## SUPPORTING INFORMATION

## Metal Ion Binding at the Catalytic Site Induces Widely Distributed Changes in a Sequence Specific Protein-DNA Complex

Kaustubh Sinha<sup>1,2</sup>, Sahil S. Sangani<sup>2</sup>, Andrew D. Kehr<sup>2</sup>

Gordon S. Rule<sup>2,\*</sup> and Linda Jen-Jacobson<sup>1,\*</sup>

<sup>1</sup> Department of Biological Sciences, University of Pittsburgh, Pittsburgh PA 15260 USA

<sup>2</sup> Department of Biological Sciences, Carnegie Mellon University, Pittsburgh PA 15213 USA

## Supplementary Tables

| Mutation    | Prominent Methyl CSPs<br>No Lu <sup>3+</sup>  | Prominent Methyl CSPs<br>+Lu <sup>3+</sup> |  |  |
|-------------|-----------------------------------------------|--------------------------------------------|--|--|
| Isoleucines |                                               |                                            |  |  |
| 123V        | 143                                           | 143                                        |  |  |
| 130V        | 124, 1159                                     | 124, 1159                                  |  |  |
| 143V        | ND                                            | 151                                        |  |  |
| I51V        | 143, 155                                      | 143, 152, 155                              |  |  |
| 152V        | 143, 155, 191, 1134                           | 124, 130, 143, 191, 1133                   |  |  |
| 189V        | 151, 152, 155, 191                            | 152, 155, 191                              |  |  |
| I91V        | 152, 1134                                     | 152, 1134                                  |  |  |
| 1133V       | 143, 151, 191                                 | 152                                        |  |  |
| Valines     |                                               |                                            |  |  |
| V20A        | I43, I51 (no CSP in LV peaks)                 | 124, 130, 143*,152, 191                    |  |  |
|             |                                               | L3δ1, L33δ2, V63γ1, L156δ1,                |  |  |
|             |                                               | V166γ2, V168γ2                             |  |  |
| V63A        | 124, 130, 143, 151, 152, 155, 191, 1133, 1134 | 124, 130, 151, 152, 191,                   |  |  |
|             | L3δ2, L7δ2, L77δ1, L148δ1, V166γ1γ2,          | L3δ1, L77δ2, L148δ1, V166γ1γ2,             |  |  |
|             | V168γ1γ2                                      | V168γ1γ2                                   |  |  |
| Leucines    |                                               |                                            |  |  |
| L156V       | 124, 130, 143, 1153                           | I24, I30, I153, V122γ1                     |  |  |
|             | (no CSP LV peaks)                             |                                            |  |  |

Table S1. Sidechain truncation mutations cause CSPs

\*Spot intensifies but does not shift Other mutants examined are listed in Materials & Methods.

page

3

**Table S2.** Crystallographic data collection and refinement statistics for EcoRV-DNA-Lu<sup>3+</sup> complexes

|                                        | 5F8A<br>Intact DNA     | 5HLK<br>Cleaved DNA    |
|----------------------------------------|------------------------|------------------------|
| Data collection                        | Intact DNA             | Cleaved DNA            |
|                                        | P1                     | P1                     |
| Space group<br>Cell dimensions         | FI                     | FI                     |
|                                        | 46 42 52 96 65 24      | 47 62 48 22 62 52      |
| a, b, c (Å)                            | 46.43, 52.86, 65.31    | 47.62, 48.33, 63.53    |
| $\alpha, \beta, \gamma$ (°)            | 70.61, 73.24, 81.81    | 96.94, 108.78, 106.70  |
| Resolution range (Å)                   | 24.90-1.76 (1.85-1.76) | 38.11-2.00 (2.05-2.00) |
| Wavelength (Å)                         | 1.54178                | 1.54178                |
| R <sub>sym</sub> or R <sub>merge</sub> | 0.051 (0.196)          | 0.051 (0.224)          |
| l / σl                                 | 14.7 (4.4)             | 20.3 (3.2)             |
| Completeness (%)                       | 93.0 (88.9)            | 84.3 (27.8)            |
| Redundancy                             | 3.9 (3.2)              | 4.3 (1.7)              |
| Refinement                             |                        |                        |
| Resolution (Å)                         | 1.76                   | 2.00                   |
| No. reflections                        | 46648                  | 26617                  |
| R <sub>work</sub> / R <sub>free</sub>  | 0.159 / 0.202          | 0.165 / 0.228          |
| R <sub>free</sub> test set             | 10.71%                 | 5.13%                  |
| B-factors                              |                        |                        |
| Wilson plot (Ų)                        | 21.69                  | 18.60                  |
| Overall (Å <sup>2</sup> )              | 27.61                  | 22.44                  |
| Ramachandran plot                      |                        |                        |
| Favored                                | 464 (97.3%)            | 463 (96.3%)            |
| Outliers                               | 4 (0.84%)              | 3 (0.62%)              |
| R.m.s. deviations                      | · · · /                | × /                    |
| Bond lengths (Å)                       | 0.017                  | 0.016                  |
| <b>-</b>                               | 1.876                  | 1.780                  |
| Bond lengths (A)<br>Bond angles (°)    |                        |                        |

Values in parentheses are for highest-resolution shell.

| PDB entry             | Space<br>group    | Metal<br>ion     | DNA sequence <sup>c,d</sup> | Overall<br>Bend <sup>e</sup> | Roll angle<br>at TA step | Minor groove<br>width (Å)<br>at TA step |
|-----------------------|-------------------|------------------|-----------------------------|------------------------------|--------------------------|-----------------------------------------|
| 5F8A                  | P1                | Lu <sup>3+</sup> | AAAGATATCTTT                | 55.5°                        | 55.5°                    | 10.6                                    |
| 1B95                  | P1                | None             | AAAGATATCTT                 | 42.9°                        | 53.6°                    | 10.5                                    |
| 1B94                  | P1                | Ca <sup>2+</sup> | AAAGATATCTT                 | 43.4°                        | 57.1°                    | 10.4                                    |
| 4RVE (I) <sup>b</sup> | C222 <sub>1</sub> | None             | GGGATATCCC                  | 49.1°                        | 44.4°                    | 11.7                                    |
| 1EOO (II)             | C222 <sub>1</sub> | None             | GAAGATATCTTC                | 59.1°                        | 49.1°                    | 10.3                                    |
| 1RVA (III)            | P1                | None             | AAAGATATCTT                 | 42.7°                        | 47.3°                    | 10.2                                    |
| 1EOP (IV)             | P41212            | None             | AAGATATCTTA                 | 44.2°                        | 36.6°                    | 10.2                                    |
| 1RVB                  | P1                | Mg <sup>2+</sup> | AAAGATATCTT                 | 43.1°                        | 54.4°                    | 10.2                                    |
| 1RVC                  | P1                | Mg <sup>2+</sup> | AAAGAT   ATCTT              | 44.1°                        | 35.7°                    | 7.7                                     |
| 5HLK                  | P1                | Lu <sup>3+</sup> | A <u>AAGAT   ATCTT</u> T    | 38.3°                        | 54°                      | 8.0                                     |

Table S3: Conformational analysis of DNA in crystal structures of EcoRV-DNA complexes <sup>a</sup>

<sup>a</sup> DNA structural parameters calculated with Curves+ program provided by Lavery et al. <sup>1</sup>

<sup>b</sup> Crystal lattice forms (I –IV) designated by Horton and Perona <sup>2</sup>.

<sup>c</sup> Bases used to define the best-fit curvilinear axis are underlined.

<sup>d</sup> Vertical bar at TA step indicates cleaved DNA.

<sup>e</sup> Overall bend of helix axis calculated using a best-fit curvilinear axis to underlined bases.

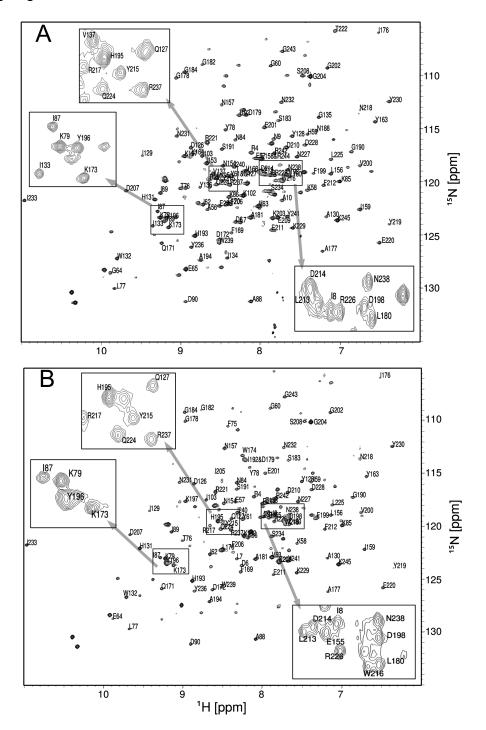
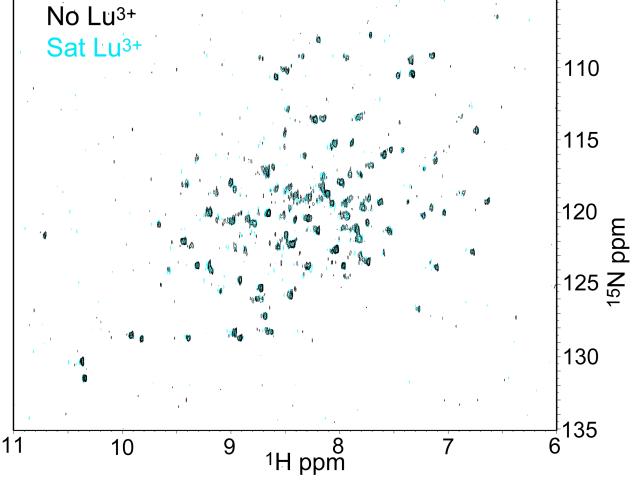




Figure S1. Peak assignments in the two dimensional  ${}^{1}H-{}^{15}N$  correlation spectra (TROSY) of the EcoRV-DNA complexes. Assignments were based on inter-residue chemical shifts involving  $C_{\alpha}$ ,  $C_{\beta}$ , and carbonyl carbon shifts, distance information from amide-amide NOEs, and carbonyl specifically labeled samples. A number of amide resonances are not observable, possibly due to dipolar interactions with the protonated DNA. Although the majority of observed resonances are assigned, a small number of peaks remained unassigned due to missing connectivities to other residues. Spectra of metal-free complex (A) and complex with saturating Lu<sup>3+</sup> (B).

5





**Figure S2.** <sup>1</sup>H-<sup>15</sup>N HSQC-TROSY spectra of nonspecific EcoRV-DNA complexes. Black peaks indicate no metal ions and cyan peaks indicate saturating Lu<sup>3+</sup>. The near-complete absence of CSPs indicates that metal-ion binding sites are not assembled in the nonspecific EcoRV-DNA complex, consistent with the methyl resonance data in Figures 1D and 1F.

7

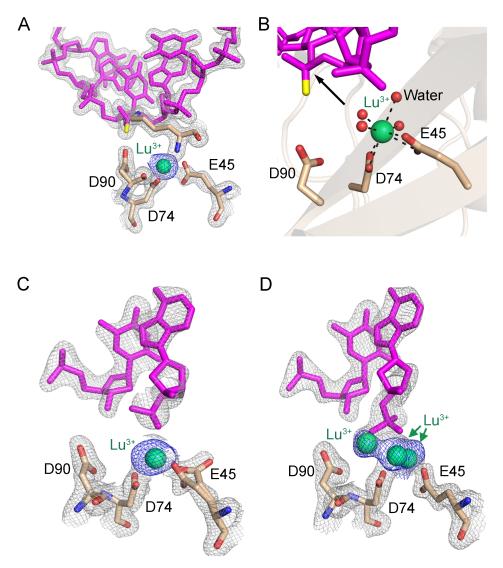
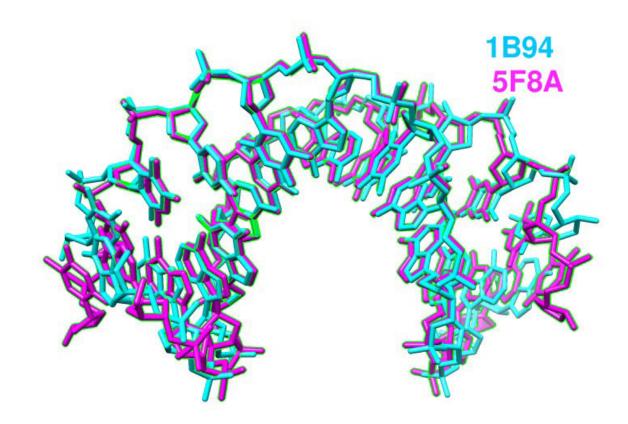
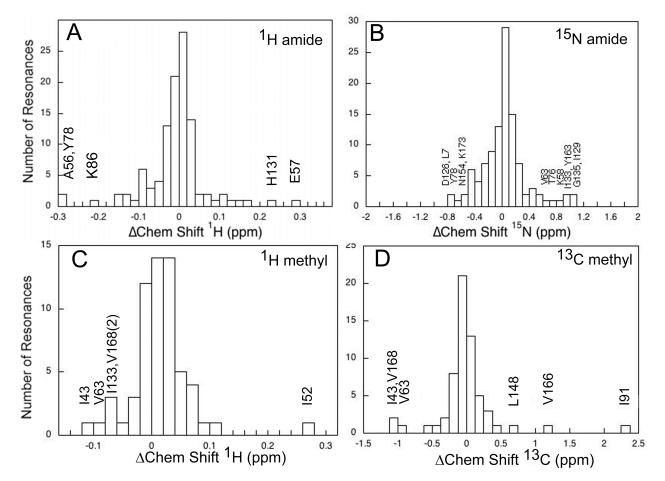
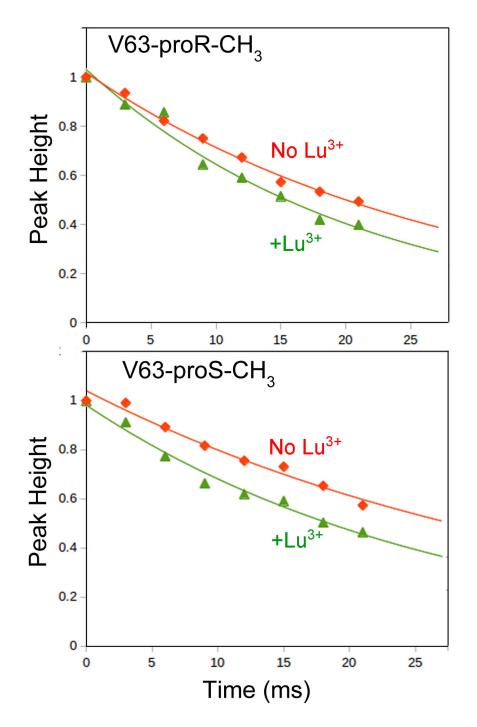



Figure S3. Lu<sup>3+</sup> coordination in EcoRV-DNA-Lu3+ complexes with uncleaved and cleaved DNA. DNA is colored magenta, residues from EcoRV are CPK (carbon light brown), and Lu<sup>3+</sup> ions are teal.  $2F_{o}$ - $F_{c}$  maps are gray and contoured at  $2\sigma$  (A) or  $1\sigma$  (C and D). Anomalous difference maps are blue and contoured at  $5\sigma$  (A) or  $3\sigma$  (C and D). Panels (A) and (B) show the complex with uncleaved DNA (PDB entry 5F8A), with active site sidechains (E45, D74, D90) labeled. The Lu<sup>3+</sup> ion is in neither the A-site nor the B-site occupied by Mg<sup>2+</sup> in PDB entry 1RVB. Panel (B) shows the octahedral coordination sphere for Lu<sup>3+</sup>, with ligands within 2.6 Å of the Lu<sup>3+</sup> ion. Arrow indicates the scissile phosphate. Panels (C) and (D) show bound Lu<sup>3+</sup> in the two different active sites of the post-cleavage complex (PDB entry 5HKL). K92 and additional DNA bases were removed for clarity.



Figure S4. Comparison of DNA bends in EcoRV-DNA crystal structures with 2 Lu<sup>3+</sup> (PDB entry 5F8A, magenta) or 2 Ca<sup>2+</sup> (PDB entry 1B94, cyan). Models were aligned on the backbones of EcoRV residues 62-93 (includes strands ß1, ß2, ß3; cf. Fig. 5). Detailed conformational parameters are given in Table S3.

8





**Figure S5.** Distributions of (A and B) amide (<sup>1</sup>H and <sup>15</sup>N) and (C,D) methyl (<sup>1</sup>H and <sup>13</sup>C) chemical shift changes induced by saturating Lu<sup>3+</sup>. In all cases, the X-axis shows the chemical shift in the designated EcoRV-DNA-(Lu<sup>3+</sup>)<sub>4</sub> complex minus that in the EcoRV-DNA complex with no metal. Residues with unusually large  $\Delta\delta$  are labeled above the appropriate bars.



**Figure S6.** <sup>1</sup>H transverse relaxation decay curves of stereospecifically assigned V63 methyl sidechain in EcoRV-DNA and EcoRV-DNA- $(Lu^{3^+})_4$  complexes. This complex was labeled with diamagnetic MTS (Materials and Methods) at position S234C, as a control in a series of PRE studies. Experimental data were fitted to a two-parameter single exponential function to obtain relaxation rate constants as follows. proR-CH<sub>3</sub> no Lu<sup>3+</sup>: 0.035±0.001 s<sup>-1</sup>; proR-CH<sub>3</sub> + Lu<sup>3+</sup>: 0.046±0.003 s<sup>-1</sup>; proS-CH<sub>3</sub> no Lu<sup>3+</sup>: 0.026±0.002 s<sup>-1</sup>; proR-CH<sub>3</sub> + Lu<sup>3+</sup>: 0.038±0.002 s<sup>-1</sup>.

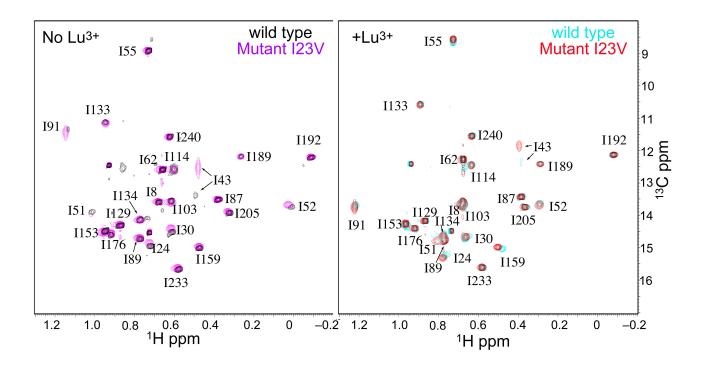



Figure S7. Effect of the I23V mutation on Ile- $\delta$ -CH<sub>3</sub> resonances with and without saturating Lu<sup>3+</sup>. The mutation primarily affects the peak for I43- $\delta$ -CH<sub>3</sub> (see Discussion). The resonance for I23- $\delta$ -CH<sub>3</sub> itself is unassigned.

## References

- (1) Lavery, R., Moakher, M., Maddocks, J. H., Petkeviciute, D., and Zakrzewska, K. (2009) Conformational analysis of nucleic acids revisited: Curves, *Nucleic Acids Research 37*, 5917-5929.
- (2) Horton, N. C., and Perona, J. J. (2000) Crystallographic snapshots along a protein-induced DNA-bending pathway, *Proc. Natl. Acad. Sci. U S A* 97, 5729-5734.