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Table S1. Calculated adsorption energy Eads (eV), Ag-P bond length dAg-P (Å) and average 
charge qAg of Ag (e) for Ag/P(010) tetralayer as a function of Ag coverage () 

 

 (ML) Eads (eV/Ag atom) dAg-P (Å) qAg (e/Ag atom) 

1/4 -1.11 2.41 0.16 

1/2 -1.35 2.51 0.05 

1 -2.02 2.55 0.04 

2 -2.30 2.57 0.00 

 

 

 

 

 

  



 

 

Figure S1. EELS spectrum of BP nanosheets. 



 

Figure S2. PDOS of Ag and P for Ag adsorption on a P(010) tetralayer. (a) P (010) tetralayer, 
(b) Ag 0.25ML/P, (c) Ag 0.5 ML/P, (d) Ag 1 ML/P, and (e) Ag 2 ML/P. 

 

To gain additional information about the interfacial interactions between Ag adlayers 

and BP support, PDOS were calculated (Figure S2). Both VB and CB of BP are mainly 

composed of P 2p states. In the range of Ag coverages (0.25-2 ML), Ag states mix with P 2p 

states. At low coverage (0.25 ML), Ag 4d states are localized and the ionic bond is formed 

between Ag 4d and P 2p. With the increasing Ag coverage up to 1-2 ML, Ag 4d states are 

more delocalized and hybridized with P 2p states. In other words, the covalent bond between 

Ag 4d and P 2p appears due to the populated Ag-Ag interactions. As a result, the metallic Ag 

becomes dominant.  



 

Figure S3. PDOS of Ag adlayers before and after deposition on a P(010) tetralayer. 

 

Figure S3 displays that for gas-phase Ag nanostructures, the corresponding Ag PDOS is 

shifted downwards with increasing Ag content and Ag-Ag bond formation together with a 

peak broadening, indicating the presence of electron delocalization. When deposited onto BP, 

the Ag PDOS is dependent on the Ag coverage. At low Ag coverage (0.25 ML), the Ag-BP 

interaction leads to a significant down-shift by ~ 4.5 eV and the peak is broadened. In this 

case, the ionic bond is formed between Ag 4d and P 2p, resulting in the oxidation of Ag. 

Such effect is weakened when the coverage increases to 0.5 ML and the Ag-Ag bonds start to 

form, where the peak down-shift is only ~ 1.5 eV. In the range of 1-2 ML coverages, it 

becomes less pronounced with the further increase in Ag-Ag bond formation. The profile of 

Ag PDOS only changes slightly upon interaction with BP and the associated down-shift in 

PDOS decreases to ~ 0.5 eV at 1 ML and ~ 0.2 eV at 2 ML, respectively. Apparently, the 

covalent nature appears and dominates at the Ag-BP interface. 



 

 

Figure S4. (a) Typical TEM image of P25. (b) Photoactivity of P25, m-BP, f-BP, 5 wt% 
Ag/m-BP and 5 wt% Ag/f-BP samples. 

Figure S4a is a typical TEM image of P25, showing the particle size is about 20-30 nm. 

And the photoactivity is displayed in Figure S4b. The reaction rate constant of P25 is 34.0 × 

10−2 min−1, which is 11.7-fold, 6.7-fold and 3.1-fold larger than that of m-BP, f-BP, 5 wt% 

Ag/m-BP, respectively. However, the reaction rate of 5 wt% Ag/f-BP is 57.4 × 10−2 min−1, 

1.6-fold larger than that of P25.  

  



 

 

Figure S5. XRD patterns of bulk-like BP crystals. 

 


