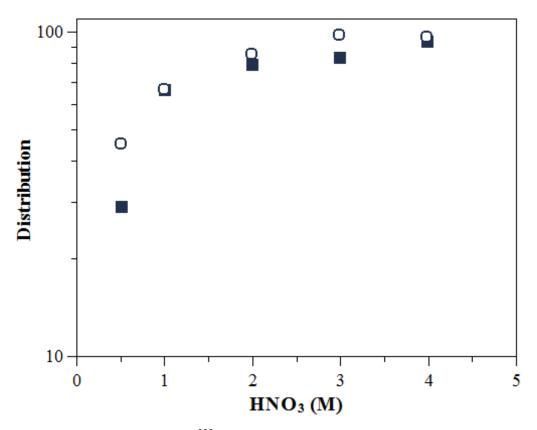
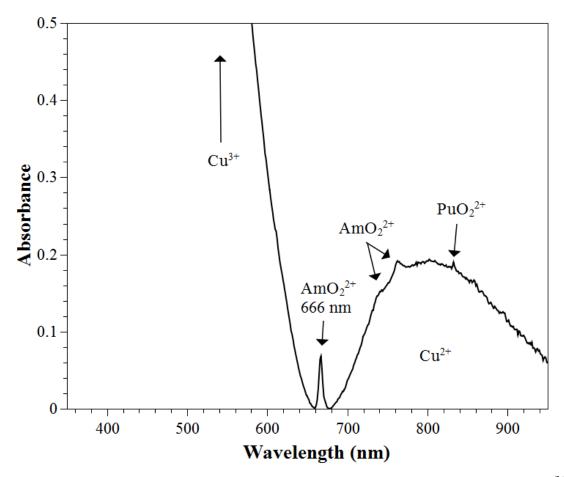
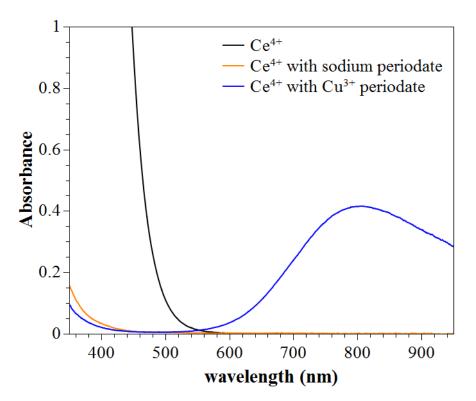

Supporting Information


ASSOCIATED CONTENT Supporting Info Figures


SI Figure 1: Characteristic spectra of Cu^{3+} periodate in 18 M Ω H₂O. Peaks match those listed in literature as Cu^{3+} at 420 nm and complexed periodate at 261and 210 nm (solid line).^{1,2} Sodium periodate is presented (dashed line) as an uncomplexed ligand in 18 M Ω H₂O for reference. The shift in free periodate to higher wavelength (lower energy) indicates a ligand to metal charge transfer.


SI Figure 2: FTIR of Cu^{3+} periodate with 7.1% Cu $(Na_5[Cu\{IO_5(OH)\}_2] \cdot 14H_2O 7.37\%$ Cu) (black) and 9.86% Cu $(Na_5[Cu\{IO_5(OH)\}_2] \cdot 1H_2O 9.86\%$ Cu) (red). The spectra show characteristic peaks of Cu³⁺ complexed with periodate indicated by the metal-iodine-oxygen stretches between 800 and 400 wavenumbers.³ There is a noticeable lack of OH peaks at 3200 cm⁻¹ in the 9.86% Cu complex, and indicates very little to no water is present in the crystal structure. However, OH bending vibrations are still present at lower wavelengths due to the presence of I-OH in the metal complex.

SI Figure 3: Distribution of ²³³U from 0.5 M to 5 M HNO₃ and 1 M DAAP in ndodecane in the presence (square) and absence (circle) of Cu³⁺ periodate. For the extraction, 500 μ L of optima nitric acid solution as added to 20 mg of Cu³⁺ periodate followed by 500 μ L of 1 M DAAP in n-dodecane. The vial was shaken for 5 seconds followed by a 30 second centrifuge. Each phase was counted using a Packard Tri-Carb 2500 Liquid Scintillation Counter. Values are reported as mean of triplicate samples with less than 15% relative standard deviation.

SI Figure 4: UV-Visible spectrum of 3.0 mM Am in 1 M HNO₃ with 20 mg of Cu³⁺ periodate. Due to ²⁴¹Am high specific activity, ²⁴³Am was used for the UV-Vis analysis, and the spectrum was collected using a Spectral 420 CCD Array UV-Vis Spectrometer. The sharp peak at 666 nm is indicative of AmO_2^{2+} . The Cu³⁺ periodate is present as indicated by the large shoulder below 660 nm. The spectrum is consistent with spectra presented by Sinkov et. al.⁴

SI Figure 5: The UV-Vis spectra of 15 mM $H_2Ce(NO_3)_6$ in 3 M HNO₃ (black). Addition of 20 mg Cu³⁺ periodate caused a light yellow to white precipitate to form. The solution was centrifuged prior to recollecting a UV-Vis spectra. The results show the amount of Ce⁴⁺ dropped significantly, and there was an ingrowth of Cu²⁺ from reduction of Cu³⁺ (blue). Similarly, addition of 20 mg sodium periodate resulted precipitate formation and a decrease of the Ce⁴⁺ signal in the UV-Vis spectrum (orange).

References:

- (1) Balikungeri, A.; Pelletier, M.; Monnier, D. Contribution to the Study of the Complexes Bis (dihydrogen Tellurato) cuprate(III) and Argentate (III), Bis (hydrogen Periodato) Cuprate (III) and Argentate (III). *Inorganica Chim. Acta* **1977**, *22*, 7–14.
- (2) Balikungeri, A.; Pelletier, M. Electronic Spectra of Bis (dihydrogen Tellurato) and Bis (hydrogen Periodato) Complexes of Copper (III), Silver (III) and Gold (III). *Inorganica Chim. Acta* **1978**, *29*, 141–148.
- (3) Dengel, A. C.; Griffith, W. P.; Mostafa, S. I.; White, A. J. . Raman and Infrared Study of Some Metal Periodato Complexes. *Spectrochim. Acta Part A Mol. Spectrosc.* 1993, 49 (11), 1583–1589.
- (4) Sinkov, S. I.; Lumetta, G. J. Americium(III) Oxidation by copper(III) Periodate in Nitric Acid Solution as Compared with the Action of Bi(V) Compounds of Sodium, Lithium, and Potassium. *Radiochim. Acta* **2015**, *103* (8), 541–552.