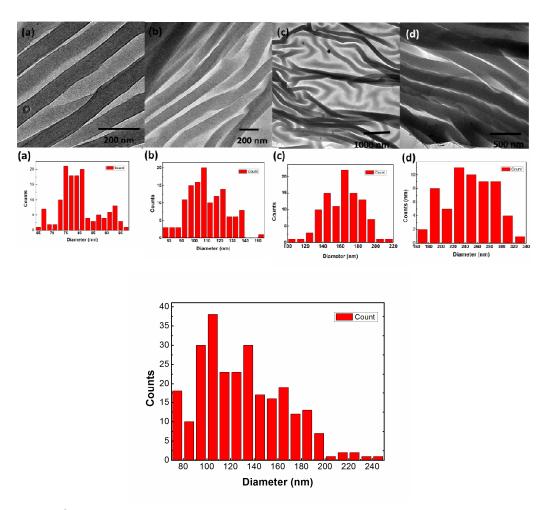

Supporting information for


Fabrication of Two-dimensional Arrays of Diameter-tunable PS-b-P2VP Nanowires at the Air/Water Interface

Xingjuan Zhao, † Xiaoli Yu, † Yong-Ill Lee, ‡ and Hong-Guo Liu* †

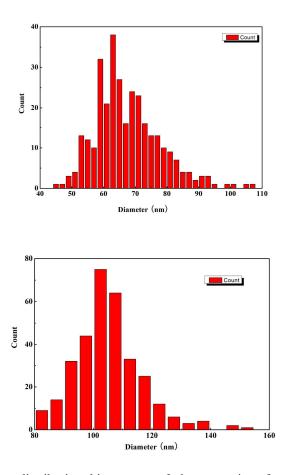
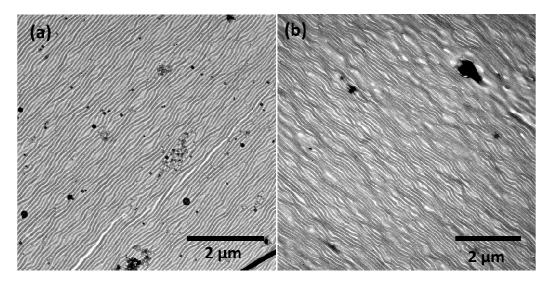
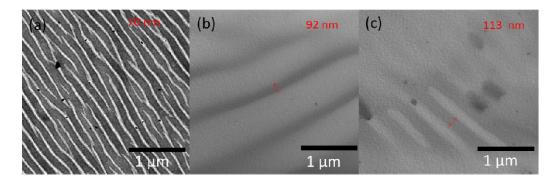
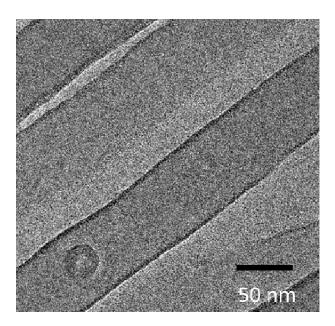
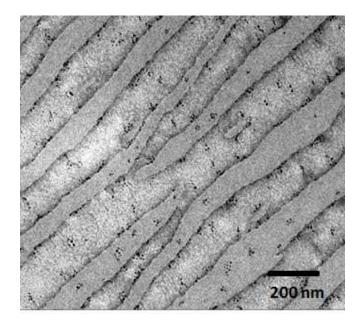

[†] Key Laboratory for Colloid and Interface Chemistry of Education Ministry, Shandong University, Jinan 250100, P. R. China. Email: hgliu@sdu.edu.cn [‡] Anastro Laboratory, Department of Chemistry, Changwon National University, Changwon 641-773, Korea.

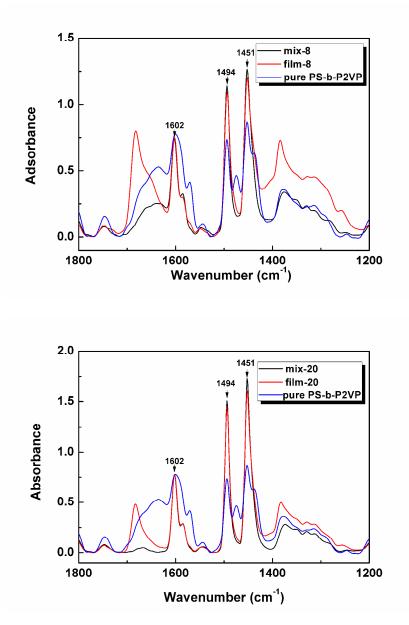

Figure S1. TEM image of the nanowires of pure PS-b-P2VP formed at the air/liquid interface and the diamater distribution histogram of the nanowires.


Figure S2. TEM images of the mixed h-PS1/PS-b-P2VP (mass ratio: 20) nanowires appeared at different areas, the corresponding diameter distribution histograms of the nanowires and the diamater distribution histogram of all the nanowires


Figure S3. Diameter distribution histograms of the nanowires formed at the air/water interface. Top: h-PS1/PS-b-P2VP = 4; Bottom: h-PS1/PS-b-P2VP = 12.


Figure S4. TEM image of the mixed h-PS2/PS-b-P2VP (mass ratio: 20) nanowires formed at the air/liquid interface.


Figure S5. TEM imeges of the nanowires formed at the air/liquid interface. (a), Pure PS-b-P2VP; (b), h-PS1/PS-b-P2VP with the mass ratio of 4.


Figure S6. TEM micrographs of thin films of PS-b-P2VP $[M_n(PS) = 440000 \text{ g mol}^{-1}; M_n(P2VP) = 12500 \text{ g mol}^{-1}; M_w/M_n = 1.2]$ formed at the air/water interface via encapsulation of h-PS1 with different mass ratios of h-PS1/PS-b-P2VP: 0 (a), 2 (b), and 4 (c).

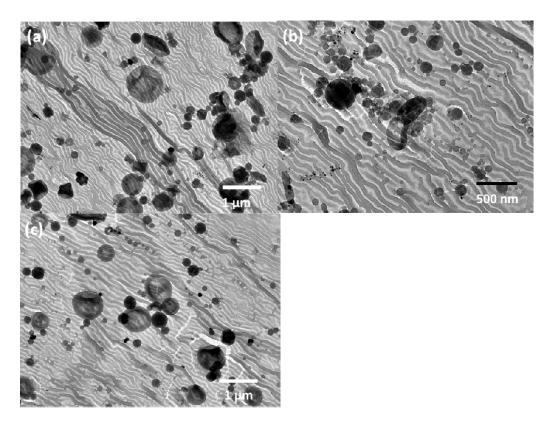

Figure S7. A high magnification TEM micrograph of the thin film formed at the air/water interface via encapsulation of h-PS1 with the mass ratio of 6.

Figure S8. TEM image of the PS-b-P2VP/Pb²⁺ nanowires formed at the air/liquid interface. The concentration of the block copolymer is 0.2 mg mL⁻¹, the volume ratio of the DMF/chloroform is 6:4, the concentration of the lead acetate is 2×10^{-3} mol L⁻¹, and volumes of the mixed organic solution of the polymer and the aqueous solution of Pb²⁺ are 5 mL, respectively.

Figure S9. FTIR spectra of the pure block copolymer, the composite films of h-PS1/PS-b-P2VP formed at the air/water interface with different mass ratios (8 and 20) and the corresponding physical mixtures of h-PS1/PS-b-P2VP.

Figure S10. TEM micrographs of the mixed films of h-PS3/PS-b-P2VP with the mass ratios of 1 (a,b) and 2 (c). It can be see that a large amount of solid spheres appeared in the images.

Table S1. Mean diameters and the diameter distributions of the nanowires of PS-b-P2VP and
the mixed h-PS1/PS-b-P2VP systems with different mass ratios.

Mass Ratio (h-PS1/PS-b-P2VP)	Diameter (nm)	σ (nm)
0	42	5
1	53	4
2	63	5
4	70	5
6	88	7
8	97	9
12	107	24
20	147	77

Table S2. Mean diameters and the diameter distributions of the nanowires of PS-b-P2VP and the mixed h-PS2/PS-b-P2VP systems with different mass ratios.

Mass Ratio (h-PS1/PS-b-P2VP)	Diameter (nm)	σ (nm)
0	42	5
0.2	44	4
1	46	4
2	54	4
3	58	5
4	68	6
5	103	10
6	105	12
8	106	10
20	104	13

Table S3. Mean diameters and the diameter distributions of the nanowires of PS-b-P2VP and the mixed h-PS3/PS-b-P2VP systems with different mass ratios.

Mass Ratio (h-PS1/PS-b-P2VP)	Diameter (nm)	σ (nm)
0	42	5
1	70	7
2	65	5
4	68	8
20	71	8

Measurement and calculation of the thin film amount: The mass of the film formed at the air/liquid interface was measured using a balance (Sartorius, BS 124S). Firstly, 20 mg of PS-b-P2VP and 160 mg of h-PS1 were dissolved in 40 mL chloroform in a 100 mL volumetric flask. Then DMF was added to the mark. This mixed organic solution was used as organic phase to form the liquid/liquid interface. Sixteen glass bottles with the inner diameter of 3.5 cm were used to prepare the thin film. 5 mL of the mixed organic solution was added to a bottle, and then 5 mL aqueous solution of AgNO₃ with a concentration of 0.01 mol L⁻¹ was added carefully to cover the organic phase. A planar liquid/liquid interface was constructed. A thin film appeared at the air/aqueous solution interface quickly. This film was a free-standing one and deposited on a glass slide after 8 hours. All the films formed at the air/liquid interface by using the 16 glass bottle were selected and dried in a desiccator with P₂O₅ as drying agent. The sample was measured using a balance after 2 days. The mass of the film was found to be 12.2 mg.

The total area of the air/liquid interface can be calculated. A = $3.14 \times 3.5^2 \times 16 = 615.44$ cm². Then the mass of the film per cm² should be 0.0198 mg, i.e. 19.8 µg.

In order to get these films, $(20 + 160) \times 80/100 = 145$ mg. So the yield can be calculated to be: 12.2/145 = 0.084 = 8.4%. Please note that the actual yield should be less than this value slightly due to the existence of the silver species in the films.

If the formed film is a monolayer composed of parallel aligned close-packed nanowires, the mass can be calculated. For the composite nanowires of the h-PS1/PS-b-P2VP with the mass ratio of 8, the mean diameter of the nanowires was measured to be 107 nm. Then the volume of the film can be calculated as follows:

 $V = 615.44 \times 107 \times 10^{-7} \times (3.14/4) = 5.17 \times 10^{-3} \text{ cm}^3.$

If just consider the PS (PS block and h-PS1), the density of the PS is 1.05 g cm⁻³. Then the mass can be calculated as: $M = 1.05 \times 5.17 \times 10^{-3} = 5.43 \times 10^{-3} \text{ g} = 5.43 \text{ mg}$ So the mass per cm² is 5.43/615.44 = 0.0088 mg, i.e. 8.8 µg.

It can be seen that the calculated 8.8 μ g cm⁻² is less than the measured value, 19.8 μ g cm⁻². The difference should be attributed to the combined Ag⁺ ions and the formed Ag nanoparticles. It can be also seen that the formed thin film can be considered as a monolayer. The yield should be dependent on the area of the air/liquid interface.