Supporting information

Candle-soot derived Photoactive and Superamphiphobic Fractal Titania Electrode

Ahmad Esmaielzadeh Kandjani¹; Ylias M. Sabri¹*; Matthew R. Field²; Victoria E. Coyle¹; Rynhardt Smith¹; Suresh K. Bhargava¹*

¹Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Applied

Sciences, RMIT University, GPO Box 2476V, Melbourne, Victoria 3001, Australia.

²RMIT Microscopy and Microanalysis Facility (RMMF), RMIT University, Melbourne, VIC 3001, Australia.

Email: <u>ylias.sabri@rmit.edu.au</u>, <u>suresh.bhargava@rmit.edu.au</u>

Figure S1. In-house built CVD set-up for TiO_2 shell formation on candle soot layer deposited on the substrate as the template. The water bath was kept at 65°C.

Figure S2. ST20 with soot layer facing up in a) low and b) high magnification, where big particles are formed on the soot/titania core/shell fractal structures.

Figure S3. SEM images of **a**) ST5; **b**) ST10; **c**) ST30; **d**) TT20 with **1**) low and **2**) high magnifications. ST and TT indicate substrates with and without soot layer, respectively.

Figure S4. EDS spectrum of aluminium foil.

Figure S5. HT-XRD patterns of soot/titania sample (ST20) on a silica substrate at different temperatures. The shaded area shows the formation of (101) peak for anatase phase of Titania. Other peaks are related to Si substrate peaks (JCPDS card 27-1402).

Figure S6. a) STEM-HAADF image of ST20 before calcination; b) EELS spectra; c) C_k and d) Ti_L EELS maps of TEM image shown in (a).

Figure S7. XPS spectra of ST20 and TT20 a) Survey; b) high-resolution Ti 2p and c) high-resolution O 1s spectra.