Supporting Information

C-C Cleaving by Au/TiO₂ during Ethanol Oxidation: Understanding Bandgap Photo-Excitation and Plasmon Mediated Charge Transfer via Quantitative In-Situ DRIFTS

Tze Hao Tan¹, Jason Scott^{*,1}, Yun Hau Ng¹, Robert A. Taylor², Kondo-Francois Aguey-Zinsou¹, Rose Amal^{*,1}.

- School of Chemical Engineering, The University of New South Wales (UNSW), Kensington, New South Wales 2052, Australia
 - School of Mechanical and Manufacturing Engineering, The University of New South Wales (UNSW), Kensington, New South Wales 2052, Australia

Email: jason.scott@unsw.edu.au, r.amal@unsw.edu.au

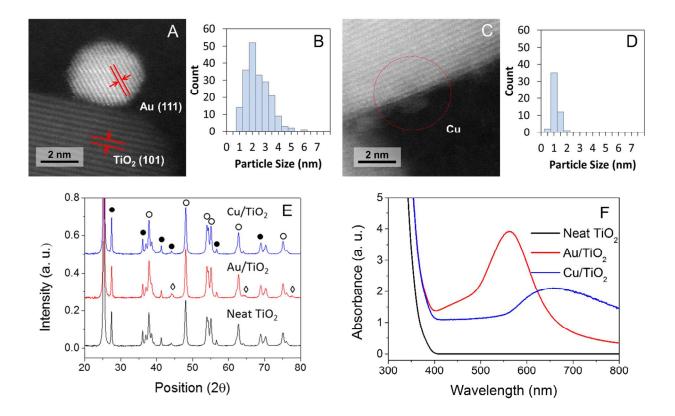


Figure S1 HAADF-STEM images and corresponding particle size distributions of Au/TiO₂ (A, B) and Cu/TiO₂ (C, D); XRD spectra of Cu/TiO₂, Au/TiO₂ and neat TiO₂ identifying peaks corresponding to the planes of Au (marked by \diamond) in addition to distinct TiO₂ peaks (marked by, \bullet (rutile) and \circ (anatase) (E); Diffuse reflectance UV-vis spectra of Cu/TiO₂, Au/TiO₂ and neat TiO₂ showing a distinctive LSPR peak corresponding to Au (550 nm) and Cu (660 nm) (F). Adapted from Tan et al.¹ Copyright 2016 American Chemical Society.

Cu/TiO₂ was synthesised using the same DP method as for Au/TiO₂. The deposited Cu metal had an average size of ~1 nm based on the HAADF-HRSTEM images. The observed Cu deposit sizes were consistent with the lack of Cu peaks in the Cu/TiO₂ XRD spectra (i.e. the Cu deposit size is too small to be observed), which only showed the distinctive peaks of rutile and anatase TiO₂. Nonetheless, the LSPR peak of Cu at 660 nm indicates that the synthesised Cu deposits were present as metallic Cu.

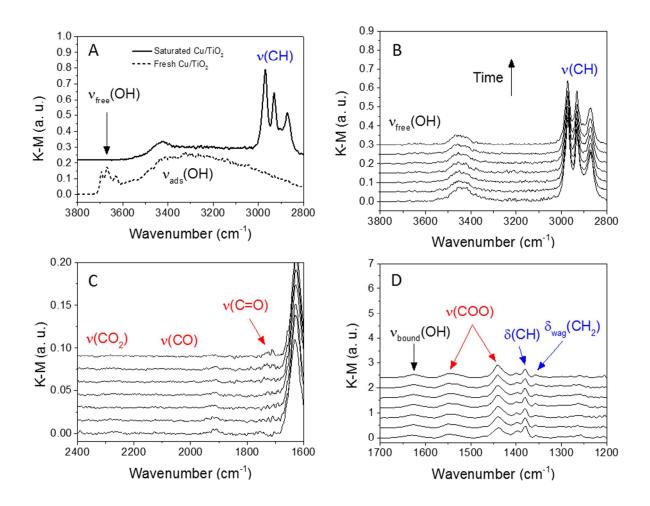


Figure S2 (A) In-situ DRIFTS spectra spanning ($3800 - 3600 \text{ cm}^{-1}$) of Cu/TiO₂ before and after ethanol adsorption at 50 °C for 20 min. Ethanol feed concentration = 1000 ppm ethanol in N₂, gas flow rate = 20 mL/min, reaction performed at ambient pressure. In-situ DRIFTS spectra spanning: (B) $3800 - 3600 \text{ cm}^{-1}$; (C) $2400 - 1600 \text{ cm}^{-1}$; and (D) $1700 - 1200 \text{ cm}^{-1}$ wavenumbers in ascending time steps (0 - 90 min, 15 min intervals) for Cu/TiO₂ during ethanol oxidation in air at 100 °C without illumination (i.e. in the dark). Air flow rate = 20 mL/min, reaction performed at ambient pressure.

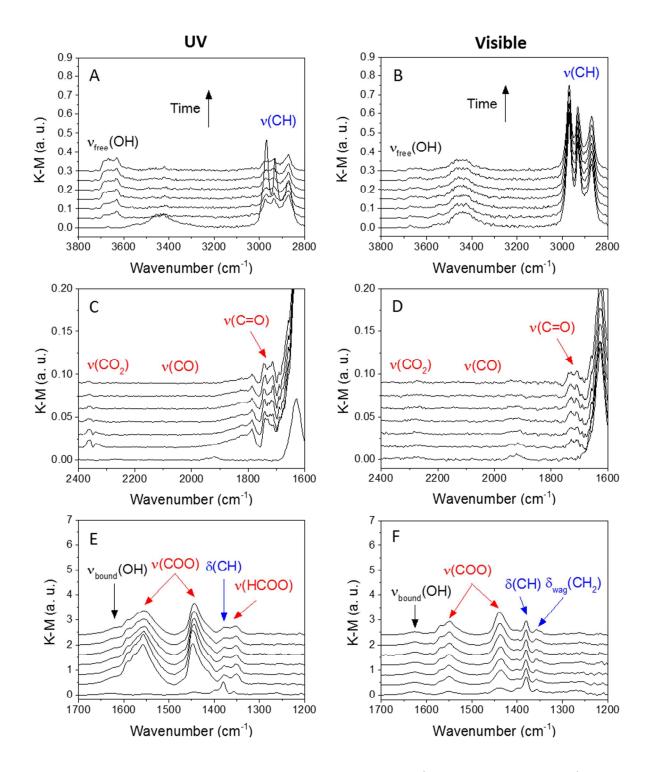


Figure S3 In-situ DRIFTS spectra spanning: (A, B) $3800 - 3600 \text{ cm}^{-1}$; (C, D) $2400 - 1600 \text{ cm}^{-1}$; and (E, F) $1700 - 1200 \text{ cm}^{-1}$ in ascending time steps (0 - 90 min, 15 min intervals) for Cu/TiO₂ (during ethanol oxidation in air at 100 °C under UV (365 nm, 20 W/cm²) and visible light (530 nm, 20 W/cm²) illumination. Air flow rate = 20 mL/min, reaction performed at ambient pressure.

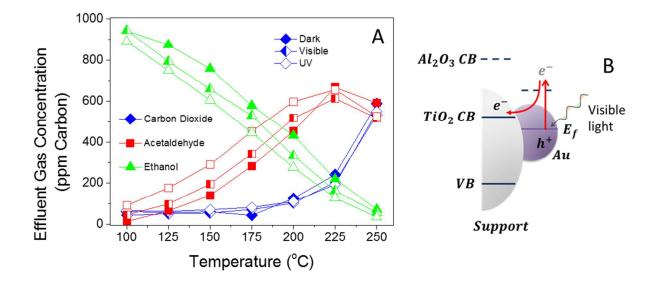


Figure S4 (A) Impact of temperature on the concentration of gases in the effluent stream during ethanol oxidation by Au/Al_2O_3 under (i) dark, (ii) visible light, and (iii) UV illumination. Temperature programmed oxidation study was carried out as detailed in our previous work.¹ Initial ethanol concentration = 1000 ppm carbon in air, gas flow rate = 100 mL/min, reactions performed at ambient pressure. (B) Potential plasmon mediated charge transfer pathway from an Au deposit to the neighbouring support under visible light illumination.

References

(1) Tan, T. H.; Scott, J.; Ng, Y. H.; Taylor, R. A.; Aguey-Zinsou, K.-F.; Amal, R. ACS Catal. 2016, 6, 1870–1879.