Supporting Information

CyclometalatedPlatinum(II)Complexesof1,3-Bis(1-n-butylpyrazol-3-yl)benzenes:Synthesis, Characterization,Electrochemical, Photophysical, and Gelation Behavior StudiesYeye Ai,^[a,b] Yongguang Li,*^[a] Huiqing Ma,^[a] Cheng-Yong Su,^[a] Vivian Wing-Wah Yam*^[a,b][a] Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou510275, (P. R. China)[b] Institute of Molecular Functional Materials [Areas of Excellence Scheme, University GrantsCommittee (Hong Kong)] and Department of Chemistry, The University of Hong Kong, PokfulamRoad (Hong Kong)

Fax: (+)(852) 2857-1586; E-mail: liyongguang@mail.sysu.edu.cn; wwyam@hku.hk

Experimental section

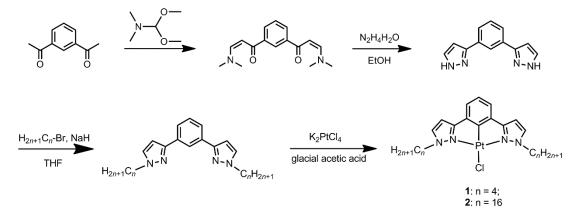
General. All starting materials were obtained from commercial suppliers and were used as received. 1,3-Diacetytlbenzene, 4-iodoaniline, 2-propynylamine, 1-bromobutane, and trimethylsilylacetylene were purchased from Aladdin Industrial Co. *N*,*N*-Dimethylformamide dimethyl acetal, K₂PtCl₄, and 4-methoxyphenylacetylene were obtained from Energy Chemical. 4-Nitrophenylacetylene was supplied by Bide Pharmatech Ltd. Hydrazine hydrate was provided from J&K Scientic Ltd. 1-Bromohexadecane was supplied by Beijing HWRK Chen Co. Cholesteryl chloroformate (99%) was purchased from Alfa Aesar. Cholesteryl 4-ethynylphenyl carbamate and cholesteryl 2-propyn-1-yl carbamate were synthesized according to literature-reported procedures.¹ 1,3-Dis(1*-n*-butyl-1*H*-pyrazol-3-yl)benzene, 1,3-bis(1-*n*-hexadecanyl-1*H*-pyrazol-3-yl)benzene, cholesterol acid amide phenylacetylene, and complexes **1** and **2** were synthesized according to modifications of the methods described in the

literature.²

Physical measurements and instrumentation

¹H NMR spectra were recorded on a Bruker DPX 400 FT–NMR spectrometer (400 MHz) at 298 K. Electrospray ionization mass spectra were performed on a Bruker Maxis 4G ESI–Q–TOF using electrospray ionization (positive ion mode: ESI) in acetonitrile or methanol solution. Elemental analyses of the complexes were performed on a Vario EL elemental analyzer at the instrumental analysis & research center, Sun Yat–Sen University, Guangzhou, China.

Electronic absorption spectra were recorded using a Shimadzu UV-3600 spectrophotometer. The photoluminescence spectra were measured on Edinburgh FS 5 or FLS 980 fluorescence


spectrophotometer. All solutions for photophysical studies were prepared under high vacuum in a 10 cm^3 round-bottomed flask equipped with a sidearm 1 cm fluorescence cuvette and sealed from the atmosphere by a Rotaflo HP6/6 quick-release Teflon stopper. Solutions were rigorously degassed on a high-vacuum line in a two-compartment cell with no less than five successive freeze-pump-thaw cycles. Solid-state photophysical measurements were carried out with the solid sample loaded on a quartz glass slide. Liquid nitrogen was placed into the Dewar flask for low temperature (77 K) photophysical measurements. CD measurements were recorded using a Jasco (Tokyo, Japan) J–810 CD spectropolarimeter with the metallogel sealed in a $10 \times 1 \text{ mm}$ quartz cell.

Scanning electron microscope experiments were performed by using Thermal Field Emission Enviromental Sem Eds EBSD on quanta 400F or Sigma 300/VP. The SEM sample was prepared by dropping dilute gels onto a silicon wafer. Slow evaporation of solvents in air for at least two days led to xerogels. The digital photographs of metallogels were taken by Sony ILCE-7. Cyclic voltammetric measurements ware performed by using a CH Instruments, Inc. model CHI 760 E electrochemical analyzer using a three-electrode single-cell compartment in a dichloromethane solution with 0.1 M "Bu₄PF₆ as supporting electrolyte at room temperature. The reference electrode was an $Ag/AgNO_3$ (0.1 moldm⁻³ in acetonitrile) electrode and the working electrode was a glassy carbon electrode (Gaossunion, Inc.) with a platinum wire as the counter electrode. The working electrode surface was first polished with a 1 µm alumina slurry (Gaossunion, Inc.) on a microcloth (Gaossunion, Inc.) and then with a 0.3µm alumina slurry (Gaossunion, Inc.). It was then rinsed with ultra-pure deionized water and sonicated in a beaker containing ultra-pure water for 3 times. The working electrode was finally rinsed under a stream of ultra-pure deionized water. The ferrocenium / ferrocene couple (FeCp₂⁺⁰) was used as the internal reference.³ All solutions for electrochemical studies was degassed with pre-purified argon prior measurements.

Crystal structure determination. Single-crystal diffraction data of complex **1** and **5** were collected on an Agilent SuperNova X-ray diffractometer using micro-focus dual with X-ray Source of Cu–K α radiation ($\lambda = 1.54178$ Å) at 293 K and 150 K respectively. Using Olex2⁴ the structure was solved with the ShelXS⁵ structure solution program using direct methods and refined with the XL⁵ refinement package using least squares minimization.

Gelation test: The gelator and the solvent were placed in a screw-capped sample vial and the mixture was heated until the solid dissolved. The sample vial was cooled in atmospheric air, and was then left for 1 min at room temperature. The state of the materials was evaluated by the "stable-to-inversion of a test tube" method.

Synthetic methods and characterization:

Scheme S1. Synthetic routes of bpzb ligands and complexes 1–2.

Synthesis of 1,3-di(1*H*-pyrazol-3-yl)benzene: A mixture of 1,1'-(1,3-phenylene)bis(3-(dimethylamino)prop-2-en-1-one) (150 mg, 0.55 mmol), N₂H₄·H₂O (0.39 mL, 8.25 mmol) and ethanol (3 mL) was heated at 70°C overnight. After cooling to room temperature, acetone was added to quench the excess N₂H₄·H₂O. Removal of the solvent under reduced pressure afforded the crude product. The pure product was obtained after washing with acetone / water (1:1 v / v; 50 mL). Yield: 115 mg, 85 %; ¹H NMR (400 MHz, [D₆]DMSO, 298 K): δ = 6.78 (d, *J* = 2.0 Hz, 2H; pyrazolyl proton), 7.45 (t, *J* = 7.7 Hz, 1H; phenyl proton), 7.73–7.75 (m, 4H; phenyl and pyrazolyl proton), 8.23 (s, 1H; phenyl proton), 12.93 ppm (br s, 2H; pyrazolyl proton); MS (ESI⁺): m/z: 211.11 [*M*+H]⁺.

Synthesis of 1,3-bis(1-*n*-butylpyrazilyl-3-yl)benzene: NaH (1.67 g, 41.1 mmol) and 1-bromobutane (7 mL, 51.4 mmol) were added to the solution of 1,3-di(1*H*-pyrazol-3-yl)benzene (2.16 g, 10.3 mmol) in THF (100 mL), and the mixture was heated at 70 °C for 2 days under N₂. After removal of the solvents, the organic phase was washed with deionized water (3 times) and dried over anhydrous MgSO₄. Removal of the solvent under reduced pressure afforded the crude

product, which was purified by column chromatography on silica gel using dichloromethane-ethyl acetate (1:1 v / v) as the eluent to give the desired product as a yellow oil. Yield: 2.24 g, 68 %; ¹H NMR (400 MHz, CDCl₃, 298 K, relative to Me₄Si): $\delta = 0.96$ (t, J = 4 Hz, 6H; $-CH_3$), 1.33–1.42 (m, 4H; $-CH_2$ –CH₃), 1.86–1.94 (m, 4H; $-CH_2$ –CH₂CH₃), 4.17 (t, J = 7.2 Hz, 4H; N– CH_2 –), 6.60 (d, J = 2.3 Hz, 2H; pyrazolyl proton), 7.39–7.42 (m, 3H; phenyl and pyrazolyl proton), 7.73–7.75 (m, 2H; phenyl proton), 8.17 ppm (t, J = 1.6 Hz, 1H; phenyl proton); MS (ESI⁺): m/z: 322.24 [M+H]⁺.

Synthesis of 1,3-bis(1-*n*-hexadecylpyrazilyl-3-yl)benzene: The procedure was similar to that for 1,3-bis(1-*n*-butylpyrazilyl-3-yl)benzene, except 1-bromohexadecane (5.00 g, 16.34 mmol) was used in place of 1-bromobutane. The crude product was purified by column chromatography on silica gel using dichloromethane-ethyl acetate (50:1 v / v) as the eluent to give the desired product as a white solid. Yield: 2.00 g, 77 %; ¹H NMR (400 MHz, [D₆]DMSO, 298 K, relative to Me₄Si): δ = 0.84 (t, *J* = 6.8 Hz, 6H; -*CH*₃), 1.15–1.41 (m, 52H; -(*CH*₂)₁₃-CH₃), 1.78–1.83 (m, 4H; N–CH₂-*CH*₂-), 4.13 (t, *J* = 7.0 Hz, 4H; N–*CH*₂-), 6.70 (d, *J* = 2.2 Hz, 2H; pyrazolyl proton), 7.38 (t, *J* = 7.7 Hz, 1H; phenyl proton), 7.65–7.67 (m, 2H; phenyl proton), 7.76 (d, *J* = 2.2 Hz, 2H; pyrazolyl proton), 8.21 ppm (s, 1H; phenyl proton); MS (ESI⁺): m/z: 659.62 [*M*].

Synthesis of complex 1: 1,3-Bis(1-*n*-butyl-1*H*-pyrazol-3-yl)benzene (1 g, 2.40 mmol) and K₂PtCl₄ (1 g, 2.40 mmol) were added into glacial acetic acid (15 mL). The mixture was heated to 108 °C for 5 days. Dark green solid was obtained after filtration and was washed with diethyl ether. Subsequent recrystallization by vapor diffusion of diethyl ether into a solution of the product in DMSO gave **1** as light green crystals. Yield: 1.33 g, 63 %; ¹H NMR (400 MHz, CDCl₃, 298 K, relative to Me₄Si): δ = 0.95 (t, *J* = 7.4 Hz, 6H; –*CH*₃), 1.34–1.43 (m, 4H; –*CH*₂–CH₃), 1.89–1.96 (m, 4H; –*CH*₂–CH₂CH₃), 4.89 (t, *J* = 7.1 Hz, 4H; N–*CH*₂-), 6.46 (d, *J* = 2.7 Hz, 2H; pyrazolyl proton),

7.10–7.18 (m, 3H; phenyl and pyrazolyl proton), 7.41 ppm (d, J = 2.7 Hz, 2H; phenyl proton); MS (ESI⁺): m/z : 516.15 [*M*–Cl]⁺; elemental analysis calcd (%) for C₂₀H₂₅ClN₄Pt (**1**): C 43.52, H 4.57, N 10.15; found: C 43.41, H 4.43, N 10.12.

Synthesis of complex 2: The procedure similar for was to that 1. except 1,3-bis(1-n-hexadecylpyrazilyl-3-yl)benzene (1.03 g, 1.57 mmol) was used in place of 1,3-bis(1-n-butylpyrazilyl-3-yl)benzene to give the product as a green solid. Subsequent recrystallization by vapor diffusion of diethyl ether into a solution of the product in dichloromethane gave 2 as a pale green solid. Yield: 447 mg, 42 %; ¹H NMR (400 MHz, CDCl₃, 298 K, relative to Me₄Si): $\delta = 0.87$ (t, J = 6.8 Hz, 6H; $-CH_3$), 1.23–1.32 (m, 52H; $-(CH_2)_{13}$ –CH₃), 1.90–1.97 (m, 4H; N–CH₂– CH_2 –), 4.87 (t, J = 7.2 Hz, 4H; N– CH_2 –), 6.46 (d, J = 2.7 Hz, 2H; pyrazolyl proton), 7.10–7.18 (m, 3H; phenyl and pyrazolyl proton), 7.39–7.44 ppm (d, J = 2.7 Hz, 2H; phenyl proton); MS (ESI⁺): m/z : 852.76 $[M-Cl]^+$; elemental analysis calcd (%) for C₄₄H₇₃ClN₄Pt (**2**): C 59.52, H 8.23, N 6.31; found: C 59.48, H 8.30, N 6.10.

Synthesis of complex 3: Sodium hydroxide (14 mg, 0.36 mmol) was added into a well-stirred solution of phenylacetylene (0.036 mL, 0.36 mmol) in methanol (15 mL). After stirring for 30 min, complex 1 was added to the above reaction mixture. The mixture was stirred for 24 h at RT. The light yellow solid was obtained after filtration and washed with deionized water, methanol and *n*-hexane in succession. Subsequent recrystallization by vapor diffusion of diethyl ether into a solution of the product in dichloromethane gave 3 as a light yellow solid. Yield: 73 mg, 62 %. ¹H NMR (400 MHz, CDCl₃, 298 K, relative to Me₄Si): $\delta = 0.87$ (t, J = 7.4 Hz, 6H; $-CH_3$), 1.24–1.34 (m, 4H; $-CH_2$ –CH₃), 1.92–1.99 (m, 4H; $-CH_2$ –CH₂CH₃), 4.96 (t, J = 7.0 Hz, 4H; N– CH_2 –), 6.46 (d, J = 2.7 Hz, 2H; pyrazolyl proton), 7.09–7.14 (m, 2H; phenyl and pyrazolyl proton), 7.23–7.25 (m,

3H; phenyl proton), 7.38–7.40 ppm (m, 5H; phenyl and pyrazolyl proton) ; MS (ESI⁺): *m/z* : 617.21 [*M*]⁺; 516.18 [*M*–alkynyl]⁺; elemental analysis calcd (%) for C₂₈H₃₀N₄Pt (**3**): C 54.45, 4.90, 9.07; found: C 54.14, H 4.79, N 9.06.

Synthesis of complex 4: The procedure was similar to that for complex 3, except 4-methoxyphenylacetylene (48 mg, 0.36 mmol) was used in place of phenylacetylene to give the product as a yellow solid. Subsequent recrystallization by vapor diffusion of diethyl ether into a solution of the product in dichloromethane gave 4 as yellow crystals. Yield: 107 mg, 91 %; ¹H NMR (400 MHz, [D₆]DMSO, 298 K): $\delta = 0.83$ (t, J = 7.3 Hz, 6H; $-CH_3$), 1.20–1.25 (m, 4H; $-CH_2$ –CH₃), 1.80–1.88 (m, 4H; $-CH_2$ –CH₂CH₃), 3.74 (s, 3H; $-OCH_3$), 4.96 (t, J = 6.8 Hz, 4H; N– CH_2 –), 6.67 (d, J = 1.6 Hz, 2H; pyrazolyl proton), 6.85 (d, J = 8.2 Hz, 2H; phenyl proton), 7.10 (t, J = 7.5 Hz, 1H; phenyl proton), 7.18 (d, J = 8.2 Hz, 2H; phenyl proton), 7.34 (d, J = 7.5 Hz, 2H; phenyl proton), 8.01 ppm (d, J = 1.6 Hz, 2H; pyrazolyl proton); MS (ESI⁺): m/z : 647.23 [M]⁺; 516.78 [M–alkynyl]⁺; elemental analysis calcd (%) for C₂₉H₃₂N₄OPt (4): C 53.78, H 4.98, N 8.65; found: C 54.14, H 4.79, N 9.06.

Synthesis of complex 5: The procedure was similar to that for complex 3, except 4-nitrophenylacetylene (79 mg, 0.36 mmol) was used in place of phenylacetylene to give the product as an orange solid. Subsequent recrystallization by vapor diffusion of diethyl ether into a solution of the product in dichloromethane gave 5 as orange crystals. Yield: 112 mg, 93 %; ¹H NMR (400 MHz, [D₆]DMSO, 298 K): $\delta = 0.83$ (t, J = 7.2 Hz, 6H; $-CH_3$), 1.14–1.23 (m, 4H; $-CH_2$ –CH₃), 1.79–1.87 (m, 4H; $-CH_2$ –CH₂CH₃), 4.96 (t, J = 6.9 Hz, 4H; N– CH_2 –), 6.67 (d, J = 0.8 Hz, 2H; pyrazolyl proton), 7.12 (t, J = 7.5 Hz, 1H; phenyl proton), 7.36 (d, J = 7.5 Hz, 2H; phenyl proton), 8.05 (d, J = 1.6 Hz, 2H; pyrazolyl proton), 8.16

ppm (d, J = 8.3 Hz, 2H; phenyl proton); MS (ESI⁺): m/z : 663.19 [M] ⁺, 516.16 [M-alkynyl]⁺; elemental analysis calcd (%) for C₂₈H₂₉N₅O₂Pt (**5**·H₂O·0.5C₆H₁₄): C 51.45, H 5.26, N 9.68; found: C 51.69, H 4.91, N 9.49.

Synthesis of complex 6: The procedure was similar to that for complex 3, except 4-ethynylaniline (35 mg, 0.36 mmol) was used in place of phenylacetylene to give the product as a pale yellow solid. Subsequent recrystallization by vapor diffusion of diethyl ether into a solution of the product in dichloromethane gave 6 as a brown solid. Yield: 100 mg, 87 %; ¹H NMR (400 MHz, CDCl₃, 298 K, relative to Me₄Si): $\delta = 0.88$ (t, J = 7.4 Hz, 6H; $-CH_3$), 1.26–1.35 (m, 4H; $-CH_2$ –CH₃), 1.91–1.99 (m, 4H; $-CH_2$ –CH₂CH₃), 3.61 (s, 2H; $-NH_2$), 5.00 (t, J = 7.0 Hz, 4H; N– CH_2 –), 6.45 (d, J = 2.7 Hz, 2H; pyrazolyl proton), 6.60 (d, J = 8.5 Hz, 2H; phenyl proton), 7.10 (t, J = 7.5 Hz, 1H; phenyl proton), 7.20–7.26 (m, 4H; phenyl proton), 7.38 ppm (d, J = 2.7 Hz, 2H; pyrazolyl proton); MS (ESI⁺): m/z : 632.24 [M]⁺, 516.18 [M–alkynyl]⁺; elemental analysis calcd (%) for C₂₈H₃₁N₅Pt (6·0.5H₂O): C 52.41, H 5.03, N 10.91; found: C 52.42, H 4.82, N 10.83.

Synthesis of complex 7: The procedure was similar to that for complex 3, except cholesteryl 4-ethynylphenyl carbamate (192 mg, 0.36 mmol) was used in place of phenylacetylene to give the product as a pale yellow solid. Subsequent recrystallization by vapor diffusion of diethyl ether into a solution of the product in dichloromethane gave 7 as a pale yellow solid. Yield: 174 mg, 92 %; ¹H NMR (400 MHz, CDCl₃, 298 K, relative to Me₄Si): $\delta = 0.68$ (s, 3H; cholesteryl proton), 0.86–1.54 (m, 43 H; cholesteryl proton, $-CH_2-CH_3$ and $-(CH_3)_2$), 1.78–2.03 (m, 9 H; cholesteryl proton and $-CH_2-CH_2CH_3$), 2.31–2.46 (m, 2H; cholesteryl proton), 4.56–4.64 (m, 1H, -OCH– on cholesteryl proton), 4.96 (t, J = 7.0 Hz, 4H; N– CH_2 –), 5.40 (s, 1H, -CH=C– on cholesteryl), 6.45–6.48 (m, 3H; pyrazolyl proton and -NH–), 7.11 (t, J = 7.5 Hz, 1H; phenyl proton), 7.24–7.45 ppm (m, 8H; phenyl

and pyrazolyl proton); MS (ESI⁺): m/z : 516.18 [*M*-alkynyl]⁺; elemental analysis calcd (%) for C₅₆H₇₅N₅O₂Pt (**7**): C 64.34, H 7.23, N 6.70; found: C 64.55, H 7.30, N 6.46.

Synthesis of complex 8: The procedure was similar to that for complex 3, except cholesteryl 2-propyn-1-yl carbamate (197 mg, 0.36 mmol) was used in place of phenylacetylene to give the product as a pale yellow solid. Subsequent recrystallization by vapor diffusion of diethyl ether into a solution of the product in dichloromethane gave 8 as a light yellow solid. Yield: 113 mg, 63 %; ¹H NMR (400 MHz, CDCl₃, 298 K, relative to Me₄Si): $\delta = 0.68$ (s, 3H; cholesteryl proton), 0.86–1.60 (m, 43 H; cholesteryl proton, $-CH_2-CH_3$ and $-(CH_3)_2$), 1.78–2.02 (m, 9 H; cholesteryl proton and $-CH_2$ –CH₂CH₃), 2.25–2.39 (m, 2H; cholesteryl proton), 4.26 (d, J = 4.5 Hz, 2H; $-NH-CH_2-$), 4.45–4.51 (m, 1H, -OCH- on cholesteryl proton), 4.75 (s, 1H; -NH-), 4.92 (t, J = 7.1 Hz, 4H; $-N-CH_2-$), 5.38 (s, 1H, -CH=C– on cholesteryl), 6.44 (d, J = 2.7 Hz, 2H; pyrazolyl proton), 7.10 (t, J = 7.5 Hz, 1H; phenyl proton), 7.22–7.25 (d, J = 7.5 Hz, 2H; phenyl proton), 7.38 ppm (d, J = 2.7 Hz, 2H; pyrazolyl proton); MS (ESI⁺): m/z : 516.34 [M–alkynyl]⁺; elemental analysis calcd (%) for C₃₁H₇₃N₅O₂Pt (8): C 62.30, H 7.48, N 7.12; found: C 61.93, H 7.54, N 6.96.

Synthesis of complex 9: The procedure was similar to that for complex 3, except cholesteryl 4-ethynylphenyl carbamate (119 mg, 0.22 mmol) and complex 2 were used in place of phenylacetylene and complex 1 respectively in methanol and CH₂Cl₂ mixed solvent (1:1 v / v; 30 mL) under N₂ atmosphere. The mixture was stirred for 24 h at RT. After evaporation of most solvent and filtration, the crude product was washed with deionized water, methanol and *n*-hexane in succession. Subsequent recrystallization by vapor diffusion of diethyl ether into a solution of the product in dichloromethane gave 9 as a light yellow solid. Yield: 131 mg, 84 %. ¹H NMR (400 MHz, CDCl₃, 298 K, relative to Me₄Si): $\delta = 0.68$ (s, 3H; cholesteryl proton), 0.86–1.52 (m, 91 H;

cholesteryl proton, $-(CH_2)_{13}$ - CH_3 and $-(CH_3)_2$), 1.79–2.03 (m, 9 H; cholesteryl proton and $-CH_2$ - CH_2CH_3), 2.30–2.45 (m, 2H; cholesteryl proton), 4.46–4.64 (m, 1H, -OCH- on cholesteryl proton), 4.93 (t, J = 7.1 Hz, 4H; -N- CH_2 -), 5.41 (s, 1H, -CH=C- on cholesteryl), 6.45–6.47 (m, 3H; pyrazolyl proton and -NH-), 7.11 (t, J = 7.5 Hz, 1H; phenyl proton), 7.24–7.38 ppm (m, 8H; phenyl and pyrazolyl proton); MS (ESI⁺): m/z : 852.76 [M-alkynyl]⁺; elemental analysis calcd (%) for $C_{80}H_{123}N_5O_2Pt$ (**9**): C 69.53, H 8.97, N 5.07; found: C 69.45, H 9.02, N 4.77.

Synthesis of complex 10: The procedure was similar to that for complex 9, except cholesteryl 2-propyn-1-yl carbamate (119 mg, 0.22 mmol) and complex 2 were used in place of cholesteryl 4-ethynylphenyl carbamate and complex 1 respectively to give the product as a light yellow solid. Subsequent recrystallization by vapor diffusion of diethyl ether into a solution of the product in dichloromethane gave 10 as a pale yellow solid. Yield: 119 mg, 80 %. ¹H NMR (400 MHz, CDCl₃, 298 K, relative to Me₄Si): $\delta = 0.67$ (s, 3H; cholesteryl proton), 0.85-1.53(m, 91H; cholesteryl proton, $-(CH_2)_{13}-CH_3$ and $-(CH_3)_2$), 1.82-2.02 (m, 9 H; cholesteryl proton and $-CH_2-CH_2CH_3$), 2.24–2.38 (m, 2H; cholesteryl proton), 4.25 (d, J = 2.6 Hz, 2H; $-CH_2C\equiv C-$), 4.46-4.53 (m, 1H, -OCH- on cholesteryl proton), 4.75 (s, 1H; -NH-), 4.89 (t, J = 6.7 Hz, 4H; $-N-CH_2-$), 5.37 (s, 1H, -CH=C- on cholesteryl), 6.43 (d, J = 2.7 Hz, 2H; pyrazolyl proton), 7.09 (t, J = 7.5 Hz, 1H; phenyl proton), 7.21-7.25 (d, J = 7.5 Hz, 2H; phenyl proton), 7.38 ppm (d, J = 2.7 Hz, 2H; pyrazolyl proton); MS (ESI⁺): m/z : 852.76 [M-alkynyl]⁺; elemental analysis calcd (%) for $C_{75}H_{121}N_5O_2Pt$ (10): C 68.25, H 9.24, N 5.31; found: C 68.16, H 9.34, N 5.01.

1		5	5				
Bond Length [Å]							
Pt(1)–N(2)	2.059(5)	Pt(1)–N(2)	2.044(3)				
Pt(1)–N(3)	2.050(5)	Pt(1)–N(3)	2.045(3)				
Pt(1)–Cl(1)	2.4162(15)	Pt(1)-C(21)	2.058(4)				
Pt(1)–C(9)	1.948(6)	Pt(1)-C(9)	1.978(4)				
		C(21)–C(22)	1.208(6)				
Bond angles [°]							
N(2)–Pt–C(9)	78.7(2)	N(2)-Pt-C(9)	77.54(15)				
N(3)–Pt–C(9)	78.6(2)	N(3)-Pt-C(9)	78.33(15)				
N(2)-Pt-N(3)	157.28(19)	N(2)-Pt-N(3)	155.85(13)				
C(9)–Pt–Cl(1)	179.70(19)	C(9)–Pt–C(21)	177.40(15)				
		Pt(1)-C(21)-C(22)	175.3(3)				

 Table S1. Selected bond distances (Å) and bond angles (deg) for complexes 1 and 5 with estimated

 standard deviations (e.s.d.s.) in parentheses.

	Oxidation	Reduction
	$E_{\rm pa}$ /V vs SCE ^[a]	$E_{1/2}$ /V vs SCE ^[a]
1	+1.15 ^[b]	_[c]
2	+1.14 ^[b]	_[c]
3	+0.87 ^[b]	_[c]
4	+0.84 ^[b]	_[c]
5	+1.07 ^[b]	$-1.16^{[d]}$
6	+1.03 ^[b]	_[c]
7	+0.86 ^[b]	_[c]
8	+0.96 ^[b]	_[c]
9	$+1.05^{[b]}$	_[c]
10	$+0.93^{[b]}$	_[c]
<i>p</i> -nitrophenylacetylene	_[e]	-0.97 ^[d]

Table S2. Electrochemical data of complexes 1–10 and *p*-nitrophenylacetylene.

[a] In dichloromethane solution with 0.1 M n Bu₄NPF₆ as supporting electrolyte at room temperature; scan rate 100 mV s⁻¹.; $E_{1/2} = (E_{pa} + E_{pc})/2$; E_{pa} and E_{pc} are anodic peak and cathodic peak potentials. [b] Irreversible oxidation waves. [c] No reduction waves were recorded within the solvent window. [d] Quasi-reversible reduction waves. [e] No oxidation waves were recorded within the solvent window.

Solvents	7	8	9	10
Methanol	Р	Р	Р	Р
Ethanol	Р	Р	Р	Р
Cyclohexane	Р	Р	CG ^[a] (2.6)	S
Toluene	S	S	S	S
THF	S	S	S	S
Acetone	S	S	Р	Р
<i>i</i> -propanol	Р	Р	Р	Р
<i>n</i> -butanol	Р	Р	OG ^[a] (7.5)	Р
DMSO	S	S	OG ^[a] (3.9)	Р

Table S3. Summary of gelation properties of complexes 7–10.

[a] The values in parentheses are the critical gelation concentrations in mg mL⁻¹ at 25 °C. G = Gel;

OG = Opaque gel; P = Precipitation; S = Solution; CG = Clear gel.

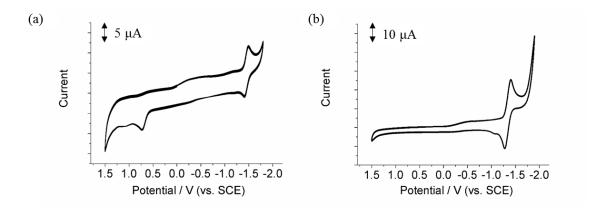


Figure S1. Cyclic voltammograms of (a) 5 and (b) *p*-nitrophenylacetylene ligand in CH_2Cl_2 (0.1 mol dm⁻³ nBu_4NPF_6).

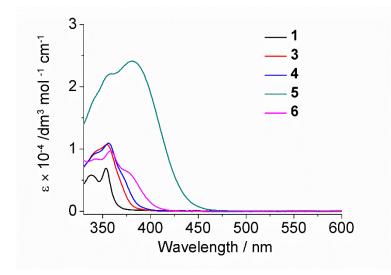


Figure S2. Electronic absorption spectra of complexes 1 and 3–6 in acetone at room temperature.

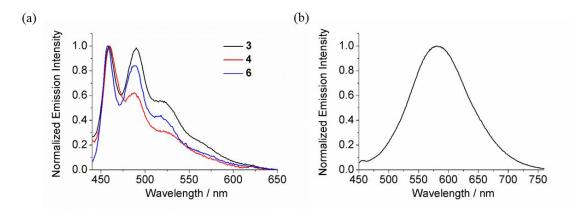


Figure S3. (a) Normalized emission spectra of complexes 3, 4 and 6 in degassed dichloromethane solution at room temperature; (b) Normalized emission spectrum of complex 5 in degassed dichloromethane solution at room temperature.

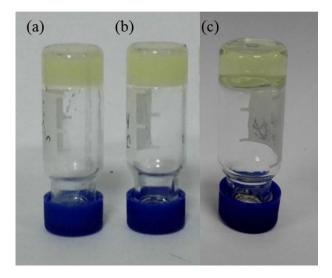


Figure S4. Photographs of metallogels of complex 9 in (a) *n*-butanol, (b) DMSO, and (c)

cyclohexane.

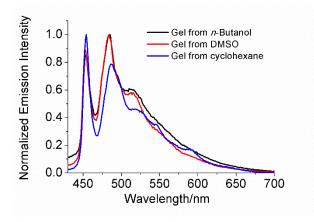


Figure S5. Normalized emission spectra of complex 9 in wet gel prepared from *n*-butanol, DMSO,

cyclohexane.

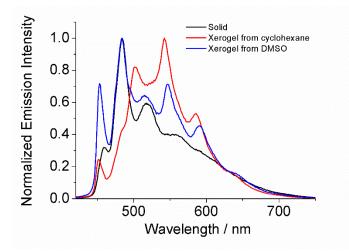


Figure S6. Normalized emission spectra of complex 9 in solid state and xerogel prepared from cyclohexane and DMSO.

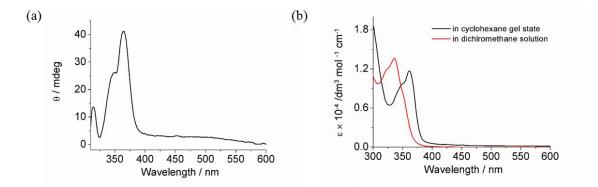


Figure S7. (a) CD spectra of the gel of complex 9 in cyclohexane at room temperature. (b) The electronic absorption spectra of complex 9 in cyclohexane gel state and dichloromethane solution at room temperature.

References:

(1) Li, Y. G.; Zhao, L.; Tam, A. Y.-Y.; K. Wong, M.-C.; Wu, L. X.; Yam, V. W.-W. Luminescent Amphiphilic 2,6-Bis(1,2,3-triazol-4-yl)pyridine Platinum(II) Complexes: Synthesis, Characterization, Electrochemical, Photophysical, and Langmuir–Blodgett Film-Formation Studies. *Chem. Eur. J.* 2013, *19*, 14496–14505.

(2) Baik, C.; Han, W. S.; Kang, Y. J.; Kang, S. O.; Ko, J. J. Synthesis and Photophysical Properties of Luminescent Platinum(II) Complexes with Terdentate Polypyridine Ligands: [Pt(bpqb)X] and $[Pt(tbbpqpy)X](PF_6)$ (Bpqb-H = 1,3-Bis(4'-phenyl-2'-quinolinyl) Benzene; Tbbpqpy = 4-*tert*-butyl-1,3-Bis(4'-phenyl-2'-quinolinyl)pyridine; X = Cl, C=CC₆H₅, C=CC₆H₄NMe₂, C=CC₆H₄NO₂). *J. Organomet. Chem.* **2006**, *691*, 5900–5910.

(3) Connelly, N. G.; Geiger, W. E. Chemical Redox Agents for Organometallic Chemistry. *Chem. Rev.* **1996**, *96*, 877–910.

(4) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. *OLEX2*: a Complete Structure Solution, Refinement and Analysis Program. *J. Appl. Cryst.* **2009**, *42*, 339.

(5) Sheldrick, G. M. A Short History of SHELX. Acta Cryst. 2008. A64, 112.