
Supplementary Information

Increased Efficiency for Perovskite Photovoltaics via Doping the PbI₂ Layer

Sally Mabrouk¹, Ashish Dubey¹, Wenfeng Zhang¹, Nirmal Adhikari¹, Behzad Bahrami¹, Md Nazmul Hasan¹, Shangfeng Yang²*, Qiquan Qiao¹*

¹Center for Advanced Photovoltaics, Department of Electrical Engineering and Computer Science, South Dakota State University, Brookings, SD 57007 Tel: 1-605-688-6965, Email: Qiquan.Qiao@sdstate.edu

²Hefei National Laboratory for Physical Sciences at Microscale, Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences, Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China (USTC), Hefei 230026, China Tel: +86-551-63601750, Email: <u>sfyang@ustc.edu.cn</u>

Figure S1. (a) Forward and (b) reverse current density-voltage (J-V) characteristics of perovskite solar cells made from pristine and different concentration (6, 8, 10 mg/ml) of TBAI₃ doped perovskite films.

Devices	Scan	Jsc (mAcm ⁻²)	Voc (V)	FF	η (%)
Pristine	Forward	20.25	0.87	0.43	7.6%
	Reverse	20.12	0.99	0.56	11.18%
6 mg/ml	Forward	22.48	1.00	0.41	9.28%
TBAI ₃	Reverse	21.27	1.03	0.54	11.75%
8 mg/ml	Forward	23.45	0.99	0.47	10.92%
TBAI ₃	Reverse	23.52	1.07	0.59	14.85%
10 mg/ml	Forward	21.16	0.98	0.43	9.00%
TBAI ₃	Reverse	21.59	1.03	0.55	12.27%

Table S1. Photovoltaic parameters of fabricated perovskite solar cells made from pristine and different concentration (6, 8, 10 mg/ml) of TBAI₃ doped perovskite films.

Figure S1 shows the J-V characteristics of perovskite solar cells made from pristine and perovskite films doped with different concentrations (6, 8, 10 mg/ml) of TBAI₃ in the PbI₂ precursor. Table S1 shows photovoltaic parameters including short circuit current density (J_{sc}), open circuit voltage (V_{oc}), fill factor (FF) and efficiency (η) obtained from the fabricated solar cells. It was observed that by increasing concentration of TBAI₃ additive in perovskite films, there was enhancement in J_{sc} , V_{oc} and η up to 8mg/ml compared to solar cells made from pristine perovskite films, beyond 8mg/ml, these parameters start to decrease. An optimum efficiency (η) of 14.85% was observed for the 8 mg/ml TBAI₃ doped perovskite based device, which is significantly improved as compared to the efficiency of 11.18% obtained from device made from pristine perovskite films.