopyranurono-2',6'-lacton-1'-yl)-α-D-glucopyranoside (7fα) ¹³C NMR (100 MHz, CDCl₃)

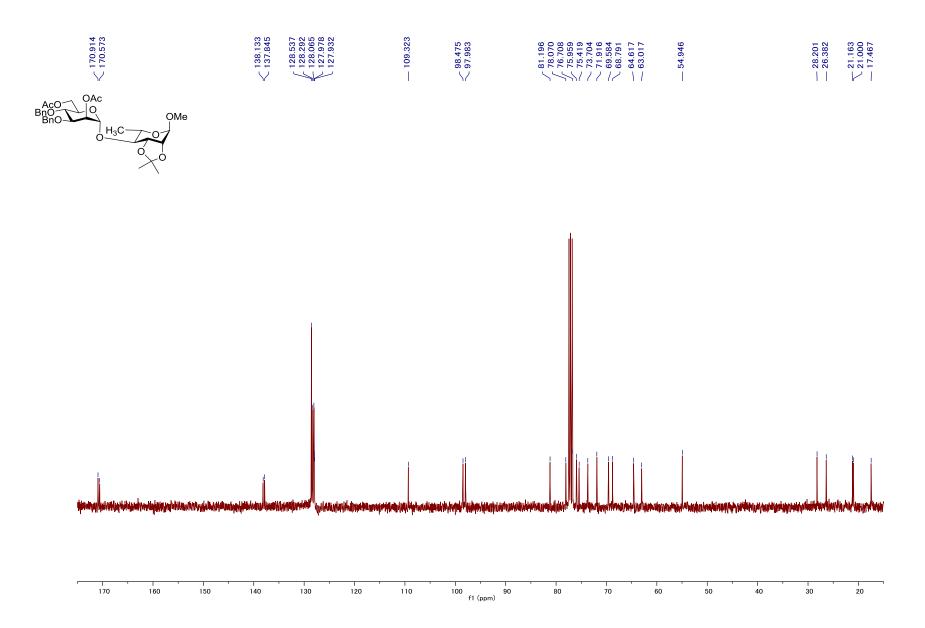


2,6-Di-O-acethyl-3,4-di-O-benzyl-D-mannopyranosyl diphenylphosphate (S3) ¹H NMR (400 MHz, CDCl₃)

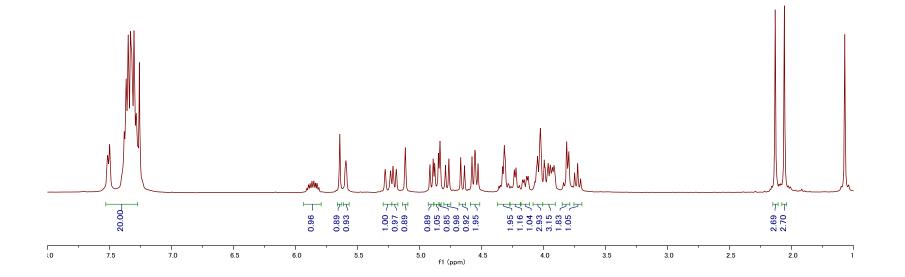

OAc ∠|Q OPO(OPh)2



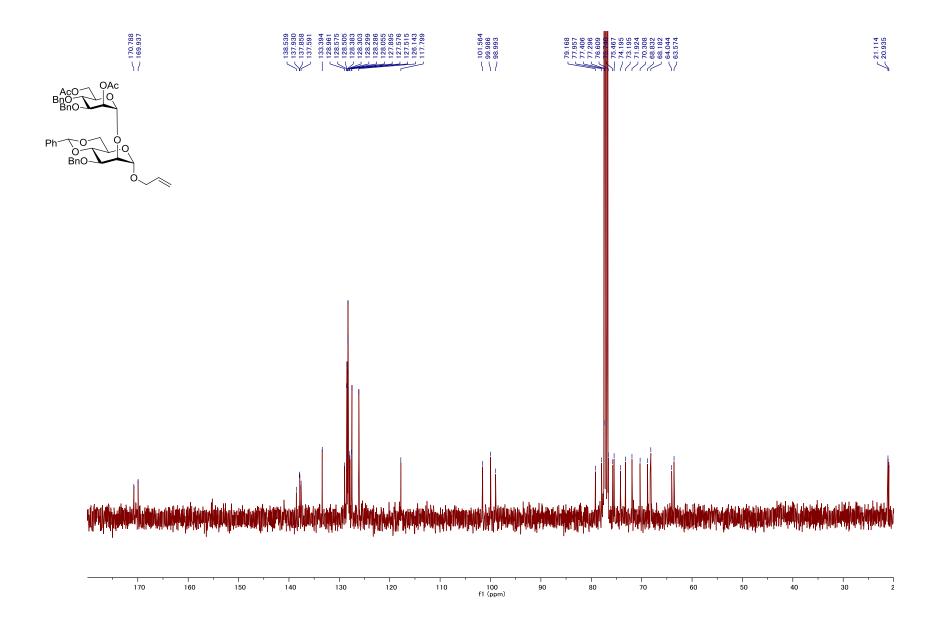
2,6-Di-O-acethyl-3,4-di-O-benzyl-D-mannopyranosyl diphenylphosphate (S3) ¹³C NMR (100 MHz, CDCl₃)



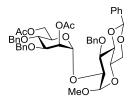
2,3-*O*-isopropylidene-4-*O*-(**2**',6'-di-*O*-acetyl-3',4'-di-*O*-benzyl-α-D-mannopyranosyl)-α-L-rhamnopyranoside (S4b) ¹H NMR (400 MHz, CDCl₃)

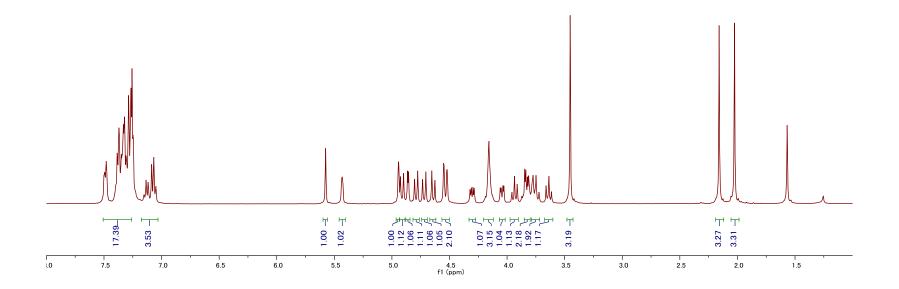

2,3-O-isopropylidene-4-O-(2',6'-di-O-acetyl-3',4'-di-O-benzyl-α-D-mannopyranosyl)-α-L-rhamnopyranoside (S4b) ¹³C NMR (100 MHz, CDCl₃)

2-O-(2',6'-di-O-acetyl-3',4'-di-O-benzyl-α-D-mannopyranosyl)-3-O-benzyl-4,6-O-benzylidene-α-D-mannopyranoside (S4c) ¹H NMR (400 MHz, CDCl₃)

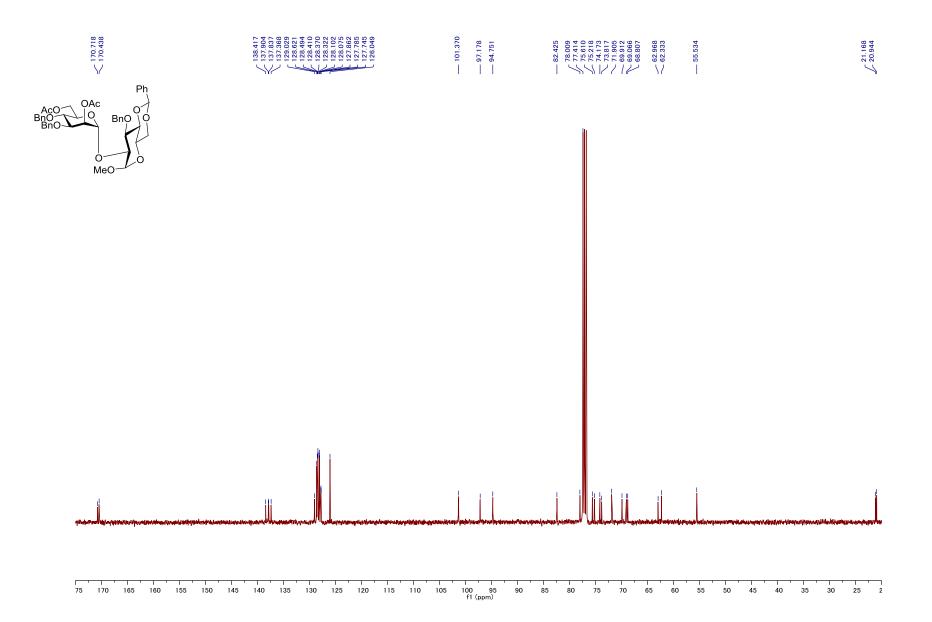

OAc Ph O BnO-Ó, $\widehat{}$

Allyl

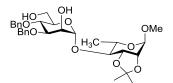


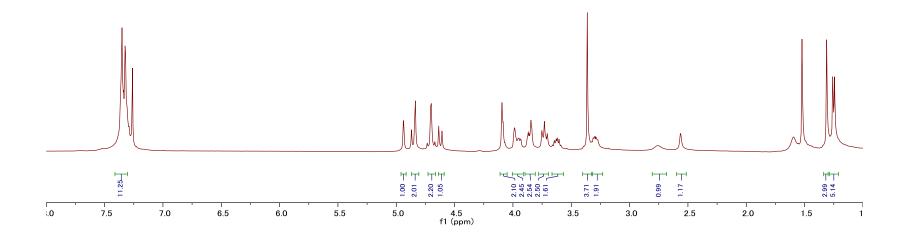

Allyl

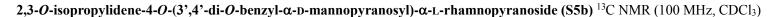
2-O-(2',6'-di-O-acetyl-3',4'-di-O-benzyl-α-D-mannopyranosyl)-3-O-benzyl-4,6-O-benzylidene-α-D-mannopyranoside (S4c) ¹³C NMR (100 MHz, CDCl₃)

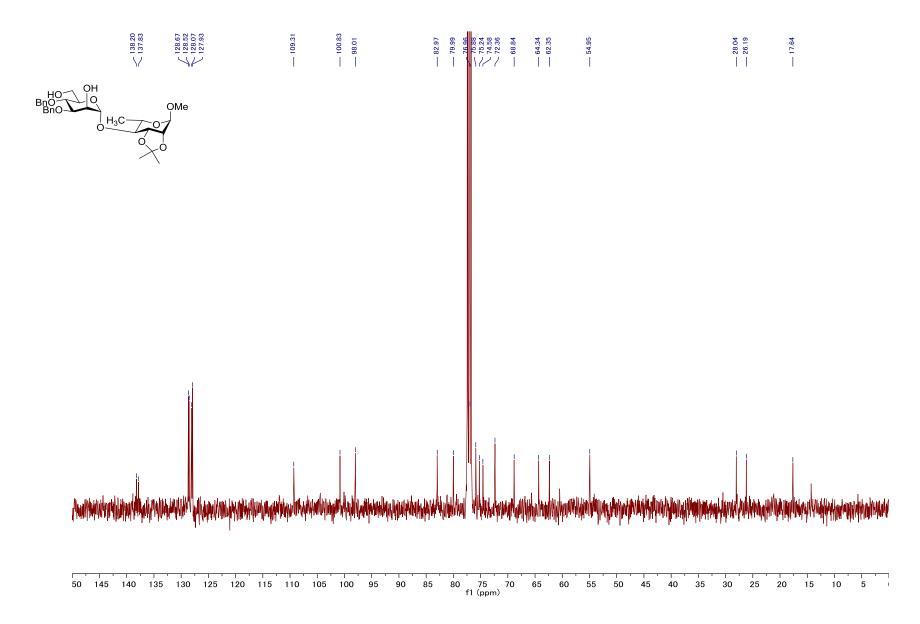


2-O-(2',6'-di-O-acetyl-3',4'-di-O-benzyl-α-D-mannopyranosyl)-3-O-benzyl-4,6-O-benzylidene-α-D-glucopyranoside (S4d) ¹H NMR (400 MHz, CDCl₃)

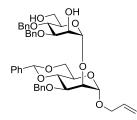


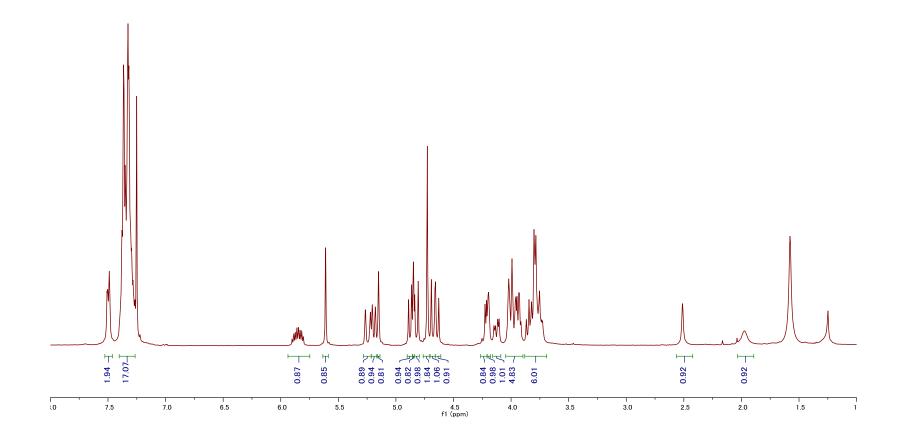



2-O-(2',6'-di-O-acetyl-3',4'-di-O-benzyl-α-D-mannopyranosyl)-3-O-benzyl-4,6-O-benzylidene-α-D-glucopyranoside (S4d) ¹³C NMR (100 MHz, CDCl₃)

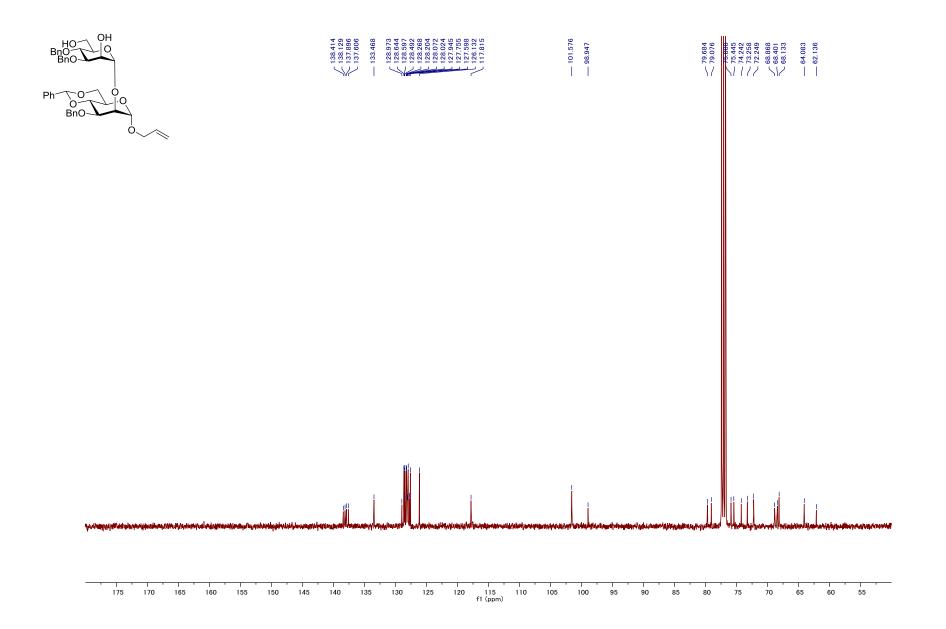


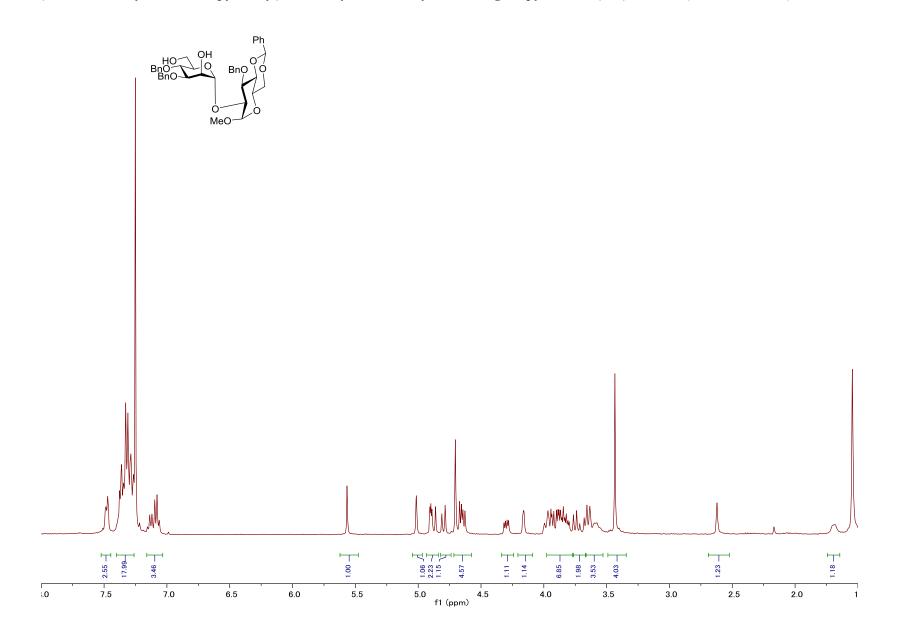
2,3-*O*-isopropylidene-4-*O*-(**3**',4'-di-*O*-benzyl-α-D-mannopyranosyl)-α-L-rhamnopyranoside (**S5b**) ¹H NMR (400 MHz, CDCl₃)



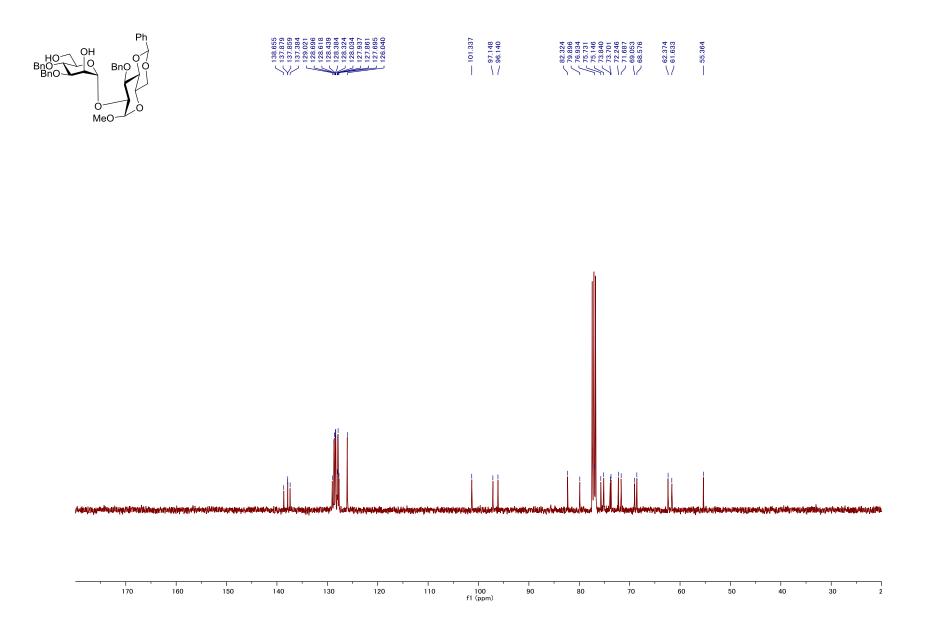


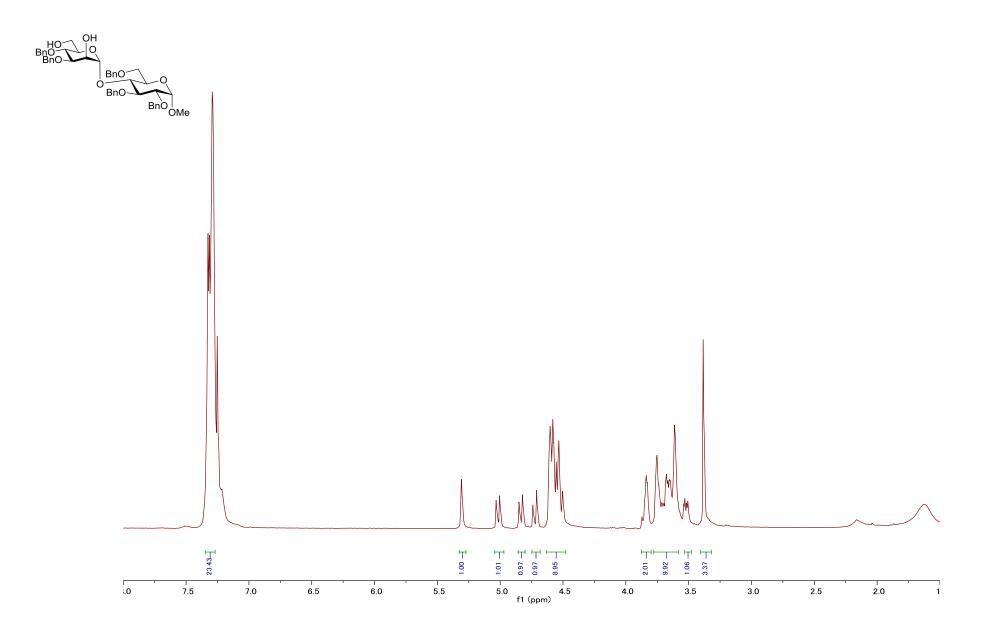
Allyl

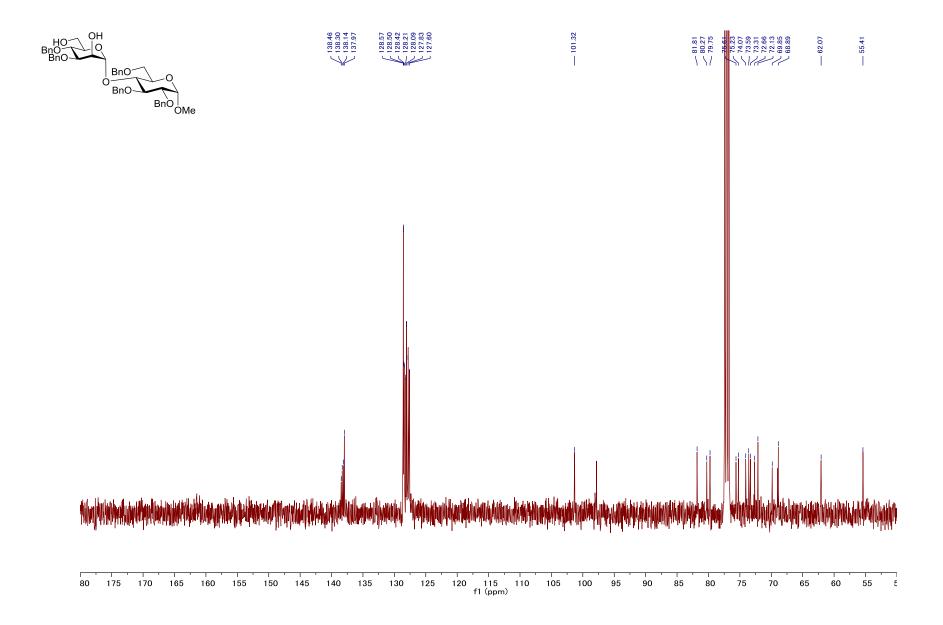

2-O-(3',4'-di-O-benzyl-α-D-mannopyranosyl)-3-O-benzyl-4,6-O-benzylidene-α-D-mannopyranoside (S5c) ¹H NMR (400 MHz, CDCl₃)

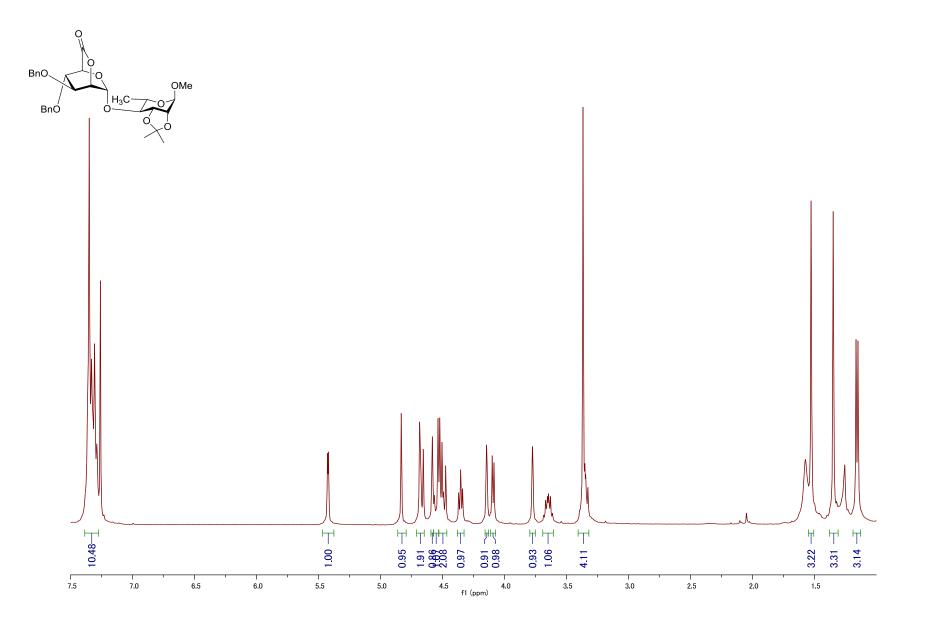


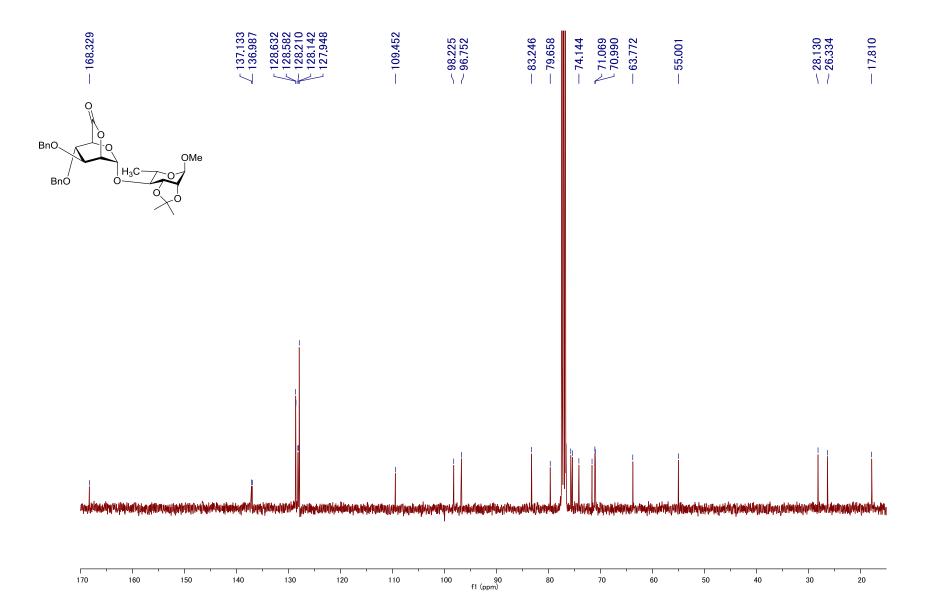
Allyl


2-O-(3',4'-di-O-benzyl-α-D-mannopyranosyl)-3-O-benzyl-4,6-O-benzylidene-α-D-mannopyranoside (S5c) ¹³C NMR (100 MHz, CDCl₃)

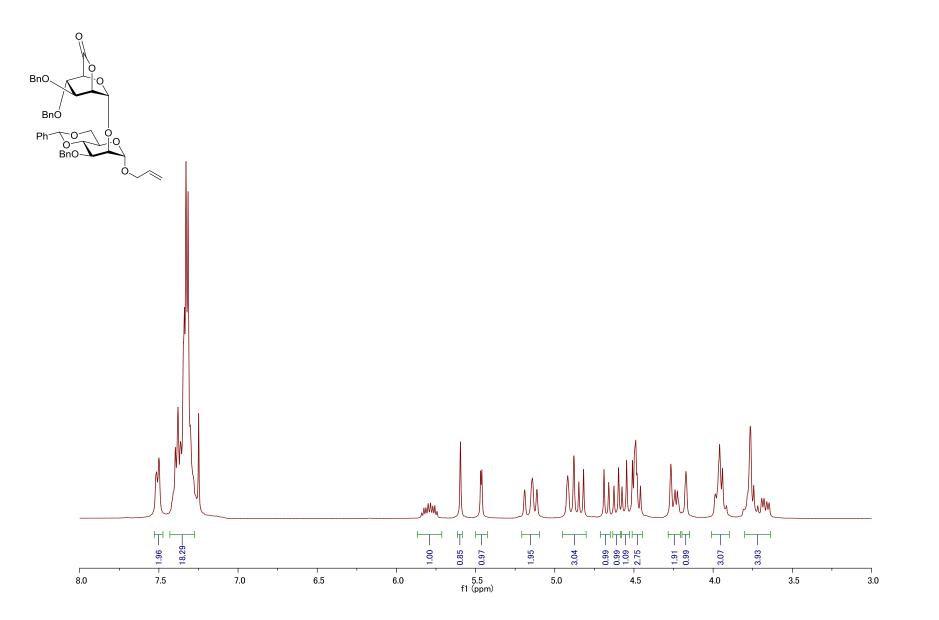

2-O-(3',4'-di-O-benzyl-α-D-mannopyranosyl)-3-O-benzyl-4,6-O-benzylidene-α-D-glucopyranoside (85d) ¹H NMR (400 MHz, CDCl₃)


2-O-(3',4'-di-O-benzyl-α-D-mannopyranosyl)-3-O-benzyl-4,6-O-benzylidene-α-D-glucopyranoside (S5d) ¹³C NMR (100 MHz, CDCl₃)

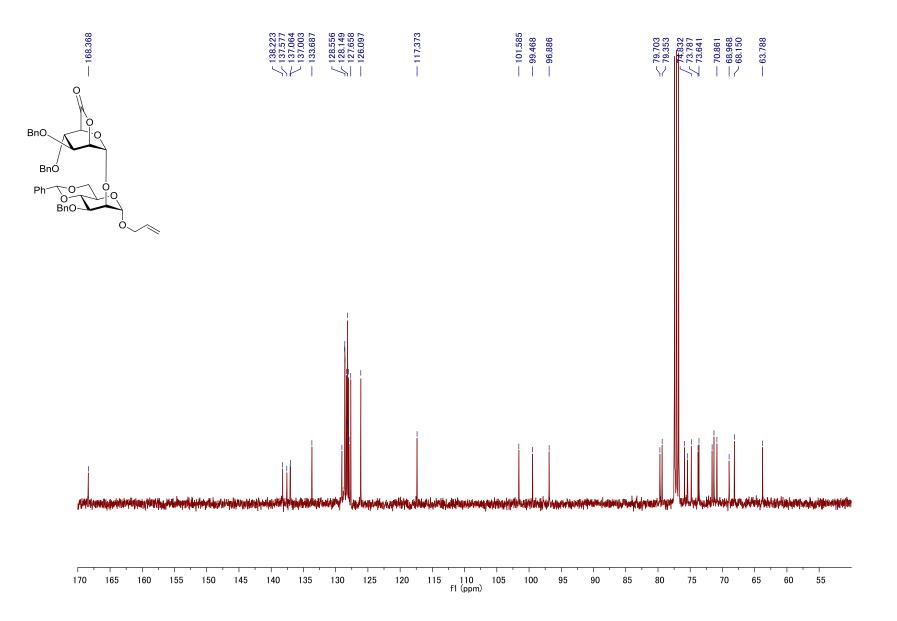

2,3,6-tri-O-benzyl-4-O-(3',4'-di-O-benzyl-α-D-mannopyranosyl)-α-D-glucopyranoside (S5e) ¹H NMR (400 MHz, CDCl₃)


2,3,6-tri-O-benzyl-4-O-(3',4'-di-O-benzyl-α-D-mannopyranosyl)-α-D-glucopyranoside (S5e) ¹³C NMR (100 MHz, CDCl₃)

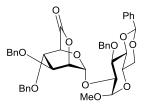
2,3-O-isopropylidene-4-O-(3',4'-di-O-benzyl-α-D-mannopyranurono-2',6'-lacton-1'-yl)-α-L-rhamnopyranoside (7bα) ¹H NMR (400 MHz,

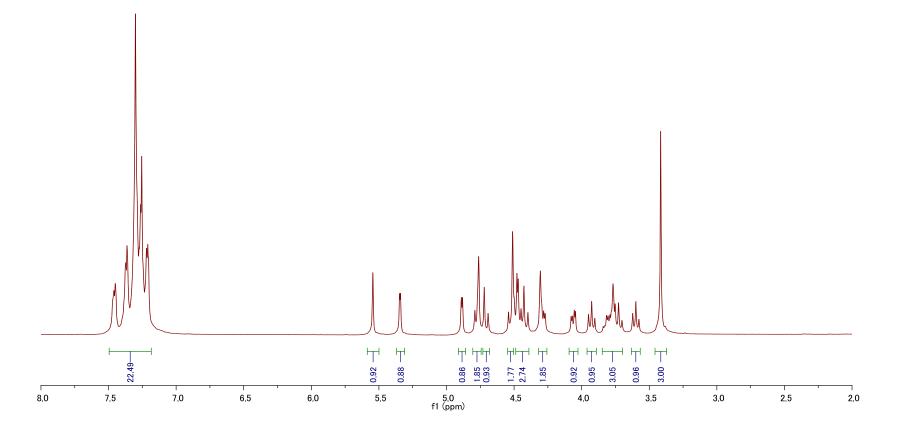


2,3-O-isopropylidene-4-O-(3',4'-di-O-benzyl-a-D-mannopyranurono-2',6'-lacton-1'-yl)-a-L-rhamnopyranoside (7ba) ¹³C NMR (100 MHz,

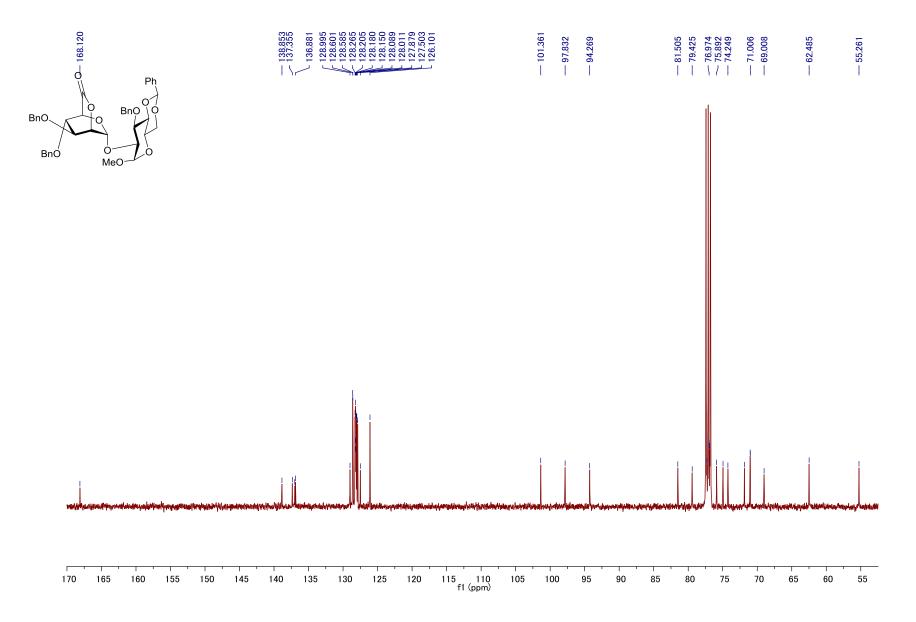

Allyl

2-O-(3',4'-di-O-benzyl-α-D-mannopyranurono-2',6'-lacton-1'-yl)-3-O-benzyl-4,6-O-benzylidene-α-D-mannopyranoside (7cα) ¹H NMR (400 MHz, CDCl₃)

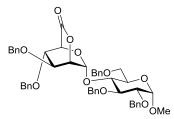


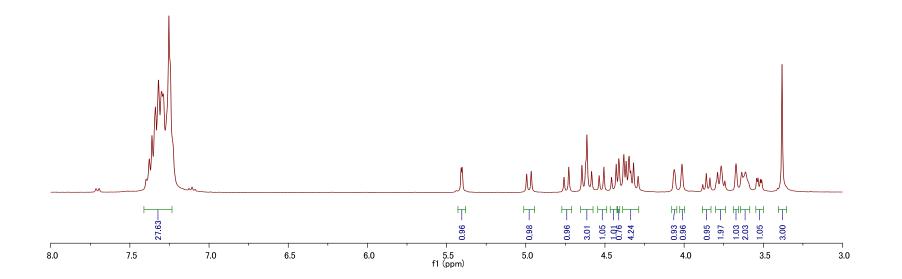

Allyl

2-O-(3',4'-di-O-benzyl-α-D-mannopyranurono-2',6'-lacton-1'-yl)-3-O-benzyl-4,6-O-benzylidene-α-D-mannopyranoside (7cα) ¹³C NMR (100 MHz, CDCl₃)

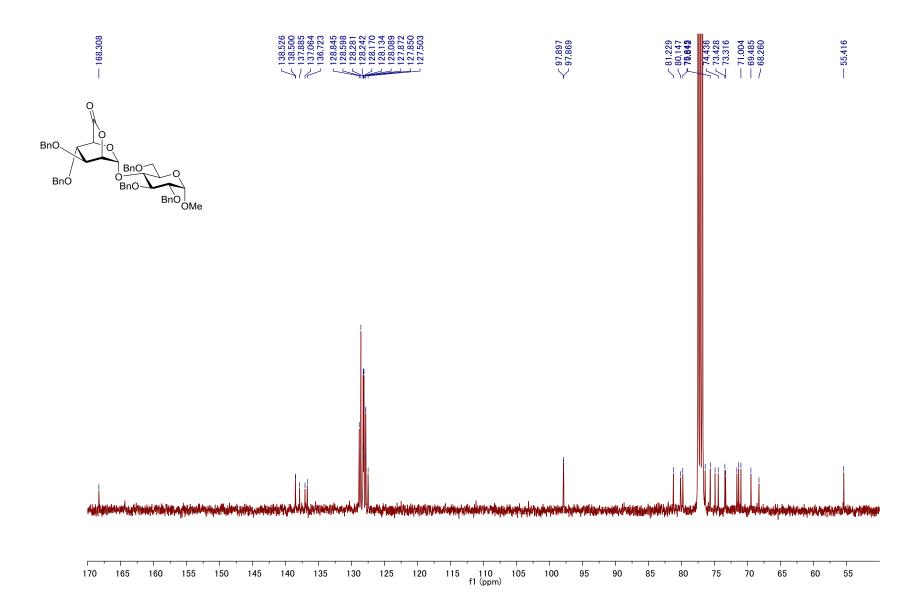


2-O-(3',4'-di-O-benzyl-α-D-mannopyranurono-2',6'-lacton-1'-yl)-3-O-benzyl-4,6-O-benzylidene-α-D-glucopyranoside (7dα) ¹H NMR (400 MHz, CDCl₃)

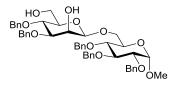


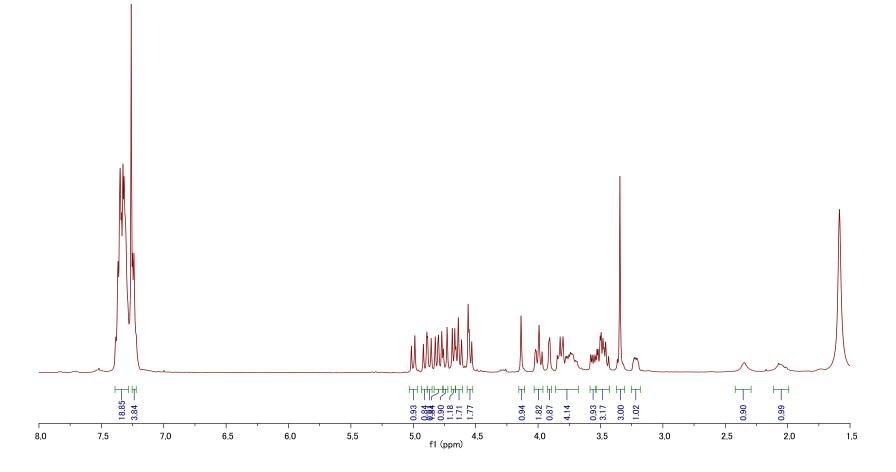


2-O-(3',4'-di-O-benzyl-α-D-mannopyranurono-2',6'-lacton-1'-yl)-3-O-benzyl-4,6-O-benzylidene-α-D-glucopyranoside (7dα) ¹³C NMR (100 MHz, CDCl₃)

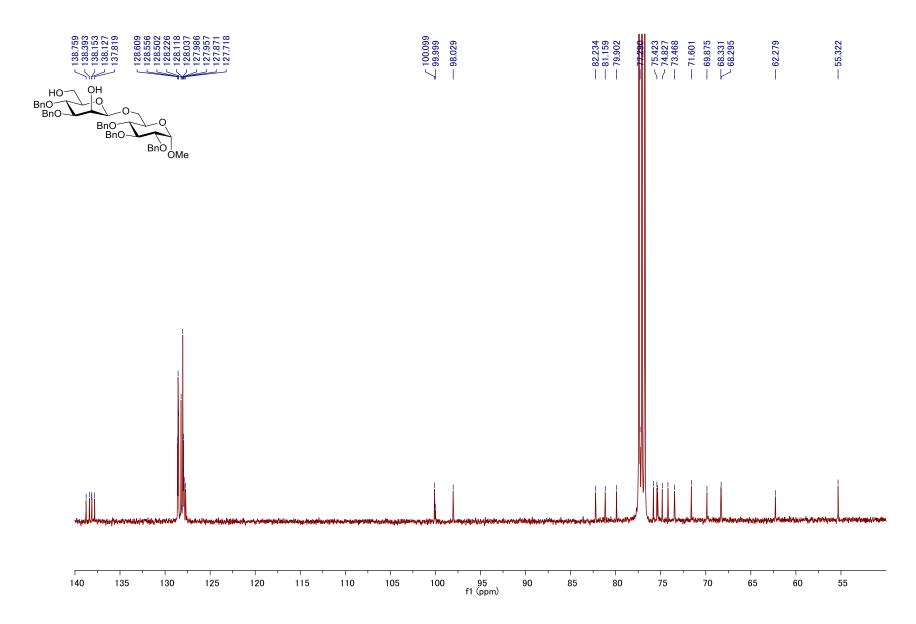


2,3,6-tri-O-benzyl-4-O-(3',4'-di-O-benzyl-α-D-mannopyranurono-2',6'-lacton-1'-yl)-α-D-glucopyranoside (7eα) ¹H NMR (400 MHz, CDCl₃)

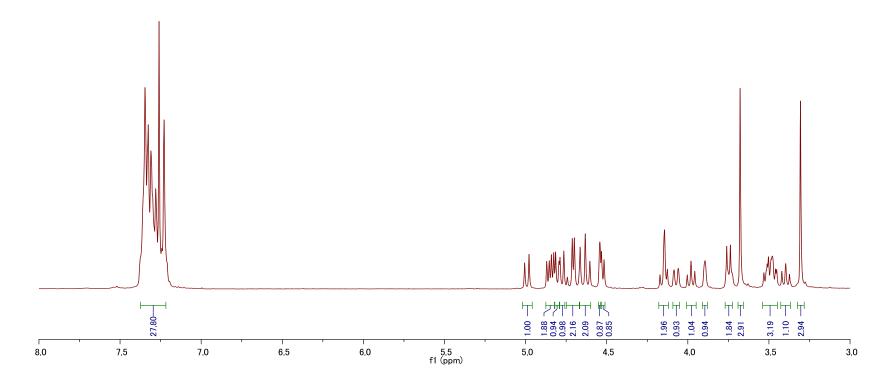




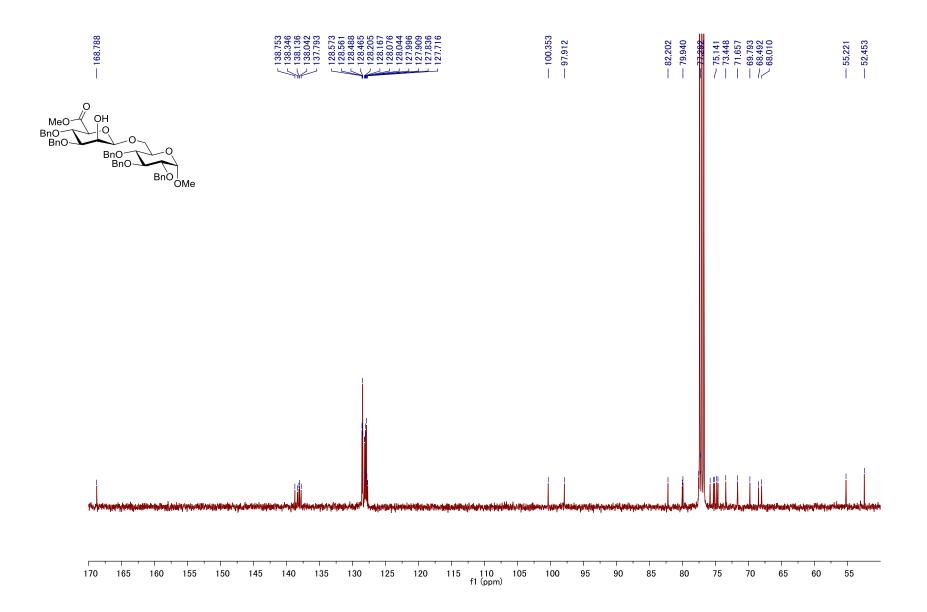
2,3,6-tri-O-benzyl-4-O-(3',4'-di-O-benzyl-α-D-mannopyranurono-2',6'-lacton-1'-yl)-α-D-glucopyranoside (7eα) ¹³C NMR (100 MHz, CDCl₃)



2,3,4-tri-O-benzyl-6-O-(3',4'-di-O-benzyl-β-D-mannopyranoyl)-α-D-glucopyranoside (8) ¹H NMR (400 MHz, CDCl₃)

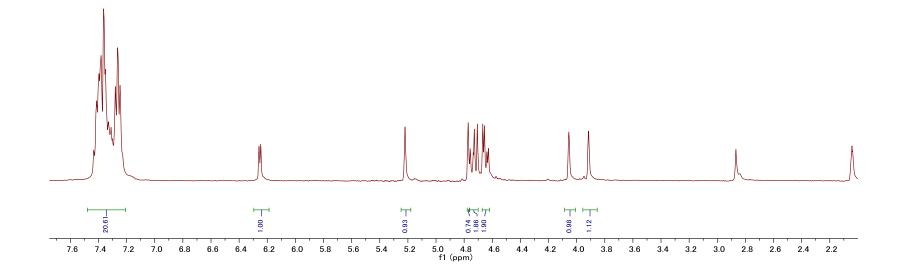


2,3,4-tri-O-benzyl-6-O-(3',4'-di-O-benzyl-β-D-mannopyranoyl)-α-D-glucopyranoside (8) ¹³C NMR (100 MHz, CDCl₃)

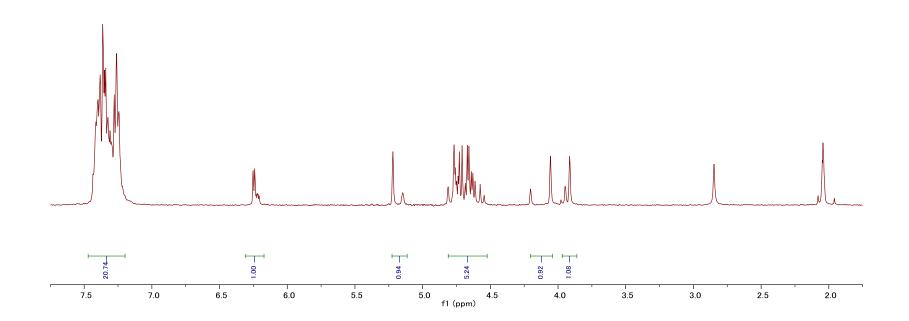


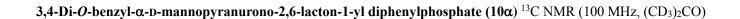
2,3,4-Tri-O-benzyl-6-O-(methyl (3',4'-di-O-benzyl-β-D-mannopyranosyl) uronate)-α-D-glucopyranoside (9) ¹H NMR (400 MHz, CDCl₃)

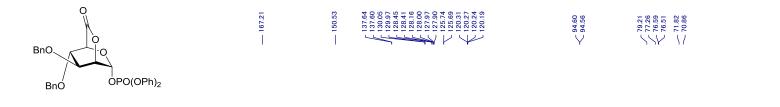
0 OH MeO BnO BnO-0 BnO BnO-BnO | OMe

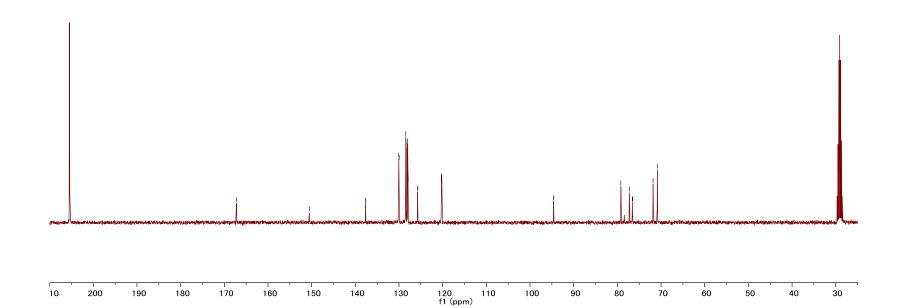


2,3,4-Tri-O-benzyl-6-O-(methyl (3',4'-di-O-benzyl-β-D-mannopyranosyl) uronate)-α-D-glucopyranoside (9) ¹³C NMR (100 MHz, CDCl₃)

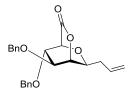

3,4-Di-*O*-benzyl-α-D-mannopyranurono-2,6-lacton-1-yl diphenylphosphate (10α) ¹H NMR (400 MHz, (CD₃)₂CO)

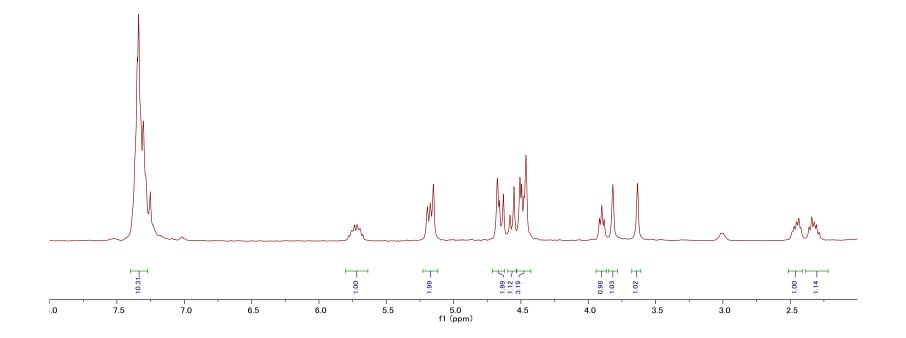

 \cap BnO. OPO(OPh)₂ BnÓ

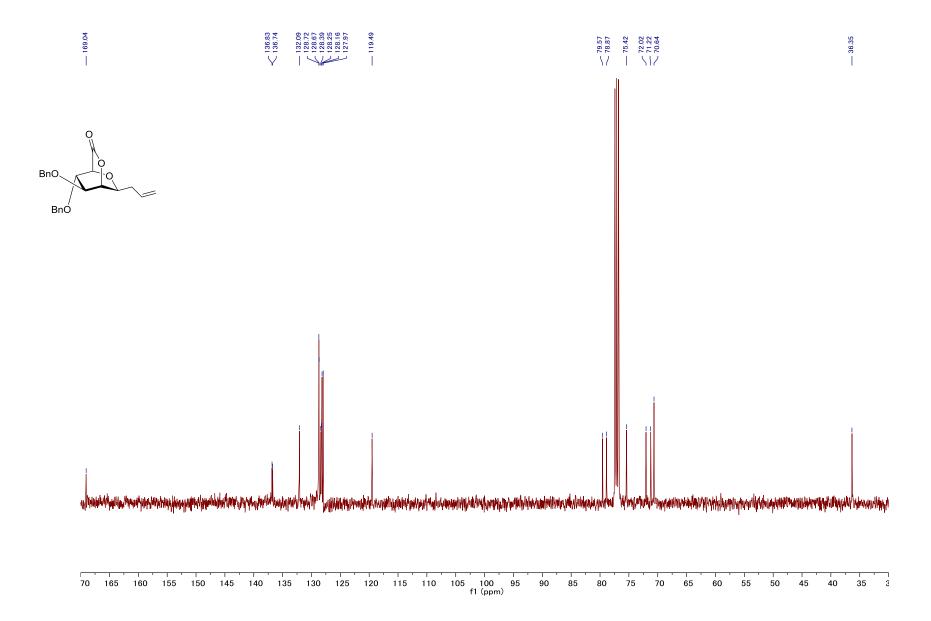


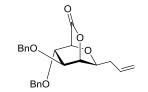

3,4-Di-*O*-benzyl-D-mannopyranurono-2,6-lacton-1-yl diphenylphosphate (10αβ) ¹H NMR (400 MHz, (CD₃)₂CO)

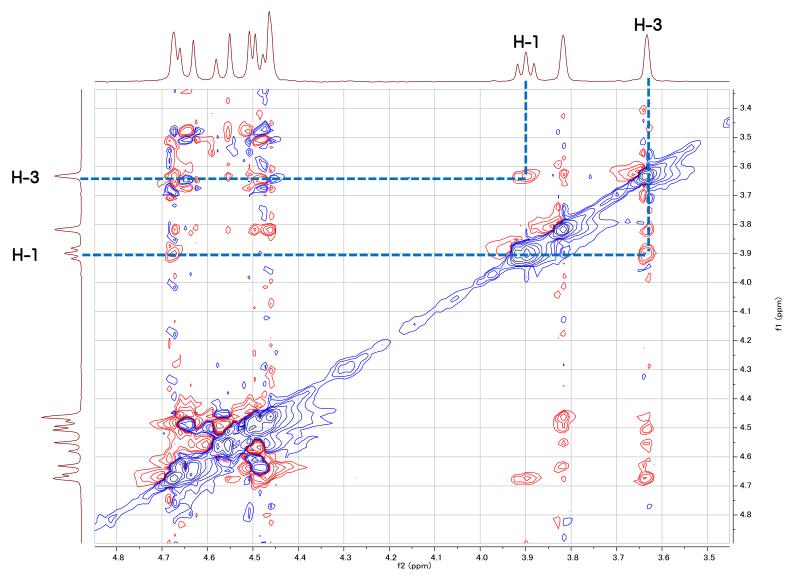
 \cap BnO、 OPO(OPh)₂ BnÓ

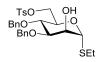


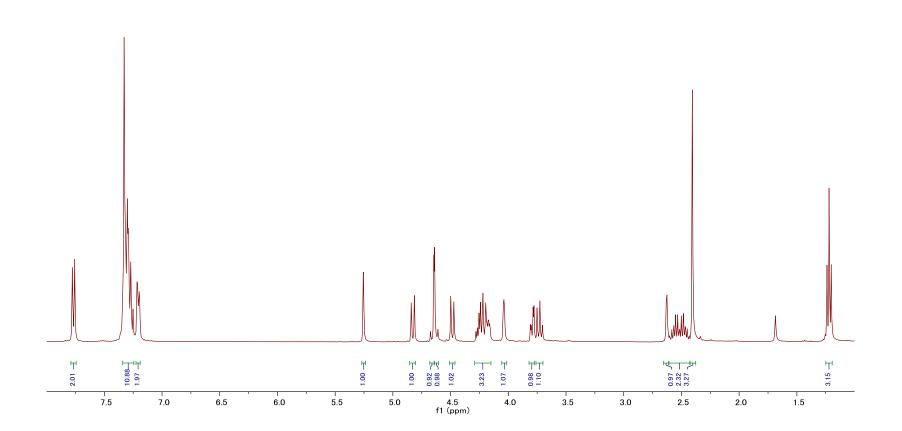


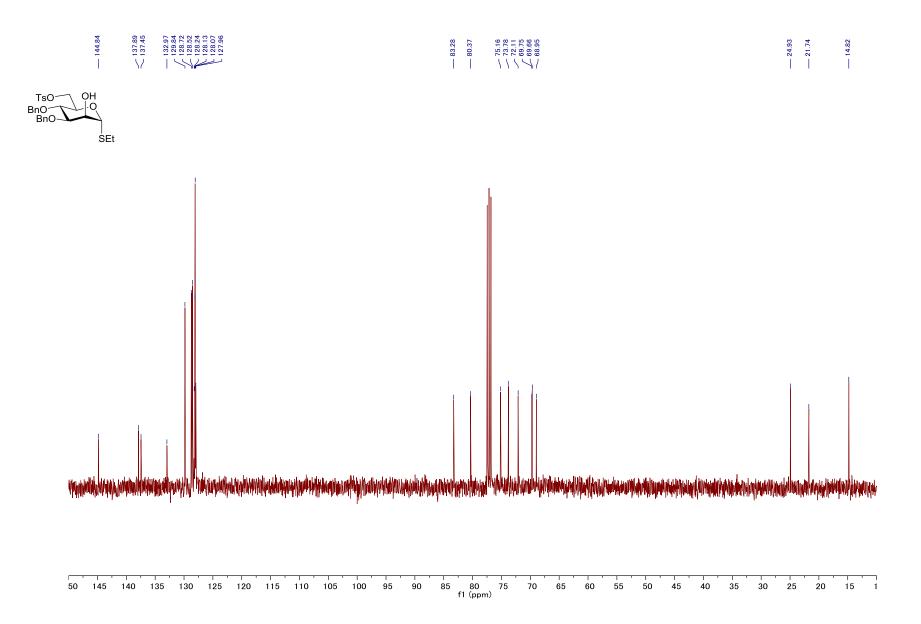



3-(3',4'-Di-*O***-benzyl-**β**-**D**-mannopyranurono-2',6'-lacton-1'-yl)propene (11)** ¹H NMR (400 MHz, CDCl₃)

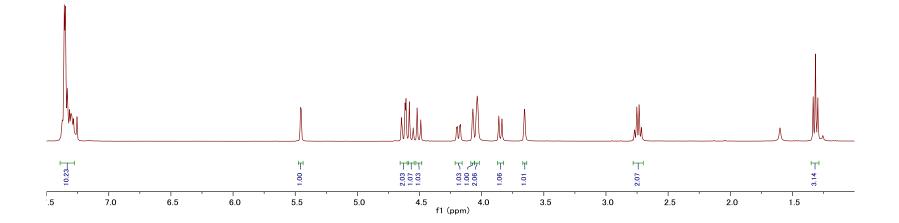


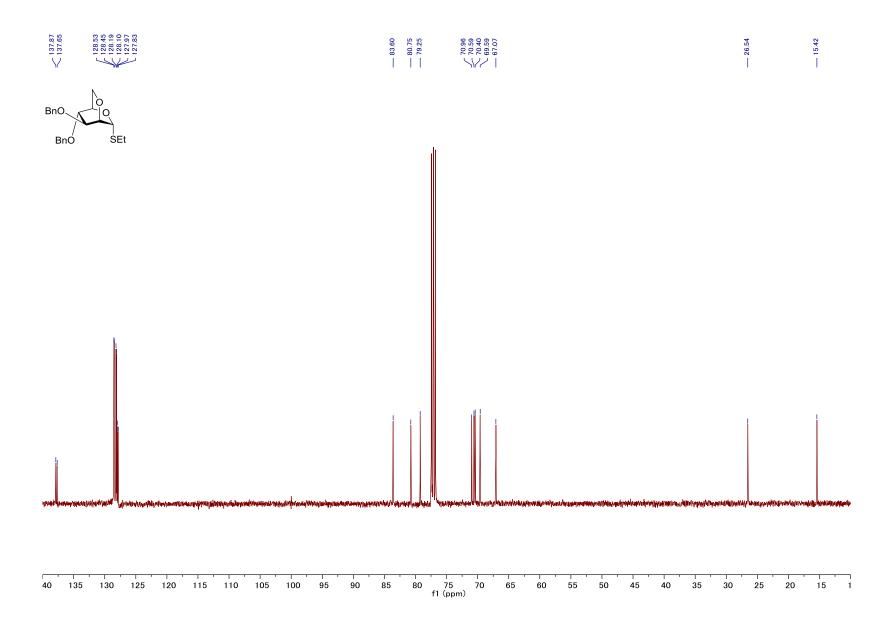


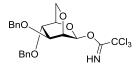


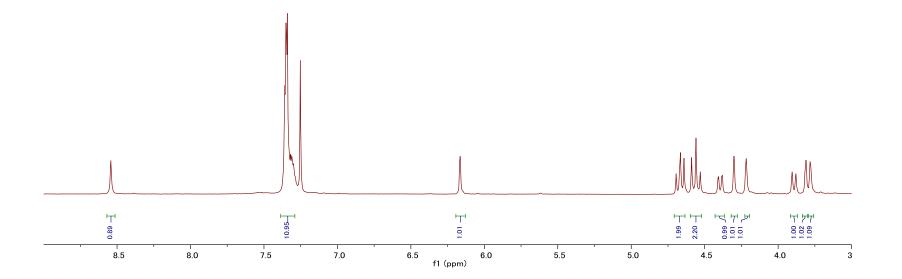


Ethyl 1-thio-3,4-di-*O*-benzyl-6-*O*-tosyl-α-D-mannopyranoside (S7) ¹H NMR (400 MHz, CDCl₃)

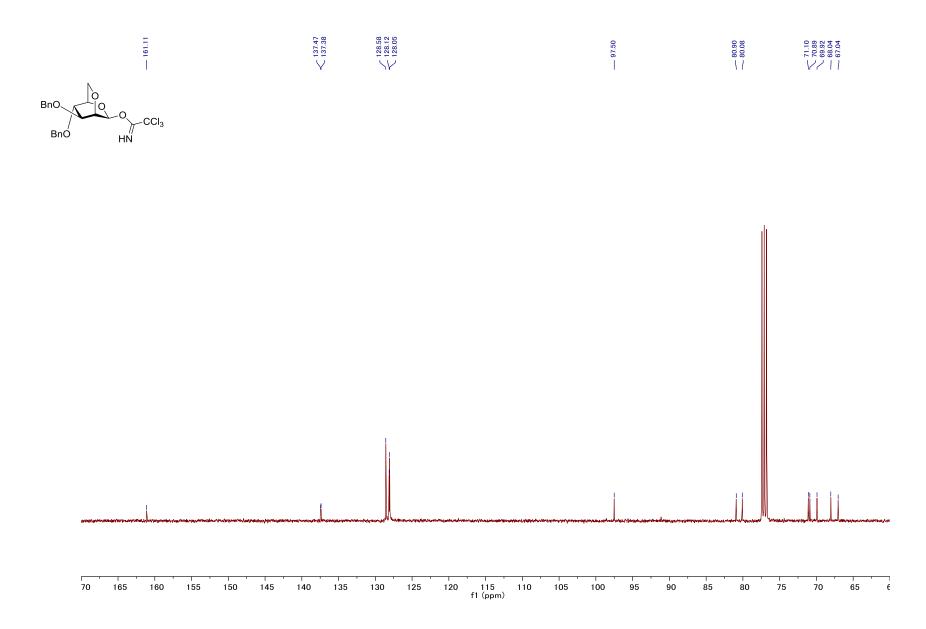


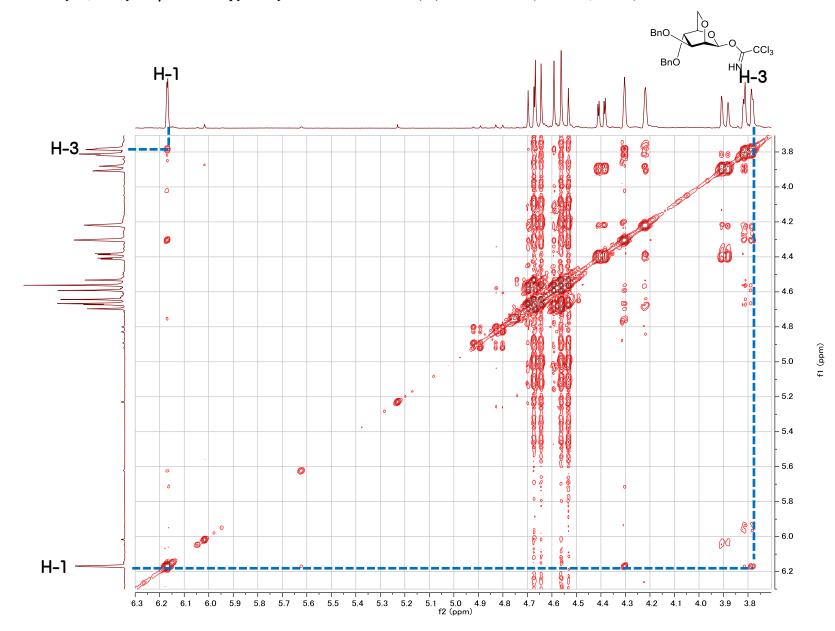

Ethyl 1-thio-3,4-di-*O*-benzyl-2,6-anhydro-α-D-mannopyranoside (S8) ¹H NMR (400 MHz, CDCl₃)

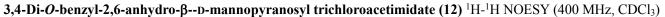



Ethyl

1-thio-3,4-di-*O*-benzyl-2,6-anhydro-α-D-mannopyranoside (S8) ¹³C NMR (100 MHz, CDCl₃)




3,4-Di-*O*-benzyl-2,6-anhydro-β-D-mannopyranosyl trichloroacetimidate (12) ¹H NMR (400 MHz, CDCl₃)



3,4-Di-*O*-benzyl-**2,6**-anhydro-β--D-mannopyranosyl trichloroacetimidate (12) ¹³C NMR (100 MHz, CDCl₃)

