Long-lived Five-Coordinate Platinum(IV) Intermediates: Regiospecific C-C Coupling

Paul A Shaw, Guy J Clarkson and Jonathan P Rourke*

Department of Chemistry, Warwick University, Coventry. UK CV4 7AL. Email: j.rourke@warwick.ac.uk

Contents:	
Xray structure 2t-Pr	page S2
Xray structure 2c-Bu	page S7
Xray structure Me-6-Pr	page S12
Xray structure Me-6-Bu	page S17
Xray structure Me-1-Pr	page S22
Xray structure Me ₂ -6-Pr	page S28
Comparison of structures of Me-6-Pr and Me ₂ -6-Pr	page S33

Figure SI1 Solid state structure of ps20 with only key atoms labeled and thermal ellipsoids drawn at 50% probability level.

Crystal structure determination of [ps20]

The asymmetric unit contains the double C-metallated Pt complex containing tripropylphosphine with trans addition of methyl iodide.

Four times all this in the unit cell.

Possible pi-pi interaction from the very edge of symmetry related complexes. Interaction defined by atoms used to define mean planes through interacting systems and closest atomic contact.

The interacting complexes are related by an inversion centre so they are parallel. Closest atomic contact $C4 - C9_{1} = 3.3085 (0.0056)$ Angstroms

Further pi stacking information from Olex2 For plane C1-C6-C5-C4-C3-C2 N7-C11-C10-C9-C8-C7@3_665 (1-X,1-Y,-Z) angle: 1.650, centroid-centroid distance: 3.885, shift distance 2.031 For plane C17-C16-C15-C14-C13-C12 No interactions found For plane N7-C11-C10-C9-C8-C7 No interactions found

The ligand angles in the complex are characterized by two mean planes orthogonal to each other and the deviation of atoms out of these defined planes

- * -0.0727 (0.0017) C1 * 0.1159 (0.0018) N7 * 0.0658 (0.0016) C1
- * -0.0658 (0.0016) C17
- * 0.0804 (0.0011) P1
- * -0.0578 (0.0012) Pt1

Rms deviation of fitted atoms = 0.0811

And

* 0.1833 (0.0019) C1 * 0.1857 (0.0019) C17 * -0.0800 (0.0015) I1 * -0.0997 (0.0019) C01 * -0.1893 (0.0014) Pt1

Rms deviation of fitted atoms = 0.1551

2t-Pr ps20 Symmetry operator used to define symmetry equivalent atoms discussed in above discussion was 1 - X, 1 - Y, -Z

Experimental

Single crystals of $C_{27}H_{33}F_2INPPt$ [ps20] were grown from deuterated chloroform. A suitable crystal was selected and mounted on a glass fibre with Fromblin oil and placed on an Xcalibur Gemini diffractometer with a Ruby CCD area detector. Using Olex2 [1], the structure was solved with the ShelXT [2] structure solution program using Direct Methods and refined with the ShelXL [3] refinement package using Least Squares minimisation.

- 1 Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.
- 2 Sheldrick, G.M. (2015). Acta Cryst. A71, 3-8.
- 3 Sheldrick, G.M. (2008). Acta Cryst. A64, 112-122.

Crystal Data for C₂₇H₃₃F₂INPPt (*M*=762.50 g/mol): monoclinic, space group P2₁/n (no. 14), *a* = 12.70561(18) Å, *b* = 14.9295(3) Å, *c* = 13.7143(2) Å, *β* = 93.1156(13)°, *V* = 2597.58(7) Å³, *Z* = 4, *T* = 150(2) K, μ (MoK α) = 6.682 mm⁻¹, *Dcalc* = 1.950 g/cm³, 19825 reflections measured (5.056° $\leq 2\Theta \leq 65.242°$), 8654 unique ($R_{int} = 0.0297$, $R_{sigma} = 0.0414$) which were used in all calculations. The final R_1 was 0.0271 (I > 2 σ (I)) and wR_2 was 0.0867 (all data).

Table S1 Crystal data and structure refinement for ps20.

Identification code	ps20
Empirical formula	C ₂₇ H ₃₃ F ₂ INPPt
Formula weight	762.50
Temperature/K	150(2)
Crystal system	monoclinic
Space group	$P2_1/n$
a/Å	12.70561(18)
b/Å	14.9295(3)
c/Å	13.7143(2)
α/°	90
β/°	93.1156(13)
γ/°	90
Volume/Å ³	2597.58(7)
Ζ	4
$\rho_{calc}g/cm^3$	1.950
µ/mm ⁻¹	6.682
F(000)	1464.0
Crystal size/mm ³	$0.3 \times 0.12 \times 0.1$ colourless block
Radiation	MoK α ($\lambda = 0.71073$)
20 range for data collection/°	5.056 to 65.242
Index ranges	$-18 \le h \le 19, -12 \le k \le 22, -19 \le l \le 20$
Reflections collected	19825
Independent reflections	$8654 [R_{int} = 0.0297, R_{sigma} = 0.0414]$
Data/restraints/parameters	8654/0/302
Goodness-of-fit on F ²	1.149
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0271, wR_2 = 0.0672$
Final R indexes [all data]	$R_1 = 0.0381, wR_2 = 0.0867$
Largest diff. peak/hole / e Å ⁻³	1.07/-1.99

Table S2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for ps20. U_{cq} is defined as 1/3 of of the trace of the orthogonalised U_{LJ} tensor.

Atom	x	v	z	U(eq)
C1	3725(3)	4308(3)	1693(2)	14.0(7)
P1	3838.6(7)	3066.0(7)	3648.8(6)	13.19(17)
C01	4247(3)	5073(3)	3694(3)	19.3(8)
I1	5784.9(2)	2815.1(2)	1649.7(2)	19.66(6)
Pt1	4857.5(2)	4045.6(2)	2823.4(2)	11.73(5)
C2	2795(3)	3865(3)	1401(3)	17.7(7)
C3	2170(3)	4193(3)	619(3)	20.1(8)
F3	1270(2)	3743(2)	361.4(18)	31.2(6)
C4	2414(3)	4946(3)	99(3)	21.4(8)
C5	3354(3)	5375(3)	352(3)	19.1(7)
C6	4011(3)	5060(3)	1128(2)	14.3(7)
C7	5036(3)	5480(3)	1388(2)	15.6(7)
N7	5579(2)	5067(2)	2136(2)	14.8(6)
C8	5481(3)	6217(3)	948(3)	19.9(8)
C9	6454(3)	6522(3)	1318(3)	22.9(8)
C10	6968(3)	6112(3)	2102(3)	21.6(8)
C11	6517(3)	5369(3)	2526(3)	16.6(7)
C12	6920(3)	4841(3)	3371(3)	17.0(7)
C13	7906(3)	5030(3)	3838(3)	21.5(8)
C14	8287(3)	4504(3)	4604(3)	24.5(9)
C15	7686(3)	3786(3)	4867(3)	22.6(8)
F15	8064(2)	3251(2)	5602.8(18)	35.6(7)

Pt1 Pt1 C2 C3 C3 C4 C5 C6 C7 C7 Table S5 F	N7 C17 C3 F3 C4 C5 C6 C7 N7 C8 3ond Angles	2.037(3) 2.101(4) 1.388(5) 1.356(5) 1.376(6) 1.383(6) 1.399(5) 1.472(5) 1.354(5) 1.389(5) for ps20.	Anglo/°		C15 C15 C16 C18 C19 C21 C22 C24 C25	F15 C16 C17 C19 C20 C22 C23 C25 C26	1.355(5) 1.372(5) 1.404(5) 1.527(5) 1.521(6) 1.522(5) 1.523(5) 1.523(5) 1.527(6)	A sele ^p	
Table S4 F Atom C1 C1 C1 P1 P1	Bond Length Atom Pt1 C2 C6 Pt1 C18 C21 C24 Pt1 Pt1	ns for ps20. Length/Å 2.094(3) 1.394(5) 1.422(5) 2.2925(9) 1.827(4) 1.827(4) 1.823(4) 2.117(4) 2.7497(3))		Atom N7 C8 C9 C10 C11 C12 C12 C12 C13 C14	Atom C11 C9 C10 C11 C12 C13 C17 C14 C15	Length/Å 1.356(5) 1.388(6) 1.372(6) 1.390(5) 1.471(5) 1.405(5) 1.419(5) 1.378(6) 1.376(6)		
the form: Atom C1 P1 C01 I1 Pt1 C2 C3 F3 C4 C5 C6 C7 N7 C8 C9 C10 C11 C12 C13 C14 C15 F15 C16 C17 C18 C19 C20 C21 C22 C23 C24 C25 C25 C26	$\begin{array}{c} -2\pi^2 h^2 a^{+2} U_1 \\ U_1 \\ 15.9 (16) \\ 13.3 (4) \\ 22.2 (18) \\ 22.0 (16) \\ 22.2 (18) \\ 22.0 (12) \\ 11.35 (7) \\ 12.3 (17) \\ 12.3 (17) \\ 12.3 (17) \\ 12.3 (17) \\ 13.4 (17) \\ 13.4 (17) \\ 13.4 (17) \\ 13.4 (17) \\ 13.4 (17) \\ 13.4 (17) \\ 14.4 (15) \\ 18.4 (17) \\ 16.0 (14) \\ 23.5 (19) \\ 23.5 (19) \\ 23.5 (19) \\ 15.5 (16) \\ 14.8 (17) \\ 14.2 (17) \\ 14.2 (17) \\ 14.2 (17) \\ 16.4 (18) \\ 30.7 (14) \\ 15.2 (16) \\ 14.0 (16) \\ 14.0 (16) \\ 18.9 (17) \\ 23.3 (19) \\ 16.5 (18) \\ 19.9 (17) \\ 26 (2) \\ 49 (3) \end{array}$	11+2hka*b*U)))))))))))))))))))	$\begin{array}{c} \textbf{J}_{12}+\dots \textbf{J}_{12}\\ \textbf{U}_{22}\\ 12.5(17)\\ 11.9(4)\\ 20(2)\\ 18.34(13)\\ 10.87(7)\\ 17.5(19)\\ 23(2)\\ 35.6(16)\\ 21(2)\\ 16.5(19)\\ 14.5(18)\\ 13.2(18)\\ 10.7(15)\\ 14.3(18)\\ 16(2)\\ 20(2)\\ 15.7(18)\\ 17.2(19)\\ 21(2)\\ 30(2)\\ 27(2)\\ 39.0(18)\\ 19(2)\\ 16.1(19)\\ 17.1(19)\\ 24(2)\\ 39(3)\\ 14.0(18)\\ 17(2)\\ 21(2)\\ 14.5(18)\\ 10.8(18)\\ 17(2)\\ \end{array}$	$\begin{array}{c} U_{33} \\ 13.5(15) \\ 14.5(4) \\ 15.3(16) \\ 19.04(12) \\ 12.90(7) \\ 17.9(17) \\ 20.9(18) \\ 33.0(13) \\ 17.5(17) \\ 16.9(16) \\ 13.8(15) \\ 15.5(15) \\ 17.8(14) \\ 20.8(17) \\ 30(2) \\ 26.9(19) \\ 18.9(16) \\ 18.5(16) \\ 28(2) \\ 29(2) \\ 23.5(19) \\ 35.2(13) \\ 20.2(17) \\ 18.9(17) \\ 17.0(16) \\ 18.0(17) \\ 25(2) \\ 20.1(16) \\ 29(2) \\ 47(2) \\ 17.8(18) \\ 34(2) \end{array}$		$\begin{array}{c} \textbf{U_{23}} \\ -2.7(1) \\ -1.4(2) \\ -5.4(1) \\ 0.69(2) \\ -0.30(1) \\ -2.2(1) \\ 3.2(1) \\ -3.3(2) \\ -3.3(2) \\ -3.3(2) \\ -3.3(2) \\ -3.3(2) \\ -3.3(2) \\ -3.3(2) \\ -3.3(2) \\ -3.3(2) \\ -3.3(2) \\ -3.3(2) \\ -3.3(2) \\ -3.3(2) \\ -3.3(2) \\ -3.8(2) \\ -3.8(2) \\ -3.8(2) \\ -4.8(2)$	13) 3) 15) 9) (5) 4) 15) 2) 15) 4) 13) 13) 14) 16) 14) 16) 14) 16) 14) 6) 14) 5) 14) 5) 14) 5) 14) 5) 14) 5) 14)	$\begin{array}{c} U_{13} \\ -0.8(12) \\ 1.0(3) \\ 1.8(13) \\ 5.53(9) \\ 0.16(4) \\ -1.1(13) \\ -5.8(14) \\ -1.2.6(10) \\ -5.0(14) \\ 0.8(14) \\ -1.3(12) \\ 3.6(13) \\ 3.0(11) \\ 2.6(14) \\ 8.0(16) \\ 3.9(15) \\ -0.3(13) \\ 1.8(13) \\ 1.6(14) \\ -3.8(14) \\ -6.0(14) \\ -16.1(11) \\ -1.3(13) \\ 1.2(13) \\ 2.4(13) \\ 4.5(14) \\ 7.2(18) \\ 2.0(13) \\ 2.4(15) \\ 6.8(17) \\ 0.7(13) \\ 2.0(15) \\ 9(2) \end{array}$	$\begin{array}{c} U_{12} \\ 0.2(13) \\ -0.2(3) \\ -4.5(15) \\ 4.23(10) \\ -0.11(5) \\ -0.8(14) \\ -0.9(15) \\ -8.8(11) \\ 5.3(16) \\ 3.0(15) \\ 0.2(13) \\ 1.6(14) \\ -2.3(11) \\ 0.9(15) \\ -2.5(16) \\ -4.8(15) \\ -4.8(15) \\ -1.2(14) \\ -1.6(14) \\ -1.1(15) \\ 0.9(16) \\ 4.9(16) \\ 2.1(12) \\ 1.5(14) \\ 0.5(13) \\ 0.3(14) \\ 1.6(16) \\ 8(2) \\ 2.3(14) \\ -1.5(15) \\ 1.4(16) \\ -1.4(14) \\ 3.6(15) \\ 3(2) \end{array}$
C16 C17 C18 C19 C20 C21 C22 C23 C24 C25 C26 Table S3 (6718(3) 6285(3) 4299(3) 3515(3) 4052(4) 2518(3) 1563(3) 572(3) 3665(3) 4551(3) 4511(4)	Dienlogaman	$3582(3) 4118(3) 2841(3) 2379(3) 2058(4) 3552(3) 2924(3) 3444(3) 1962(3) 1298(3) 478(3) 4 Parameters (\tilde{k}^2 \times 10^3) for$	r ps20. The Anise	443(3668 491(5549 6504 3772 3728 3959 3096 3377 2705	D (3) B (3) D (2) D (2) D (3) 4 (3) 2 (3) D (2) D (2) D (2) D (2) D (2) D (2) D (2) D (3) A (3) D (2) D (2) D (3) A (3) D (3) A (3) D (2) D (3) A (3) D (2) D (3) A (3) D (3) D (3) A (3) D	factor exponent	18.1(7) 16.4(7) 17.7(7) 21.6(8) 33.3(11) 16.7(7) 21.4(8) 27.8(9) 17.4(7) 20.2(8) 32.8(10)	

$\begin{array}{c} {\rm C6} \\ {\rm C18} \\ {\rm C18} \\ {\rm C21} \\ {\rm C24} \\ {\rm C24} \\ {\rm C1} \\ {\rm C01} \\ {\rm C01} \\ {\rm N7} \\ {\rm C17} \\ {\rm C17} \\ {\rm C17} \\ {\rm C3} \\ {\rm F3} \\ {\rm F3} \\ {\rm F3} \\ {\rm C4} \\ {\rm C3} \\ {\rm C4} \\ {\rm C1} \\ {\rm C5} \\ \end{array}$		C1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1	Pt1 Pt1 C21 Pt1 Pt1 C18 C21 P1 C01 I1 C17 P1 C01 I1 C17 P1 C01 I1 C17 P1 C01 I1 C17 C17 C17 C17 C17 C17 C17 C17 C17 C1	111.4(2) 115.11(13) 103.42(17) 109.59(13) 115.50(12) 104.66(18) 107.65(18) 95.81(10) 91.40(14) 89.44(10) 159.43(15) 97.72(2) 87.11(11) 175.00(11) 79.96(13) 170.60(9) 84.63(14) 90.67(9) 79.61(14) 104.75(11) 89.05(14) 88.43(10) 119.7(4) 117.7(4) 118.7(3) 123.6(4) 117.0(3) 121.4(3)				N7 C8 C7 C11 C9 C10 C9 N7 N7 C10 C13 C13 C13 C17 C14 C15 F15 F15 C16 C15 C16 C19 C20 C22 C23 C25 C26 C26 C26 C27 C10 C9 C10 C9 C10 C9 C10 C9 C10 C9 C10 C9 C10 C9 C10 C9 C10 C10 C11 C11 C11 C11 C11 C11	$\begin{array}{c} C7 \\ C7 \\ N7 \\ N7 \\ N7 \\ C8 \\ C9 \\ C10 \\ C11 \\ C11 \\ C11 \\ C11 \\ C12 \\ C12 \\ C12 \\ C12 \\ C12 \\ C12 \\ C13 \\ C14 \\ C15 \\ C15 \\ C15 \\ C16 \\ C17 \\ C17 \\ C17 \\ C17 \\ C17 \\ C17 \\ C18 \\ C19 \\ C21 \\ C22 \\ C24 \\ C25 \end{array}$	$\begin{array}{c} C8\\ C6\\ Pt1\\ C11\\ Pt1\\ C7\\ C8\\ C11\\ C10\\ C12\\ C12\\ C11\\ C12\\ C11\\ C17\\ C11\\ C12\\ C13\\ C14\\ C16\\ C14\\ C16\\ C14\\ C17\\ Pt1\\ Pt1\\ C12\\ P1\\ C18\\ P1\\ C21\\ P1\\ C24\\ \end{array}$	119.2(3) 127.4(3) 127.4(3) 117.9(2) 123.3(3) 118.3(2) 118.3(2) 121.1(4) 119.6(4) 113.2(3) 122.5(3) 121.9(4) 117.0(3) 120.0(4) 117.8(4) 117.8(4) 117.9(4) 123.7(4) 120.2(4) 111.6(3) 132.2(3) 116.2(3) 116.2(3) 118.6(3) 110.0(3) 111.7(4)
Tabl	e S6 T	orsion A	ngles for	ps20.			р	C	D	Anglo/°	
$\begin{array}{c} \mathbf{A} \\ \mathbf{C1} \\ \mathbf{C1} \\ \mathbf{C1} \\ \mathbf{C1} \\ \mathbf{C1} \\ \mathbf{P1} \\ \mathbf{P1} \\ \mathbf{P1} \\ \mathbf{P1} \\ \mathbf{P11} \\ \mathbf{C2} \\ \mathbf{C2} \\ \mathbf{C3} \\ \mathbf{C3} \\ \mathbf{C4} \\ \mathbf{C5} \\ \mathbf{C6} \\ \mathbf{C6} \\ \mathbf{C6} \\ \mathbf{C6} \\ \mathbf{C7} \\ $	B C2 C2 C6 C6 C18 C21 C24 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1	C C3 C3 C7 C7 C19 C22 C22 C6 C6 C6 C18 C21 C24 C11 C11 C11 C6 C6 C6 C7 C7 C7 C7 C7 C7 C19 C22 C22 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C	D F3 F4 F3 C4 N7 C8 C20 C23 C26 C3 C5 C7 C19 C22 C25 C10 C12 C5 C7 C5 C6 C5 C1 C7 N7 C8 C3 Pt1 C11 C9 C10 C12 C10	Angle/ -179.8(3) 0.1(6) 1.1(5) -179.8(4) 168.4(3) 173.6(3) -165.8(3) 179.1(3) -177.9(3) 3.1(4) 165.9(3) 145.0(3) 85.2(3) -175.0(3) 4.8(4) 4.0(5) -175.0(3) 2.4(6) -1.75.0(3) 2.4(6) -1.6(6) -177.7(3) -1.5(6) 177.4(3) -1.5(6) 177.4(3) -1.2(6) -3.2(5) -5.1(4) -176.6(3) 178.8(4) -3.4(5) 176.4(3)		A C7 N7 N7 N7 C8 C8 C9 C9 C9 C10 C10 C11 C11 C11 C11 C12 C13 C13 C13 C13 C13 C14 C15 C15 F15 C15 F15 C17 C18 C18 C21 C24 C24 C24	B C8 C7 C11 C11 C7 C7 C9 C10 C10 C10 C11 C11 C11 C11 C12 C12 C12 C12	$\begin{array}{c} C \\ C9 \\ C8 \\ C12 \\ C12 \\ C12 \\ C12 \\ C12 \\ C13 \\ C17 \\ C14 \\ C17 \\ C17 \\ C14 \\ C17 \\ C17 \\ C15 \\ C15 \\ C16 \\ C17 \\ C16 \\ C17 \\ C16 \\ C17 \\ C16 \\ C13 \\ C21 \\ C24 \\ C18 \\ C21 \\ \end{array}$	D C10 C9 C13 C17 Pt1 C11 C11 C11 C12 C13 C17 C14 C16 C15 Pt1 C16 C15 Pt1 C16 C15 Pt1 C16 C17 Pt1 C12 C17 Pt1 C12 C13 C17 Pt1 C11 C11 C11 C11 C11 C11 C11 C11 C11 C	Angle/ -0.4(6) -2.1(5) 176.9(3) -1.0(5) 175.7(3) 4.2(5) 1.2(6) 0.7(6) -179.1(4) -3.3(6) 178.8(4) -177.4(4) -2.9(4) 175.5(3) 1.8(6) 179.2(3) -2.4(5) 178.4(4) -2.9(4) 179.5(3) 0.4(4) -179.5(3) 0.4(6) -91.7(3) -42.5(3) 46.4(3) -152.0(3) -66.2(3) 18.7(3)	
Tabl	e S7 H	lydrogen	Atom C	oordinates (Å×10 ⁴) and I	sotropic Displ	acemen	t Parame	ters (Å ² ×	(10 ³) for	ps20.	
Atom H01A H01E H01C H2 H4 H5 H8 H9 H10	1 A 3	4773 4080 3605 2591 1953 3554 5126 6771 7629	x	y 5550 4827 5318 3341 5164 5888 6506 7022 6334	37; 43: 330 17; -4 400 100 235	89 30 67 35 17 8 22 55	ζ	U(29 29 29 21 26 23 24 27 26	eq)		

H13	8311	5521	3626	26
H14	8944	4633	4939	29
H16	6339	3076	4643	22
H18A	4940	2464	4900	21
H18B	4508	3417	5221	21
H19A	2943	2802	5689	26
H19B	3196	1860	5192	26
H20A	4615	1636	6366	50
H20B	3533	1761	6897	50
H20C	4353	2573	6865	50
H21A	2528	3874	4403	20
H21B	2402	4005	3250	20
H22A	1470	2657	3068	26
H22B	1680	2433	4206	26
H23A	503	3971	3534	42
H23B	624	3636	4643	42
H23C	-47	3058	3847	42
H24A	2989	1708	3294	21
H24B	3614	2031	2377	21
H25A	5240	1600	3329	24
H25B	4489	1102	4057	24
H26A	4593	668	2029	49
H26B	3831	175	2750	49
H26C	5082	66	2907	49

Refinement model description

Number of restraints - 0, number of constraints - unknown.

Details:

1. Fixed Uiso

1. Fixed Uiso
At 1.2 times of:
All C(H) groups, All C(H,H) groups
At 1.5 times of:
All C(H,H,H) groups
2.a Secondary CH2 refined with riding coordinates:
C18(H18A,H18B), C19(H19A,H19B), C21(H21A,H21B), C22(H22A,H22B), C24(H24A,H24B), C25(H25A,H25B)
2.b Aromatic/amido H refined with riding coordinates:

2.b Aromatic/amide H refined with riding coordinates: C2(H2), C4(H4), C5(H5), C8(H8), C9(H9), C10(H10), C13(H13), C14(H14), C16(H16) 2.c Idealised Me refined as rotating group: C01(H01A, H01B, H01C), C20(H20A, H20B, H20C), C23(H23A, H23B, H23C), C26(H26A, H26B, H26B) H26Ċ)

This report has been created with Olex2, compiled on 2015.01.26 svn.r3151 for OlexSys. Please let us know if there are any errors or if you would like to have additional features.

Figure SI2 Solid state structure of the major component in ps4 (the methyl-iodo)

Figure SI3 Solid state structure of the minor component in ps4 (the di-iodide)

The asymmetric unit contains a Pt complex with a double C alkylated bis 4-fluorophenyl pyridine, a triButylphosphine and iodide and a position that is occupied by either another iodide or a methyl. The methyl/iodo disorder was linked to a free variable and refined to an occupancy of 87:13 (methyl:iodo) Both substituents were refined isotropically There is 4 times all this in the unit cell

There is possibly a very off set pi stacking interaction between two complexes related by an inversion center. The interacting pi systems are parallel (as related by an inversion centre) with the closest atomic contact 3.2981 (0.0061) Angstroms C13 - C9_\$1 Symmetry operator used to generate equivalent atoms \$1 1-X,-Y,1-Z But really there is virtually no overlap of the atoms (check with Mercury)

Experimental

Single crystals of $C_{29.87}H_{38.6}F_2I_{1.13}NPPt$ **[ps4]** were grown from chloroform. A suitable crystal was selected and mounted on a glass fibre with Fromblin oil on an Oxford Diffraction Xcalibur Gemini diffractometer with a Ruby CCD area detector. The crystal was kept at 150(2) K during data collection. Using Olex2 [1], the structure was solved with the XS [2] structure solution program using Direct Methods and refined with the ShelXL [3] refinement package using Least Squares

minimisation.

4 Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.

5 Sheldrick, G.M. (2008). Acta Cryst. A64, 112-122.

6 Sheldrick, G.M. (2008). Acta Cryst. A64, 112-122.

Crystal structure determination of [ps4]

Crystal Data for C_{29.86638}H_{38.59914}F₂I_{1.13362}NPPt (*M*=819.53 g/mol): monoclinic, space group P2₁/n (no. 14), *a* = 10.2244(3) Å, *b* = 17.8517(5) Å, *c* = 16.3216(4) Å, *β* = 94.312(3)°, *V* = 2970.62(13) Å³, *Z* = 4, *T* = 150(2) K, μ (MoK α) = 5.987 mm⁻¹, *Dcalc* = 1.832 g/cm³, 34214 reflections measured (7.018° $\leq 2\Theta \leq 63.212°$), 9116 unique ($R_{int} = 0.0420$, $R_{sigma} = 0.0351$) which were used in all calculations. The final R_1 was 0.0342 (I > 2 σ (I)) and wR_2 was 0.0856 (all data).

Refinement model description

Number of restraints - 0, number of constraints - unknown.

Details: 1. Fixed Uiso At 1.2 times of: All C(H) groups, All C(H,H) groups At 1.5 times of: All C(H,H,H) groups 2. Others Sof(I2)=1-FVAR(1) Sof(C100)=Sof(H10A)=Sof(H10B)=Sof(H10C)=FVAR(1) 3.a Secondary CH2 refined with riding coordinates: C18(H18A,H18B), C19(H19A,H19B), C20(H20A,H20B), C22(H22A,H22B), C23(H23A, H23B), C24(H24A,H24B), C26(H26A,H26B), C27(H27A,H27B), C28(H28A,H28B) 3.b Aromatic/amide H refined with riding coordinates: C2(H2), C4(H4), C5(H5), C8(H8), C9(H9), C10(H10), C13(H13), C14(H14), C16(H16) 3.c Idealised Me refined as rotating group: C100(H10A,H10B,H10C), C21(H21A,H21B,H21C), C25(H25A,H25B,H25C), C29(H29A,H29B, H29C)

This report has been created with Olex2, compiled on 2014.07.22 svn.r2960 for OlexSys. Please let us know if there are any errors or if you would like to have additional features.

Identification code	ps4
Empirical formula	C _{29.87} H _{38.6} F ₂ I _{1.13} NPPt
Formula weight	819.53
Temperature/K	150(2)
Crystal system	monoclinic
Space group	$P2_1/n$
a/Å	10.2244(3)
b/Å	17.8517(5)
c/Å	16.3216(4)
α/°	90
β/°	94.312(3)
γ/°	90
Volume/Å ³	2970.62(13)
Z	4
$\rho_{calc}g/cm^3$	1.832
µ/mm ^{•1}	5.987
F(000)	1584.0
Crystal size/mm ³	0.45 imes 0.45 imes 0.3
Radiation	MoK α ($\lambda = 0.71073$)
2O range for data collection/°	7.018 to 63.212
Index ranges	$-13 \le h \le 14, -25 \le k \le 23, -24 \le l \le 22$
Reflections collected	34214
Independent reflections	9116 $[R_{int} = 0.0420, R_{sigma} = 0.0351]$
Data/restraints/parameters	9116/0/339
Goodness-of-fit on F ²	1.043
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0342, wR_2 = 0.0804$
Final R indexes [all data]	$R_1 = 0.0443, wR_2 = 0.0856$
Largest diff. peak/hole / e Å-3	1.70/-1.50

4

Table S8 Crystal data and structure refinement for ps4.

1	Table S9 Fractional Atomic Coordinates (×10*) and Equivalent Isotropic Displacement Parameters (A ² ×10°) for p	554. U	Jeq
i	is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.		

is defined as 1/2 of of the trace of the Solution of U tensor.							
Atom	x	у	z	U(eq)			
Pt1	3552.3(2)	2219.4(2)	5436.3(2)	22.29(5)			
I1	6101.5(3)	2180.0(2)	5086.4(2)	31.18(7)			
C100	3990(6)	3194(4)	6081(4)	33.6(12)			
I2	4138(3)	3484.5(17)	6279(2)	46.4(10)			

C1	3109(4)	2638(2)	4251(2)	25.2(7)
C2	3038(4)	3372(2)	3959(2)	30.9(8)
C3	2796(4)	3495(2)	3118(3)	34.4(9)
F3	2735(3)	4219.0(15)	2854.5(17)	47.1(7)
C4	2608(4)	2940(3)	2549(3)	36.2(9)
C5	2672(4)	2208(2)	2827(3)	31.7(9)
C6	2923(4)	2056(2)	3665(2)	25.9(7)
C7	2994(4)	1281(2)	3975(2)	26.6(7)
N7	3262(3)	1242.7(17)	4799.4(19)	23.9(6)
C8	2850(4)	614(2)	3541(3)	35.0(9)
C9	3010(4)	-63(2)	3957(3)	37.8(10)
C10	3314(4)	-79(2)	4798(3)	33.9(9)
C11	3433(4)	596(2)	5225(2)	26.6(7)
C12	3803(4)	704(2)	6104(2)	28.8(8)
C13	3982(4)	101(3)	6643(3)	35.7(9)
C14	4367(4)	224(3)	7465(3)	39.9(10)
C15	4570(4)	950(3)	7713(3)	38.5(10)
F15	4947(3)	1071(2)	8521.0(15)	53.2(8)
C16	4400(4)	1562(3)	7206(2)	32.4(8)
C17	3986(4)	1455(2)	6375(2)	27.8(8)
P1	1463.4(10)	2348.8(6)	5819.3(6)	27.2(2)
C18	327(4)	1651(3)	5386(3)	34.9(9)
C19	-130(4)	1757(3)	4481(3)	40.5(10)
C20	-635(6)	1014(4)	4097(3)	61.0(16)
C21	-1055(8)	1097(5)	3214(4)	90(3)
C22	760(4)	3255(2)	5515(3)	33.2(9)
C23	-561(4)	3441(2)	5837(3)	34.1(9)
C24	-1180(5)	4142(3)	5449(3)	41.5(10)
C25	-2429(5)	4362(3)	5816(3)	47.3(12)
C26	1335(4)	2259(2)	6932(3)	32.4(9)
C27	1138(4)	1467(3)	7255(2)	34.6(9)
C28	1290(5)	1448(3)	8189(3)	41.1(10)
C29	1085(6)	670(3)	8531(3)	55.6(14)

Table S10 Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for ps4. The Anisotropic displacement factor exponent takes the form: $-2\pi^2 |h|^2 a^{x^2} U_{11} + 2h ka^x b^x U_{12} + ... l$.

the form: -27	$t [n a^{*} U_{11} + 2nka^{*} D^{*} U_{12} +$	·]•				
Atom	U_{11}	U_{22}	U ₃₃	U_{23}	U ₁₃	U_{12}
Pt1	22.92(8)	25.42(7)	18.81(7)	-1.57(5)	3.35(5)	-1.
I1	26.72(13)	32.66(13)	34.52(14)	3.41(10)	4.7(1)	-1.6
C100	42(3)	30(3)	29(3)	-10(2)	3(2)	
I2	51.0(17)	34.5(16)	54.7(19)	-12.5(12)	10.3(13)	-6.
C1	25.2(18)	30.9(18)	20.2(16)	-1.0(14)	4.9(14)	-0.
C2	30.3(19)	35(2)	28.0(19)	3.4(16)	5.4(15)	2.
C3	33(2)	37(2)	34(2)	12.3(18)	7.8(17)	4.
F3	60.4(18)	39.4(14)	41.5(15)	15.3(12)	4.7(13)	5.
C4	34(2)	52(3)	22.6(18)	5.5(18)	3.1(16)	3.
C5	27.9(19)	44(2)	24.0(18)	-1.9(16)	5.5(15)	1.
C6	21.2(17)	34.7(19)	22.3(17)	-1.2(15)	4.4(14)	0.
C7	21.3(17)	33.8(19)	24.9(17)	-3.9(15)	4.3(14)	-0.
N7	21.9(14)	25.9(14)	24.6(15)	-4.7(12)	6.1(12)	-1.
C8	38(2)	36(2)	31(2)	-9.3(17)	4.0(17)	0.
C9	39(2)	33(2)	43(2)	-12.3(19)	6.9(19)	-2.
C10	33(2)	28.0(18)	42(2)	-4.1(17)	10.5(18)	0.
C11	22.0(17)	28.0(17)	30.5(18)	-1.3(15)	7.4(14)	-3.
C12	24.1(18)	34.9(19)	28.3(18)	4.9(16)	8.6(15)	1.
C13	31(2)	37(2)	40(2)	7.4(19)	7.6(18)	1.
C14	31(2)	53(3)	37(2)	16(2)	7.1(18)	
C15	27(2)	65(3)	23.9(18)	9(2)	2.8(16)	
F15	49.0(17)	86(2)	23.4(12)	12.7(14)	-2.5(11)	-3.
C16	28.7(19)	43(2)	25.4(18)	2.2(17)	2.7(15)	-2.
C17	23.3(18)	37(2)	23.1(17)	2.3(15)	4.3(14)	-1.
P1	27.3(5)	31.7(5)	23.4(4)	-2.1(4)	6.6(4)	2
C18	27.5(19)	42(2)	35(2)	-6.9(19)	8.2(16)	-4.
C19	29(2)	57(3)	37(2)	-10(2)	6.6(17)	
C20	58(3)	83(4)	44(3)	-4(3)	14(3)	-
C21	112(6)	109(6)	47(3)	-2(4)	-5(4)	-
C22	33(2)	37(2)	31(2)	1.4(17)	7.4(16)	5.
C23	35(2)	31.0(19)	37(2)	-3.1(17)	7.9(17)	5.
C24	48(3)	43(2)	34(2)	2.0(19)	9(2)	
C25	52(3)	45(3)	45(3)	-3(2)	8(2)	
C26	33(2)	39(2)	26.3(19)	-2.5(16)	8.3(16)	3.
C27	31(2)	47(2)	27.3(19)	2.4(18)	8.3(16)	0.
C28	38(2)	60(3)	26(2)	5(2)	9.3(18)	
C29	51(3)	76(4)	41(3)	17(3)	10(2)	

Table S11 Bond Lengths for ps4.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Pt1	I1	2.7108(3)	C11	C12	1.469(5)
Pt1	C100	2.065(7)	C12	C13	1.393(6)
Pt1	I2	2.688(3)	C12	C17	1.420(6)
Pt1	C1	2.091(4)	C13	C14	1.386(6)
Pt1	N7	2.040(3)	C14	C15	1.368(7)
Pt1	C17	2.074(4)	C15	F15	1.363(5)
Pt1	P1	2.2818(11)	C15	C16	1.374(6)
C1	C2	1.394(5)	C16	C17	1.404(5)
C1	C6	1.416(5)	P1	C18	1.810(4)
C2	C3	1.394(6)	P1	C22	1.824(4)
C3	F3	1.363(5)	P1	C26	1.838(4)
C3	C4	1.360(6)	C18	C19	1.527(6)
C4	C5	1.384(6)	C19	C20	1.541(7)
C5	C6	1.398(5)	C20	C21	1.480(8)
C6	C7	1.474(6)	C22	C23	1.522(6)
C7	N7	1.354(5)	C23	C24	1.519(6)
C7	C8	1.388(5)	C24	C25	1.503(7)
N7	C11	1.352(5)	C26	C27	1.528(6)
C8	C9	1.388(6)	C27	C28	1.521(6)
C9	C10	1.386(6)	C28	C29	1.517(7)
C10	C11	1.391(5)			

Table S12	2 Bond Ang	gles for ps4.					
Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C100	Pt1	I1	87.38(18)	C11	N7	Pt1	117.4(2)
C100	Pt1	C1	101.19(19)	C11	N7	C7	124.2(3)
C100	Pt1	C17	98.7(2)	C7	C8	C9	119.5(4)
C100	Pt1	P1	86.93(18)	C10	C9	C8	120.8(4)
I2	Pt1	I1	87.08(7)	C9	C10	C11	118.9(4)
C1	Pt1	I1	87.67(11)	N7	C11	C10	118.6(4)
C1	Pt1	I2	101.38(12)	N7	C11	C12	113.8(3)
C1	Pt1	P1	94.30(11)	C10	C11	C12	127.5(4)
N7	Pt1	I1	88.61(9)	C13	C12	C11	121.8(4)
N7	Pt1	C100	175.85(19)	C13	C12	C17	121.7(4)
N7	Pt1	I2	175.51(11)	C17	C12	C11	116.5(3)
N7	Pt1	C1	79.71(14)	C14	C13	C12	120.2(4)
N7	Pt1	C17	80.15(14)	C15	C14	C13	117.5(4)
N7	Pt1	P1	97.05(9)	C14	C15	C16	124.4(4)
C17	Pt1	I1	89.01(11)	F15	C15	C14	117.5(4)
C17	Pt1	I2	98.49(13)	F15	C15	C16	118.1(4)
C17	Pt1	C1	159.65(15)	C15	C16	C17	119.3(4)
C17	Pt1	P1	90.97(11)	C12	C17	Pt1	112.1(3)
P1	Pt1	I1	174.25(3)	C16	C17	Pt1	131.1(3)
P1	Pt1	I2	87.23(7)	C16	C17	C12	116.9(4)
C2	C1	Pt1	130.9(3)	C18	P1	Pt1	114.18(14)
C2	C1	C6	117.2(3)	C18	P1	C22	106.0(2)
C6	C1	Pt1	111.8(3)	C18	P1	C26	103.6(2)
C3	C2	C1	119.0(4)	C22	P1	Pt1	111.91(14)
F3	C3	C2	117.4(4)	C22	P1	C26	106.88(19)
C4	C3	C2	124.3(4)	C26	P1	Pt1	113.56(15)
C4	C3	F3	118.3(4)	C19	C18	P1	115.6(3)
C3	C4	C5	117.5(4)	C18	C19	C20	110.9(4)
C4	C5	C6	120.3(4)	C21	C20	C19	112.0(5)
C1	C6	C7	117.2(3)	C23	C22	P1	116.2(3)
C5	C6	C1	121.6(4)	C24	C23	C22	112.9(4)
C5	C6	C7	121.2(4)	C25	C24	C23	113.0(4)
N7	C7	C6	112.9(3)	C27	C26	P1	116.2(3)
N7	C7	C8	118.0(4)	C28	C27	C26	111.1(4)
C8	C7	C6	129.0(4)	C29	C28	C27	112.5(4)
C7	N7	Pt1	118.3(3)				

Table S13 Hydrogen Atom Coordinates (Å×10 ⁴) and Isotro	pic Displacement Parameters (Å ² ×10 ³) for ps4.

Atom	x	У	z	U(eq)
H10A	4842	3141	6393	50
H10B	3311	3290	6461	50
H10C	4025	3613	5696	50
H2	3152	3783	4328	37

H4	2439	3052	1982	43
H5	2545	1807	2448	38
H8	2645	620	2963	42
H9	2909	-520	3661	45
H10	3440	-542	5079	41
H13	3839	-395	6447	43
H14	4485	-180	7841	48
H16	4560	2052	7416	39
H18A	748	1153	5452	42
H18B	-454	1648	5709	42
H19A	608	1945	4180	49
H19B	-839	2135	4432	49
H20A	70	633	4162	73
H20B	-1384	833	4393	73
H21A	-314	1271	2917	135
H21B	-1771	1462	3148	135
H21C	-1359	612	2991	135
H22A	1392	3650	5703	40
H22B	663	3275	4907	40
H23A	-1164	3013	5726	41
H23B	-444	3510	6439	41
H24A	-546	4560	5519	50
H24B	-1366	4056	4853	50
H25A	-2814	4797	5520	71
H25B	-2239	4491	6396	71
H25C	-3049	3943	5770	71
H26A	2143	2468	7217	39
H26B	592	2572	7085	39
H27A	252	1287	7062	42
H27B	1790	1127	7033	42
H28A	2179	1626	8378	49
H28B	646	1796	8407	49
H29A	228	479	8317	83
H29B	1117	694	9132	83
H29C	1777	336	8364	83

Table S14 Atomic Occupancy for ps4.								
Atom	Occupancy	Atom	Occupancy	Atom	Occupancy			
C100	0.867(2)	H10A	0.867(2)	H10B	0.867(2)			
H10C	0.867(2)	I2	0.133(2)					

Figure SI4 solid state structure of ps25 with thermal ellipsoids drawn at 50% probability level and only key atoms labeled.

Figure SI5 Different view of ps25 looking along the chelated phenyl ring trying to highlight the jaunty angle of the iodide

Crystal structure determination of [ps25]

The asymmetric unit contains the complex, four times all this in the unit cell. Angle between mean planes through various pi system described by angle used to define plane and angle between them.

Plane C1 C2 C3 C4 C5 C6 to N7 C7 C8 C9 C10 C11 angle 11.321 (0.306) degrees Plane N7 C7 C8 C9 C10 C11 to C12 C13 C14 C15 C16 C17 angle 50.161 (0.188) degrees

Trying to get some measure of iodide out of plane of the other chelated atoms by describing a mean plane through C1 N7 P1 Pt1

and the distance I1 is out of this plane (* indicates atoms used to define plane)

- * -0.0012 (0.0001) C1
- 0.0573 (0.0007) N7
- * 0.0540 (0.0006) P1 * -0.1101 (0.0013) Pt1
- -1.4933 (0.0061) I1

There is pi stacking between symmetry related chelated phenyl pyridine portion of the molecule (see Mercury). Angle between mean planes through interacting systems is zero degrees as they are parallel as interaction occurs across an inversion centre. Closest atomic contact is C5 - C7_\$1 3.3103 (0.0066) Symmetry operator used to generate atom in above discussion was \$1 1-X,1-Y,1-Z

Experimental

Single crystals of C₂₇H₃₃F₂INPPt [ps25] were ???? A suitable crystal was selected and mounted on a glass fibre with Fromblin oil and placed on an Xcalibur Gemini diffractometer with a Ruby CCD area detector. The crystal was kept at 150(2) K during data collection. Using Olex2 [1], the structure was solved with the ShelXT [2] structure solution program using Direct Methods and refined with the ShelXL [3] refinement package using Least Squares minimisation.

8 Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.

9 Sheldrick, G.M. (2015). Acta Cryst. A71, 3-8.

10 Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8.

Crystal Data for C₂₇H₃₄E₂F₁NPPt (M=762.50 g/mol): monoclinic, space group P2₁/c (no. 14), a = 17.1855(2) Å, b = 12.17889(16) Å, c = 13.62801(18) Å, β = 106.9357(13)°, V = 2728.64(6) Å³, Z = 4, T = 150(2) K, μ (CuK α) = 19.291 mm⁻¹, Dcalc = 1.856 g/cm³, 26064 reflections measured (9.036° $\leq 2\Theta \leq 156.396$ °), 5784 unique (R_{int} = 0.0576, R_{sigma} = 0.0366) which were used in all calculations. The final R_1 was 0.0364 (I > 2 σ (I)) and wR_2 was 0.1012 (all data).

Table S15 Crystal data and structure refinement for ps25.

Identification code	ps25
Empirical formula	$C_{27}H_{33}F_2INPPt$
Formula weight	762.50
Temperature/K	150(2)
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	17.1855(2)
b/Å	12.17889(16)
c/Å	13.62801(18)
α/°	90
β/°	106.9357(13)
γ/°	90
Volume/Å ³	2728.64(6)
Z	4
$\rho_{calc}g/cm^3$	1.856
µ/mm ^{□1}	19.291
F(000)	1464.0
Crystal size/mm ³	$0.406 \times 0.303 \times 0.16$ yellow block
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2O range for data collection/°	9.036 to 156.396
Index ranges	$-21 \le h \le 21, -15 \le k \le 14, -16 \le l \le 17$
Reflections collected	26064
Independent reflections	5784 [$R_{int} = 0.0576$, $R_{sigma} = 0.0366$]
Data/restraints/parameters	5784/0/302
Goodness-of-fit on F ²	1.068
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0364, WR_2 = 0.0989$
Final R indexes [all data]	$R_1 = 0.0380, wR_2 = 0.1012$
Largest diff. peak/hole / e Å-3	1.86/-2.05

Table S16 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for ps25. $U_{e\alpha}$ is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	у	Z	U(eq)
Pt1	7045.5(2)	4750.4(2)	6039.3(2)	25.52(8)
I1	7233.0(2)	4371.5(3)	8053.3(2)	32.75(10)
P1	7865.0(6)	3344(1)	5977.0(9)	30.0(2)
C1	6373(3)	4740(4)	4556(4)	28.2(9)
C2	6380(3)	4006(5)	3779(4)	35.7(10)
C3	5742(3)	4021(5)	2861(4)	40.6(11)
F3	5781(2)	3293(4)	2125(3)	57.2(10)
C4	5087(3)	4714(5)	2694(4)	38.6(11)
C5	5065(3)	5433(4)	3457(4)	33.8(10)
C6	5692(2)	5470(4)	4380(4)	29.4(9)
C7	5710(2)	6272(4)	5183(4)	29.2(9)

N7	6388(2)	6223(3)	5997(3)	27 0(7)
C	5127(2)	7096(4)	5122(4)	26.2(10)
	5127(5)	7088(4)	5152(4)	50.5(10)
C9	5263(3)	7863(5)	5882(5)	42.6(12)
C10	5994(3)	7883(4)	6658(5)	39.3(11)
C11	6556(3)	7046(4)	6697(4)	30.8(9)
C12	7396(3)	7106(4)	7419(4)	33.3(9)
C13	8037(3)	7015(4)	6980(4)	36.5(10)
C14	8843(3)	7110(5)	7589(5)	46.1(13)
C15	8983(3)	7291(5)	8618(5)	48.0(13)
F15	9759(2)	7369(5)	9219(4)	75.2(14)
C16	8363(3)	7354(5)	9070(5)	45.7(12)
C17	7562(3)	7285(4)	8477(4)	37.1(10)
C18	6899(3)	7331(6)	8989(5)	47.0(13)
C19	8753(3)	3238(5)	7122(4)	39.5(11)
C20	9250(3)	4281(6)	7411(5)	49.2(14)
C21	9835(5)	4207(8)	8503(7)	76(3)
C22	8347(3)	3379(5)	4940(4)	36.4(10)
C23	8530(4)	4526(5)	4626(5)	43.7(12)
C24	9047(5)	4501(7)	3889(6)	60.0(17)
C25	7384(4)	2006(5)	5909(5)	44.5(12)
C26	7916(5)	997(6)	5982(5)	58.0(17)
C27	7441(9)	-40(7)	6077(9)	100(4)

Table S17 Anisotropic Displacement Parameters (Å²×10³) for ps25. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^{*b*}U_{12}+...]$.

Atom	Un		U ₂₂	U ₃₃		U ₂₃		U ₁₃	U ₁₂
Pt1	20.86(1	1)	26.69(13)	29.19(12)		1.05(6)		7.55(8)	0.93(5)
I1	33.47(1	6)	34.30(18)	30.62(16)		2.82(11)		9.54(11)	3.63(10)
P1	26.7(5)		28.0(5)	34.8(6)		1.3(4)		8.4(4)	4.5(4)
C1	24.1(19)	30(2)	27(2)		3.6(16)		3.2(16)	-1.9(15)
C2	35(2)		39(3)	33(2)		1(2)		8.9(18)	0.4(19)
C3	37(2)		46(3)	38(3)		-9(2)		9(2)	-3(2)
F3	57.6(19)	66(2)	41.6(18)		-20.3(17)	3.8(15)	6.7(18)
C4	31(2)		47(3)	35(3)		6(2)		4.4(19)	-2.9(19)
C5	26(2)		38(2)	36(2)		9(2)		6.4(18)	-2.3(17)
C6	19.5(18)	36(2)	31(2)		6.9(19)		5.1(16)	-1.4(16)
C7	21.4(17)	30(2)	36(2)		8.0(18)		8.1(16)	1.1(16)
N7	22.6(15)	23.2(17)	36.8(19)		6.6(15)		11.3(14)	5.2(13)
C8	26.9(19)	40(3)	41(2)		6(2)		8.6(17)	5.1(18)
C9	36(2)		40(3)	54(3)		5(2)		16(2)	10(2)
C10	38(2)		31(2)	50(3)		-3(2)		14(2)	5.6(19)
C11	31(2)		26(2)	38(2)		1.9(18)		14.8(17)	2.0(16)
C12	32(2)		26(2)	42(2)		0.7(19)		10.9(18)	-3.2(16)
C13	33(2)		33(2)	44(3)		5(2)		11.4(19)	-2.8(18)
C14	29(2)		47(3)	64(4)		7(3)		15(2)	-6(2)
C15	33(2)		49(3)	56(3)		-4(3)		3(2)	-11(2)
F15	34.4(17)	98(4)	80(3)		-3(3)		-3.9(17)	-19(2)
C16	42(3)		44(3)	45(3)		-9(2)		3(2)	-6(2)
C17	42(2)		27(2)	42(3)		-8(2)		12(2)	1.8(18)
C18	45(3)		53(3)	45(3)		-10(3)		17(2)	9(2)
C19	30(2)		45(3)	40(3)		3(2)		5.2(18)	13(2)
C20	29(2)		66(4)	48(3)		-7(3)		3(2)	2(2)
C21	53(4)		92(6)	63(5)		-27(4)		-15(3)	12(4)
C22	31(2)		43(3)	36(2)		-2(2)		9.7(17)	3.6(19)
C23	42(3)		43(3)	49(3)		-2(3)		18(2)	-3(2)
C24	76(4)		60(4)	56(4)		0(3)		38(3)	-5(4)
C25	51(3)		33(3)	51(3)		0(2)		17(2)	-2(2)
C26	85(5)		39(3)	40(3)		-1(3)		4(3)	7(3)
C27	157(11)		33(4)	93(7)		-2(4)		11(7)	-14(6)
Tabla \$18	Bond Long	the for ne25							
Atom	Atom	Length/Å			Atom	Atom	Length/Å		
Pt1	II	2 7083(3)			C8	C9	1 363(8)		
Pt1	P1	2 2347(11)		C9	C10	1 387(8)		
Pt1	Cl	2.015(5))		C10	C11	1 394(7)		
Pt1	N7	2.112(4)			C11	C12	1,492(6)		
P1	C19	1,842(5)			C12	C13	1,402(7)		
P1	C22	1,836(5)			C12	C17	1,403(7)		
P1	C25	1 818(6)			C13	C14	1 397(7)		
Cl	C2	1,389(7)			C14	C15	1.369(9)		
Cl	C6	1,432(6)			C15	F15	1.350(6)		
\tilde{C}^2	C_3	1 402(7)			C15	C16	1 380(9)		
C3	F3	1 356(7)			C16	C17	1 380(8)		
C3	C4	1 372(8)			C17	C18	1 501(8)		
C4	C5	1 367(8)			C10	C20	1 517/01		
04	C5	1.30/(0)			019	C20	T. JT/(9)		

C5	C6	1 200/	7)		C20	C21	1 526(0)	
05	07	1.350(7)		C20	C21	1.530(5)	
C6	C/	1.460(/)		C22	C23	1.520(8)	
C7	N7	1.356(6	6)		C23	C24	1.524(9)	
C7	C8	1.397(7)		C25	C26	1.518(9)	
N7	C11	1 255/(C)		C26	C27	1 520(12)	
IN /	CII	1.300(0	0)		C20	C27	1.000(12)	
Table S1	9 Bond Ang	gles for ps25	5.					
Atom	Atom	Atom	Angle/°		Atom	Atom	Atom	Angle/°
DI	Dul	Atom	Aligic		Atom	NT	Dul	Aligit/
PI	Pt1	11	91.01(3)		C/	N7	Pt1	112.6(3)
C1	Pt1	I1	151.59(13)		C11	N7	Pt1	127.3(3)
C1	D+1	D1	00 11/1/)		C11	N7	C7	120 0(4)
CI	FU	F I	90.11(14)		CII	1N /	C/	120.0(4)
Cl	Pt1	N7	80.32(17)		C9	C8	C7	119.5(5)
N7	Pt1	11	94 41 (11)		C8	C9	C10	120 2(5)
117	Dul	DI	171 10(10)		C0 C0	C10	C10	110 7(5)
N/	PtI	PI	1/1.18(10)		69	C10	CH	118./(5)
C19	P1	Pt1	113.42(18)		N7	C11	C10	120.7(4)
C22	P1	Pt1	116 26(18)		N7	C11	C12	117 8(4)
C22	11	111	110.20(10)		117	011	012	11/.0(4)
C22	PI	C19	101.8(2)		C10	CII	C12	121.0(5)
C25	P1	Pt1	114.0(2)		C13	C12	C11	116.4(5)
C25	D1	C10	102 E(2)		C12	C12	017	120 0(5)
C25	PI	C19	103.3(3)		C13	C12	UI/	120.0(5)
C25	P1	C22	106.4(3)		C17	C12	C11	123.6(4)
C2	C1	Pt1	129 7(4)		C14	C13	C12	$120 \ 4(5)$
C2	01	- C(015	015	012	110.0(5)
C2	CI	C6	11/.4(4)		C15	C14	C13	118.0(5)
C6	C1	Pt1	111.5(3)		C14	C15	C16	122.5(5)
C1	C^{2}	C3	119 6(5)		E15	C15	C14	118 8(6)
	C2		±±2.0(3)		115	015	014	110.0(0)
F3	C3	C2	117.2(5)		F15	C15	C16	118.7(6)
F3	C3	C4	119 7 (5)		C15	C16	C17	120 2(5)
13 C4	C2	01	100 1(5)		015	017	C10	101 0(5)
C4	C3	C2	123.1(5)		CI2	CI/	C18	121.9(5)
C5	C4	C3	118.0(5)		C16	C17	C12	118.8(5)
C4	C5	C6	121 4(5)		C16	C17	C18	110 2(5)
C4	05	C0	121.4(3)		C10	C1/	010	119.2(3)
CI	C6	C7	116.9(4)		C20	C19	PI	115.2(4)
C5	C6	C1	120.5(5)		C19	C20	C21	111.3(6)
C5	C6	C7	100 6(4)		C22	C22	D1	114 5(4)
05	0	C/	122.0(4)		C25	C22	F1	114.0(4)
N7	C7	C6	114.2(4)		C22	C23	C24	112.0(5)
N7	C7	C8	120 3(5)		C26	C25	P1	117 8(5)
C0	07	00	105 4(4)		C25	020	027	110.0(0)
68	C/	6	125.4(4)		C25	C26	C27	IIU.3(8)
Table S2	0 Hydrogen	Atom Coor	rdinates (Å×10 ⁴) and Iso	atronic Disnlacement	Parameters	$(Å^{2} \times 10^{3})$ for	· ns25	
Table S2	0 Hydrogen	Atom Cool	rdinates (Å×10 ⁴) and Iso	otropic Displacement	Parameters	$(\text{\AA}^2 \times 10^3)$ for	· ps25.	
Table S2 Atom	0 Hydrogen	Atom Cool	rdinates (Å×10 ⁴) and Iso <i>y</i>	otropic Displacement z	Parameters	(Å ² ×10 ³) for U(eq)	· ps25.	
Table S2 Atom H2	0 Hydrogen 6814	Atom Coor x	rdinates (Å×10 ⁴) and Iso y 3497	otropic Displacement z 3868	Parameters	(Å ² ×10 ³) for U(eq) 43	· ps25.	
Table S2 Atom H2 H4	6814	Atom Coor x	rdinates (Å×10 ⁴) and Iso y 3497 4696	otropic Displacement z 3868 2067	t Parameters	(Å ² ×10 ³) for U(eq) 43 46	· ps25.	
Table S2 Atom H2 H4	6814 4661	Atom Coor x	rdinates (Å×10 ⁴) and Iso y 3497 4696	otropic Displacement z 3868 2067 2250	t Parameters	(Å ² ×10 ³) for U(eq) 43 46	· ps25.	
Table S2 Atom H2 H4 H5	6814 6814 4661 4616	Atom Coor x	rdinates (Å×10 ⁴) and Iso y 3497 4696 5917	otropic Displacement z 3868 2067 3358	Parameters	(Å ² ×10 ³) for U(eq) 43 46 41	· ps25.	
Table S2 Atom H2 H4 H5 H8	6814 4661 4616 4639	Atom Coor x	rdinates (Å×10 ⁴) and Iso y 3497 4696 5917 7098	tropic Displacement z 3868 2067 3358 4579	t Parameters	(Å ² ×10 ³) for U(eq) 43 46 41 44	· ps25.	
Table S2 Atom H2 H4 H5 H8 H9	20 Hydrogen 6814 4661 4616 4639 4856	Atom Cool x	rdinates (Å×10 ⁴) and Iso y 3497 4696 5917 7098 8393	tropic Displacement z 3868 2067 3358 4579 5874	Parameters	(Å ² ×10 ³) for U(eq) 43 46 41 44 51	· ps25.	
Table S2 Atom H2 H4 H5 H8 H9	CO Hydrogen 6814 4661 4616 4639 4856 6816	Atom Coon x	rdinates (Å×10 ⁴) and Iso y 3497 4696 5917 7098 8393	tropic Displacement 3868 2067 3358 4579 5874	Parameters	(Å ² ×10 ³) for U(eq) 43 46 41 44 51	· ps25.	
Table S2 Atom H2 H4 H5 H8 H9 H10	20 Hydrogen 6814 4661 4616 4639 4856 6110	Atom Cool x	rdinates (Å×10 ⁴) and Iso y 3497 4696 5917 7098 8393 8455	tropic Displacement z 3868 2067 3358 4579 5874 7153	t Parameters	(Å ² ×10 ³) for U(eq) 43 46 41 44 51 47	r ps25.	
Table S2 Atom H2 H4 H5 H8 H9 H10 H13	20 Hydrogen 6814 4661 4616 4639 4856 6110 7922	Atom Coor x	rdinates (Å×10 ⁴) and Iso y 3497 4696 5917 7098 8393 8455 6887	tropic Displacement 2 3868 2067 3358 4579 5874 7153 6264	t Parameters	(Å ² ×10 ³) for U(eq) 43 46 41 44 51 47 47 44	· ps25.	
Table S2 Atom H2 H4 H5 H8 H9 H10 H13	20 Hydrogen 6814 4661 4616 4639 4856 6110 7922 8281	Atom Coor x	rdinates (Å×10 ⁴) and Iso y 3497 4696 5917 7098 8393 8455 6887 7051	tropic Displacement 3868 2067 3358 4579 5874 7153 6264 200	t Parameters	(Å ² ×10 ³) for U(eq) 43 46 41 44 51 47 44 55	r ps25.	
Table S2 Atom H2 H4 H5 H8 H9 H10 H13 H14	6814 4661 4616 4639 4856 6110 7922 9281	a Atom Coor x	rdinates (Å×10 ⁴) and Iso y 3497 4696 5917 7098 8393 8455 6887 7051	tropic Displacement 2 3868 2067 3358 4579 5874 7153 6264 7298	Parameters	(Å ² ×10 ³) for U(eq) 43 46 41 44 51 47 44 55	r ps25.	
Table S2 Atom H2 H4 H5 H8 H9 H10 H13 H14 H16	80 Hydrogen 6814 4661 4616 4639 4856 6110 7922 9281 8487	Atom Coor x	rdinates (Å×10 ⁴) and Iso y 3497 4696 5917 7098 8393 8455 6887 7051 7051 7445	tropic Displacement 2 3868 2067 3358 4579 5874 7153 6264 7298 9791	Parameters	(Å ² ×10 ³) for U(eq) 43 46 41 44 51 47 44 55 55 55	· ps25.	
Table S2 Atom H2 H4 H5 H8 H9 H10 H13 H14 H16 H18A	20 Hydrogen 6814 4661 4616 4639 4856 6110 7922 9281 8487 6416	Atom Coor x	rdinates (Å×10 ⁴) and Iso y 3497 4696 5917 7098 8393 8455 6887 7051 7445 6952	tropic Displacement 3868 2067 3358 4579 5874 7153 6264 7298 9791 8562	t Parameters	(Å ² ×10 ³) for U(eq) 43 46 41 44 51 47 44 55 55 70	- ps25.	
Table S2 Atom H2 H4 H5 H8 H9 H10 H13 H14 H16 H18A H19P	6814 4661 4616 4639 4856 6110 7922 9281 8487 6416 6724	Atom Coor x	rdinates (Å×10 ⁴) and Iso y 3497 4696 5917 7098 8393 8455 6887 7051 7445 6952 8000	tropic Displacement 2 3868 2067 3358 4579 5874 7153 6264 7298 9791 8562 8562	Parameters	(Å ² ×10 ³) for U(eq) 43 46 41 44 51 47 44 55 55 70 70	· ps25.	
Table S2 Atom H2 H4 H5 H8 H9 H10 H13 H14 H16 H18A H18E	80 Hydrogen 6814 4661 4616 4639 4856 6110 7922 9281 8487 6416 6764	Atom Coor x	rdinates (Å×10 ⁴) and Iso y 3497 4696 5917 7098 8393 8455 6887 7051 7445 6952 8099	tropic Displacement 2 3868 2067 3358 4579 5874 7153 6264 7298 9791 8562 9079	Parameters	(Å ² ×10 ³) for U(eq) 43 46 41 44 51 47 44 55 55 55 70 70	· ps25.	
Table S2 Atom H2 H4 H5 H8 H9 H10 H13 H14 H16 H18A H18B H18C	20 Hydrogen 6814 4661 4616 4639 4856 6110 7922 9281 8487 6416 6764 7085	Atom Coor x	rdinates (Å×10 ⁴) and Iso y 3497 4696 5917 7098 8393 8455 6887 7051 7445 6952 8099 6972	tropic Displacement 3868 2067 3358 4579 5874 7153 6264 7298 9791 8562 9079 9661	Parameters	(Å ² ×10 ³) for U(eq) 43 46 41 44 51 47 44 55 55 70 70 70 70 70	r ps25.	
Table S2 Atom H2 H4 H5 H8 H9 H10 H13 H14 H16 H18A H18B H18C H19A	Hydrogen 6814 4661 4616 4639 4856 6110 7922 9281 8487 6416 6764 7085 8562	Atom Coor	rdinates (Å×10 ⁴) and Iso y 3497 4696 5917 7098 8393 8455 6887 7051 7445 6952 8099 6972 3012	tropic Displacement 2 3868 2067 3358 4579 5874 7153 6264 7298 9791 8562 9079 9661 7710	Parameters	(Å ² ×10 ³) for U(eq) 43 46 41 44 51 47 44 55 55 70 70 70 47	· ps25.	
Table S2 Atom H2 H4 H5 H8 H9 H10 H13 H14 H16 H18A H18B H18C H19A	10 Hydrogen 6814 4661 4616 4639 4856 6110 7922 9281 8487 6416 6764 7085 8562 911	Atom Coor	rdinates (Å×10 ⁴) and Iso y 3497 4696 5917 7098 8393 8455 6887 7051 7445 6952 8099 6972 3012 2650	tropic Displacement 3868 2067 3358 4579 5874 7153 6264 7298 9791 8562 9079 9661 7710 7710	Parameters	(Å ² ×10 ³) for U(eq) 43 46 41 44 51 47 44 55 55 70 70 70 70 70 70 47	· ps25.	
Table S2 Atom H2 H4 H5 H8 H9 H10 H13 H14 H16 H18A H18B H19A H19A	Hydrogen 6814 4661 4669 4856 6110 7922 9281 8487 6416 6764 7085 8562 9114	Atom Coor	rdinates (Å×10 ⁴) and Iso y 3497 4696 5917 7098 8393 8455 6887 7051 7445 6952 8099 6972 3012 2650	tropic Displacement 3868 2067 3358 4579 5874 7153 6264 7298 9791 8562 9079 9661 7710 7005	Parameters	(Å ² ×10 ³) for U(eq) 43 46 41 44 51 47 44 55 55 70 70 70 47 47 47	· ps25.	
Table S2 Atom H2 H4 H5 H8 H9 H10 H13 H14 H16 H18A H18B H19A H19A H20A	Hydrogen 6814 4661 4616 4639 4856 6110 7922 9281 8487 6416 6764 7085 8562 9114 8879	Atom Coor	rdinates (Å×10 ⁴) and Iso y 3497 4696 5917 7098 8393 8455 6887 7051 7445 6952 8099 6972 3012 2650 4913	tropic Displacement 2 3868 2067 3358 4579 5874 7153 6264 7298 9791 8562 9079 9661 7710 7005 7368	Parameters	(Å ² ×10 ³) for U(eq) 43 46 41 44 51 47 44 55 55 55 70 70 70 70 47 47 59	· ps25.	
Table S2 Atom H2 H4 H5 H8 H9 H10 H13 H14 H16 H18A H18B H19A H19B H20A H20B	20 Hydrogen 6814 4661 4616 4639 4856 6110 7922 9281 8487 6416 6764 7085 8562 9114 8879 9555	Atom Coor	rdinates (Å×10 ⁴) and Iso y 3497 4696 5917 7098 8393 8455 6887 7051 7445 6952 8099 6972 3012 2650 4913 4407	tropic Displacement 2 3868 2067 3358 4579 5874 7153 6264 7298 9791 8562 9079 9661 7710 7005 7368 6919	Parameters	(Å ² ×10 ³) for U(eq) 43 46 41 44 51 47 44 55 55 70 70 70 70 70 47 47 47 59 59	· ps25.	
Table S2 Atom H2 H4 H5 H8 H9 H10 H13 H14 H16 H18A H18B H19A H19B H20A H20A H20A H20A	Hydrogen 6814 4661 4669 4856 6110 7922 9281 8487 6416 6764 7085 8562 9114 8879 9562	Atom Coor	rdinates (Å×10 ⁴) and Iso y 3497 4696 5917 7098 8393 8455 6887 7051 7445 6952 8099 6972 3012 2650 4913 4407 25 4	tropic Displacement 2 3868 2067 3358 4579 5874 7153 6264 7298 9791 8562 9079 9661 7710 7005 7368 6919	Parameters	(Å ² ×10 ³) for U(eq) 43 46 41 44 51 47 44 55 55 70 70 70 47 47 47 59 59	· ps25.	
Table S2 Atom H2 H4 H5 H8 H9 H10 H13 H14 H16 H18A H18B H19A H19B H20A H20B H21A	Hydrogen 6814 4661 4669 4856 6110 7922 9281 8487 6416 6764 7085 8562 9114 879 9565 10170	Atom Coor	rdinates (Å×10 ⁴) and Iso y 3497 4696 5917 7098 8393 8455 6887 7051 7445 6952 8099 6972 3012 2650 4913 4407 3544	tropic Displacement 2 3868 2067 3358 4579 5874 7153 6264 7298 9791 8562 9079 9661 7710 7005 7368 6919 8564	Parameters	(Å ² ×10 ³) for U(eq) 43 46 41 44 51 47 44 55 55 55 70 70 70 70 70 70 70 47 47 59 59 114	· ps25.	
Table S2 Atom H2 H4 H5 H8 H9 H10 H13 H14 H16 H18A H18B H19A H19B H20A H21A H21B	Hydrogen 6814 4661 4669 4856 6110 7922 9281 8487 6416 6764 7085 8562 9114 8879 9565 10170 9522	Atom Coor	rdinates (Å×10 ⁴) and Iso y 3497 4696 5917 7098 8393 8455 6887 7051 7445 6952 8099 6972 3012 2650 4913 4407 3544 4173	tropic Displacement 3868 2067 3358 4579 5874 7153 6264 7298 9791 8562 9079 9661 7710 7005 7368 6919 8564 8998	Parameters	(Å ² ×10 ³) for U(eq) 43 46 41 44 51 47 44 55 55 70 70 70 47 47 47 59 114 114	· ps25.	
Table S2 Atom H2 H4 H5 H8 H9 H10 H13 H14 H16 H18A H18B H18C H19A H20A H20A H20B H21A H21B	Hydrogen 6814 4661 4669 4856 6110 7922 9281 8487 6416 6764 7085 8562 9114 8879 9565 10170 9522 101°°°	Atom Coor	rdinates (Å×10 ⁴) and Iso y 3497 4696 5917 7098 8393 8455 6887 7051 7445 6952 8099 6972 3012 2650 4913 4407 3544 4173 4856	tropic Displacement 2 3868 2067 3358 4579 5874 7153 6264 7298 9791 8562 9079 9661 7710 7005 7368 6919 8564 8998 8642	Parameters	(Å ² ×10 ³) for U(eq) 43 46 41 44 51 55 55 70 70 70 70 70 70 47 47 59 59 114 114	· ps25.	
Table S2 Atom H2 H4 H5 H8 H9 H10 H13 H14 H15 H8 H9 H10 H13 H14 H16 H18A H18B H18C H19A H20A H20B H21A H21B H21C	20 Hydrogen 6814 4661 4661 4616 4639 4856 6110 7922 9281 8487 6416 6764 7085 8562 9114 8879 9565 10170 9522 10188	Atom Coor	rdinates (Å×10 ⁴) and Iso y 3497 4696 5917 7098 8393 8455 6887 7051 7445 6952 8099 6972 3012 2650 4913 4407 3544 4173 4856	tropic Displacement 2 3868 2067 3358 4579 5874 7153 6264 7298 9791 8562 9079 9661 7710 7005 7368 6919 8564 8998 8642	Parameters	(Å ² ×10 ³) for U(eq) 43 46 41 44 51 47 55 55 70 70 70 70 70 70 70 70 70 70 70 70 70	· ps25.	
Table S2 Atom H2 H4 H5 H8 H9 H10 H13 H14 H16 H18A H18B H19A H19B H20A H20B H21A H21B H21C H22A	Hydrogen 6814 4661 4669 4856 6110 7922 9281 8487 6416 6764 7085 8562 9114 8879 9565 10170 9522 10188 8862	Atom Coor	rdinates (Å×10 ⁴) and Iso y 3497 4696 5917 7098 8393 8455 6887 7051 7445 6952 8099 6972 3012 2650 4913 4407 3544 4173 4856 2960	tropic Displacement 2 3868 2067 3358 4579 5874 7153 6264 7298 9791 8562 9079 9661 7710 7005 7368 6919 8564 8998 8642 5160	Parameters	(Å ² ×10 ³) for U(eq) 43 46 41 44 51 47 44 55 55 70 70 70 70 70 47 47 59 59 59 114 114 44	· ps25.	
Table S2 Atom H2 H4 H5 H8 H9 H10 H13 H14 H16 H18A H19A H19A H19A H20A H20B H21A H21B H21C H22A H22B	Hydrogen 6814 4661 4669 4856 6110 7922 9281 8487 6416 6764 7085 8562 9114 8879 9565 10170 9522 10188 8862 7986	Atom Coor	rdinates (Å×10 ⁴) and Iso y 3497 4696 5917 7098 8393 8455 6887 7051 7445 6952 8099 6972 3012 2650 4913 4407 3544 4173 4856 2960 3004	tropic Displacement 2 3868 2067 3358 4579 5874 7153 6264 7298 9791 8562 9079 9661 7710 7005 7368 6919 8564 8998 8642 5160 4332	Parameters	(Å ² ×10 ³) for U(eq) 43 46 41 44 51 55 55 70 70 70 70 70 70 47 47 59 59 59 114 114 114 44 44	· ps25.	
Table S2 Atom H2 H4 H5 H8 H9 H10 H13 H14 H16 H18A H19B H20A H20B H21A H21B H21C H22A H22A	19 Hydrogen 6814 4661 4669 4856 6110 7922 9281 8487 6416 6764 7085 8562 9114 8879 9565 10170 9522 10188 8862 7986 8862 7986	Atom Coor	rdinates (Å×10 ⁴) and Iso y 3497 4696 5917 7098 8393 8455 6887 7051 7445 6952 8099 6972 3012 2650 4913 4407 3544 4173 4856 2960 3004	tropic Displacement 2 3868 2067 3358 4579 5874 7153 6264 7298 9791 8562 9079 9661 7710 7005 7368 6919 8564 8998 8642 5160 4332 5147	Parameters	(Å ² ×10 ³) for U(eq) 43 46 41 44 51 47 44 55 55 70 70 70 47 47 59 114 114 114 44 44 42 52	· ps25.	
Table S2 Atom H2 H4 H5 H8 H9 H10 H13 H14 H16 H18A H18B H20A H20B H21A H21B H21C H22A H22B H23A	Hydrogen 6814 4661 4669 4856 6110 7922 9281 8487 6416 6764 7085 8562 9114 8879 9565 10170 9522 10188 8862 7986 8820	Atom Coor	rdinates (Å×10 ⁴) and Iso y 3497 4696 5917 7098 8393 8455 6887 7051 7445 6952 8099 6972 3012 2650 4913 4407 3544 4173 4856 2960 3004 4947	tropic Displacement 2 3868 2067 3358 4579 5874 7153 6264 7298 9791 8562 9079 9661 7710 7005 7368 6919 8564 8998 8642 5160 4332 5247	Parameters	(Å ² ×10 ³) for U(eq) 43 46 41 44 51 47 44 55 55 70 70 70 70 47 47 47 59 59 114 114 114 44 44 52	· ps25.	
Table S2 Atom H2 H4 H5 H8 H9 H10 H13 H14 H16 H18A H19B H20A H21A H21B H21C H22A H22B H23A H23B	Hydrogen 6814 4661 4661 4616 4639 4856 6110 7922 9281 8487 6416 6764 7085 8562 9114 8879 9565 10170 9522 10188 8862 7986 8820 8012	Atom Coor	rdinates (Å×10 ⁴) and Iso y 3497 4696 5917 7098 8393 8455 6887 7051 7445 6952 8099 6972 3012 2650 4913 4407 3544 4173 4856 2960 3004 4947 4909	tropic Displacement 2 3868 2067 3358 4579 5874 7153 6264 7298 9791 8562 9079 9661 7710 7005 7368 6919 8564 8998 8642 5160 4332 5247 4295	Parameters	(Å ² ×10 ³) for U(eq) 43 46 41 44 51 55 55 70 70 70 70 70 70 70 70 70 70 70 70 70	· ps25.	
Table S2 Atom H2 H4 H5 H8 H9 H10 H13 H14 H16 H18A H19B H20A H20B H21A H21B H21C H22A H23B H23A	Hydrogen 6814 4661 4669 4856 6110 7922 9281 8487 6416 6764 7085 8562 9114 8879 9565 10170 9522 10170 9522 10188 8862 7986 8820 8012 8795	Atom Coor	rdinates (Å×10 ⁴) and Iso y 3497 4696 5917 7098 8393 8455 6887 7051 7445 6952 8099 6972 3012 2650 4913 4407 3544 4173 4856 2960 3004 4947 4909 4013	2 3868 2067 3358 4579 5874 7153 6264 7298 9791 8562 9079 9661 7710 7005 7368 6919 8564 8948 8642 5160 4332 5247 4295 3313	Parameters	(Å ² ×10 ³) for U(eq) 43 46 41 44 51 47 44 55 55 70 70 70 70 70 47 47 59 59 114 114 44 44 44 52 90	· ps25.	
Table S2 Atom H2 H4 H5 H8 H9 H10 H13 H14 H16 H18A H19A H19A H20A H20B H21A H21B H21C H22A H23A H23B H23A H23B H24A	 Hydrogen 6814 4661 4616 4639 4856 6110 7922 9281 8487 6416 6764 7085 8562 9114 8879 9565 10170 9522 10188 8862 7986 820 8012 8795 	Atom Coor	rdinates (Å×10 ⁴) and Iso y 3497 4696 5917 7098 8393 8455 6887 7051 7445 6952 8099 6972 3012 2650 4913 4407 3544 4173 4856 2960 3004 4947 4909 4013	tropic Displacement z 3868 2067 3358 4579 5874 7153 6264 7298 9791 8562 9079 9661 7710 7005 7368 6919 8564 8998 8642 5160 4332 5247 4295 3313	Parameters	(Å ² ×10 ³) for U(eq) 43 46 41 44 51 55 55 70 70 70 70 70 70 70 47 47 59 59 114 114 114 44 44 52 52 90	· ps25.	
Table S2 Atom H2 H4 H5 H8 H9 H10 H13 H14 H16 H18A H19B H20A H20B H21A H21B H21C H22A H23A H23B H23A H23B H24A H24B	Hydrogen 6814 4661 4669 4856 6100 7922 9281 8487 6416 6764 7085 8562 9114 8879 9565 10170 9522 10188 8862 7986 8820 8012 8795 9593	Atom Cool	rdinates (Å×10 ⁴) and Iso y 3497 4696 5917 7098 8393 8455 6887 7051 7445 6952 8099 6972 3012 2650 4913 4407 3544 4173 4856 2960 3004 4947 4909 4013 4231	tropic Displacement 2 3868 2067 3358 4579 5874 7153 6264 7298 9791 8562 9079 9661 7710 7005 7368 6919 8564 8998 8642 5160 4332 5247 4295 3313 4249	Parameters	(Å ² ×10 ³) for U(eq) 43 46 41 44 51 47 44 55 55 70 70 47 47 59 114 114 114 44 44 42 52 52 90 90	· ps25.	
Table S2 Atom H2 H4 H5 H8 H9 H10 H13 H14 H16 H18A H19B H20A H20B H21A H21B H21C H22A H23A H23B H24A H24B H24C	Hydrogen 6814 4661 4669 4856 6110 7922 9281 8487 6416 6764 7085 8562 9114 8879 9565 10170 9522 10188 8862 7986 8820 8012 8795 9593 9087	Atom Coor	rdinates (Å×10 ⁴) and Iso y 3497 4696 5917 7098 8393 8455 6887 7051 7445 6952 8099 6972 3012 2650 4913 4407 3544 4173 4856 2960 3004 4947 4909 4013 4231 5244	tropic Displacement 2 3868 2067 3358 4579 5874 7153 6264 7298 9791 8562 9079 9661 7710 7005 7368 6919 8564 8998 8642 5160 4332 5247 4295 3313 4249 3631	Parameters	(Å ² ×10 ³) for U(eq) 43 46 41 44 51 55 55 70 70 70 47 47 59 59 114 114 114 44 44 52 52 90 90	· ps25.	
Table S2 Atom H2 H4 H5 H8 H9 H10 H13 H14 H16 H18A H19B H20A H21A H21B H21C H22A H22B H23A H23B H24A H24A H24A H24A H24A H24A H24A	<pre>0 Hydrogen 6814 4661 4661 4669 4856 6110 7922 9281 8487 6416 6764 7085 8562 9114 8879 9565 10170 9522 10188 8862 7986 8862 7986 88012 8795 9593 9087 7124</pre>	Atom Coor	rdinates (Å×10 ⁴) and Iso y 3497 4696 5917 7098 8393 8455 6887 7051 7445 6952 8099 6972 3012 2650 4913 4407 3544 4173 4856 2960 3004 4947 4909 4013 4231 5244	tropic Displacement 2 3868 2067 3358 4579 5874 7153 6264 7298 9791 8562 9079 9661 7710 7005 7368 6919 8564 8998 8642 5160 4332 5247 4295 3313 4249 3631	Parameters	(Å ² ×10 ³) for U(eq) 43 46 41 44 51 55 55 70 70 70 70 70 70 70 70 70 70 70 70 70	· ps25.	
Table S2 Atom H2 H4 H5 H8 H9 H10 H13 H14 H16 H18A H19B H20A H20B H21A H21B H21C H22A H23B H23A H23B H24A H25A	Hydrogen 6814 4661 4669 4856 6110 7922 9281 8487 6416 6764 7085 8562 9114 8879 9565 10170 9522 10188 8862 7986 8820 8012 8795 9593 9087 7124	Atom Coor	rdinates (Å×10 ⁴) and Iso y 3497 4696 5917 7098 8393 8455 6887 7051 7445 6952 8099 6972 3012 2650 4913 4407 3544 4173 4856 2960 3004 4947 4909 4013 4231 5244 1964	tropic Displacement 2 3868 2067 3358 4579 5874 7153 6264 7298 9791 8562 9079 9661 7710 7005 7368 6919 8564 8998 8642 5160 4332 5247 4295 3313 4249 3631 6468	Parameters	(Å ² ×10 ³) for U(eq) 43 46 41 44 51 47 44 55 55 70 70 70 70 70 47 47 59 59 114 114 44 44 44 52 90 90 90 53	· ps25.	
Table S2 Atom H2 H4 H5 H8 H9 H10 H13 H14 H16 H18A H19A H19A H20A H22A H23A H24A H25A H25B	Hydrogen 6814 4661 4669 4856 6110 7922 9281 8487 6416 6764 7085 8562 9114 8879 9565 10170 9522 10188 8862 7986 8820 8012 8795 9593 9087 7124 6944	Atom Coor	rdinates (Å×10 ⁴) and Iso y 3497 4696 5917 7098 8393 8455 6887 7051 7445 6952 8099 6972 3012 2650 4913 4407 3544 4173 4856 2960 3004 4947 4909 4013 4231 5244 1964 1964	2 3868 2067 3358 4579 5874 7153 6264 7298 9791 8562 9079 9661 7710 7005 7368 6919 8564 8998 8642 5160 4332 5247 4295 3313 4249 3631 6468 5253	Parameters	(Å ² ×10 ³) for U(eq) 43 46 41 44 51 55 55 70 70 70 70 47 47 59 59 114 114 114 44 44 52 52 90 90 90 53 53	· ps25.	
Table S2 Atom H2 H4 H5 H8 H9 H10 H13 H14 H16 H18A H19B H20A H21A H21A H21A H21A H21B H21A H21B H21A H22B H23A H23B H24A H24A H24C H25B H26A	Hydrogen 6814 4661 4669 4856 6100 7922 9281 8487 6416 6764 7085 8562 9114 8879 9565 10170 9522 10188 8862 7986 8820 8012 8795 9593 9087 7124 6944 8801	Atom Cool	rdinates (Å×10 ⁴) and Iso y 3497 4696 5917 7098 8393 8455 6887 7051 7445 6952 8099 6972 3012 2650 4913 4407 3544 4173 4407 3544 4173 4856 2960 3004 4947 4909 4013 4231 5244 1964 1966 1061	2 3868 2067 3358 4579 5874 7153 6264 7298 9791 8562 9079 9661 7710 7005 7368 6919 8564 8998 8642 5160 4332 5247 4295 3313 4249 3631 6468 5253 6587	Parameters	(Å ² ×10 ³) for U(eq) 43 46 41 44 51 47 44 55 55 70 70 70 47 47 59 114 114 114 44 44 42 52 52 90 90 90 90 90 53 70	· ps25.	
Table S2 Atom H2 H4 H5 H8 H9 H10 H13 H14 H16 H18A H19B H20A H20B H21A H21B H21C H22A H22B H23A H24A H24A H25A H25B H26A H25B H26A H26A H26B	Hydrogen 6814 4661 4669 4856 6110 7922 9281 8487 6416 6764 7085 8562 9114 8879 9565 10170 9522 10188 8862 7986 8820 8012 8795 9593 9593 9593 9593 9593 9593 9593 9	Atom Coor	rdinates (Å×10 ⁴) and Iso y 3497 4696 5917 7098 8393 8455 6887 7051 7445 6952 8099 6972 3012 2650 4913 4407 3544 4173 4856 2960 3004 4947 4909 4013 4231 5244 1964 1966 1061	z 3868 2067 3358 4579 5874 7153 6264 7298 9791 8562 9079 9661 7710 7005 7368 6919 8564 8998 8642 5160 4332 5247 4295 3313 4249 3631 6468 5253 6587	Parameters	(Å ² ×10 ³) for U(eq) 43 46 41 44 51 47 44 55 55 70 70 70 47 47 47 59 59 114 114 114 44 44 52 52 90 90 90 53 53 70 70	· ps25.	
Table S2 Atom H2 H4 H5 H8 H9 H10 H13 H14 H16 H18A H19B H20A H20B H21A H21B H21C H22A H22A H23A H23B H24A H24B H24C H25A H25A H26A H26B	Hydrogen 6814 4661 4669 4856 6110 7922 9281 8487 6416 6764 7085 8562 9114 8879 9565 10170 9522 10188 8862 7986 8820 8012 8795 9593 9087 7124 6944 8401 8104	Atom Coor	rdinates ($Å \times 10^4$) and Iso y 3497 4696 5917 7098 8393 8455 6887 7051 7445 6952 8099 6972 3012 2650 4913 4407 3544 4173 4856 2960 3004 4947 4909 4013 4231 5244 1964 1966 1061 946	z 3868 2067 3358 4579 5874 7153 6264 7298 9791 8562 9079 9661 7710 7005 7368 6919 8564 8998 8642 5160 4332 5247 4295 3313 4249 3631 6468 5253 6587 5362	Parameters	(Å ² ×10 ³) for U(eq) 43 46 41 44 51 55 55 70 70 70 70 70 47 47 59 59 114 114 114 44 44 52 52 90 90 90 53 53 70 70 70	· ps25.	
Table S2 Atom H2 H4 H5 H8 H9 H10 H13 H14 H16 H18A H18B H20A H20A H20A H21A H21B H21C H22A H23B H24A H24B H24C H25A H26A H26A H27A	Hydrogen 6814 4661 4669 4856 6110 7922 9281 8487 6416 6764 7085 8562 9114 8879 9565 10170 9522 10188 8862 7986 8820 8012 8795 9593 9087 7124 6944 8401 8104 6991	Atom Coor	rdinates (Å×10 ⁴) and Iso y 3497 4696 5917 7098 8393 8455 6887 7051 7445 6952 8099 6972 3012 2650 4913 4407 3544 4173 4856 2960 3004 4947 4909 4013 4231 5244 1964 1966 1061 946 -140	z 3868 2067 3358 4579 5874 7153 6264 7298 9791 8562 9079 9661 7710 7005 7368 6919 8564 8998 8642 5160 4332 5247 4295 3313 4249 3631 6468 5253 6587 5362 5449	Parameters	(Å ² ×10 ³) for U(eq) 43 46 41 44 51 47 44 55 55 70 70 70 47 47 59 59 114 114 114 44 44 52 59 90 90 90 53 53 53 70 70 70 70 70 70 70 70 70 70 70 70 70	· ps25.	
Table S2 Atom H2 H4 H5 H8 H9 H10 H13 H14 H16 H18A H19B H20A H20B H21A H20B H21A H20B H21A H20A H20B H21A H20A H20B H21A H20A H20B H21A H20A H20B H21A H21B H21A H21B H21A H21B H21A H21B H21A H21B H21C H22A H24A H24A H25B H26A H26A H26A H26A	Hydrogen 6814 4661 4669 4856 6110 7922 9281 8487 6416 6764 7085 8562 9114 8879 9565 10170 9522 10188 8862 7986 8820 8012 8795 9593 9087 7124 6944 8401 8104 6991 7224	Atom Coor	rdinates ($Å \times 10^4$) and Iso y 3497 4696 5917 7098 8393 8455 6887 7051 7445 6952 8099 6972 3012 2650 4913 4407 3544 4173 4856 2960 3004 4947 4909 4013 4231 5244 1964 1964 1966 1061 946 -140 33	z 3868 2067 3358 4579 5874 7153 6264 7298 9791 8562 9079 9661 7710 7005 7368 6919 8564 8998 8642 5160 4332 5247 4295 3313 4249 3631 6468 5253 6587 5362 5449 6664	Parameters	(Å ² ×10 ³) for U(eq) 43 46 41 44 55 55 70 70 70 70 47 47 59 59 114 114 44 44 52 52 90 90 90 53 53 70 70 70 90 90 53 53 70 70 70 90 90 90 91 49	· ps25.	
Table S2 Atom H2 H4 H5 H8 H9 H10 H13 H14 H16 H18A H18B H19A H19B H20A H21A H21B H21C H22A H23A H23B H24A H24B H24C H25B H26A H27A H27B H26A H27A H27B H26A H27B H26A H27A H27B H26A H27A H27B H27A H27B H27A H276	Hydrogen 6814 4661 4669 4856 6100 7922 9281 8487 6416 6764 7085 8562 9114 8879 9565 10170 9522 10188 8862 7986 8820 8012 8795 9593 9087 7124 6944 8401 8104 6991 7224	Atom Cool	rdinates (Å×10 ⁴) and Iso y 3497 4696 5917 7098 8393 8455 6887 7051 7445 6952 8099 6972 3012 2650 4913 4407 3544 4173 4407 3544 4173 4856 2960 3004 4947 4909 4013 4231 5244 1964 1966 1061 946 -140 33	Action Z 3868 2067 3358 4579 5874 7153 6264 7298 9791 8562 9079 9661 7710 7005 7368 6919 8564 8998 8642 5160 4332 5247 4295 3313 4249 3631 6468 5253 6587 5362 5449 6664	Parameters	(Å ² ×10 ³) for U(eq) 43 46 41 44 51 47 44 55 55 70 70 70 47 47 59 114 114 44 44 42 52 59 90 90 90 90 90 90 90 90 90 90 90 90 90	· ps25.	

Refinement model description Number of restraints - 0, number of constraints - unknown. Details:

1. Fixed Uiso

At 1.2 times of: All C(H) groups, All C(H,H) groups At 1.5 times of: At 1.5 times of: All C(H, H, H) groups 2.a Secondary CH2 refined with riding coordinates: C19(H19A, H19B), C20(H20A, H20B), C22(H22A, H22B), C23(H23A, H23B), C25(H25A, H25B), C26(H26A, H26B) 2.b Aromatic/amide H refined with riding coordinates: C2(H2), C4(H4), C5(H5), C8(H8), C9(H9), C10(H10), C13(H13), C14(H14), C16(H16) 2.c Idealised Me refined as rotating group: C18(H18A, H18B, H18C), C21(H21A, H21B, H21C), C24(H24A, H24B, H24C), C27(H27A, H27B, H27C)

H27C)

This report has been created with Olex2, compiled on 2015.09.30 svn.r3233 for OlexSys. Please let us know if there are any errors or if you would like to have additional features.

Figure SI6 solid state structure of ps35 with only key atoms labeled and thermal ellipsoids drawn at 50% probability level

Crystal structure determination of [ps35]

The asymmetric unit contains the complex, there are four complexes in the unit cell.

The angle between mean planes through the chelated phenyl and pyridine is Ring C1 C2 C3 C4 C5 C6 to ring N7 C7 C8 C9 C10 C11 is 7.193 (0.187) degrees

The angle between mean planes through the chelated pyridine ring and the free fluorophenyl ring is Ring N7 C7 C8 C9 C10 C11 to ring C12 C13 C14 C15 C16 C17 is 46.170 (0.106) degrees

There is a possible pi stacking interaction between the chelated phenyl pyridine and a symmetry related chelated phenyl pyridine. This is described as atoms used to define a mean plane through interacting pi systems, angle between these mean planes and closest atomic contact.

C1 C3 C5 N7 C8 C10 to C1_\$1 C3_\$1 C5_\$1 N7_\$1 C8_\$1 C10_\$1 is zero degrees between planes as there is an inversion centre relating the two interacting rings so they are parallel. Closest atomic contact is C5 - C7_\$1 3.3184 (0.0039) Angstroms

Symmetry operator used to define symmetry related atoms discussed above was \$1 2-X,1-Y,1-Z

Experimental

Single crystals of C₃₀H₃₉F₂INPPt [ps35] were grown from chloroform???. A suitable crystal was selected and mounted on a glass fibre with Fromblin oil and placed on a Rigaku Oxford Diffraction SuperNova diffractometer with a Dual source (Cu at zero) equipped with an AtlasS2 CCD area detector. The crystal was kept at 150(2) K during data collection. Using Olex2 [1], the structure was solved with the ShelXT [2] structure solution program using Direct Methods and refined with the ShelXL [3] refinement package using Least Squares minimisation.

11 Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341. 12 Sheldrick, G.M. (2015). Acta Cryst. A71, 3-8.

13 Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8.

Crystal Data for C₃₀H₃₉F₂INPPt (*M*=804.58 g/mol): monoclinic, space group P2₁/c (no. 14), *a* = 17.9485(2) Å, *b* = 12.31107(18) Å, *c* = 13.88543(18) Å, β = 110.0913(15)°, *V* = 2881.48(7) Å³, *Z* = 4, *T* = 150(2) K, μ (MoK α) = 6.029 mm⁻¹, *Dcalc* = 1.855 g/cm³, 56183 reflections measured (6.454° $\leq 2\Theta \leq 69.214°$), 11614 unique (*R*_{int} = 0.0429, R_{sigma} = 0.0369) which were used in all calculations. The final R_1 was 0.0295 (I > 2 σ (I)) and wR_2 was 0.0652 (all data).

Table 521 Crystal data and structure refinement for ps5	
Identification code	ps35
Empirical formula	C ₃₀ H ₃₉ F ₂ INPPt
Formula weight	804.58
Temperature/K	150(2)
Crystal system	monoclinic
Space group	P21/c
a/Å	17.9485(2)
b/Å	12.31107(18)
c/Å	13.88543(18)
α/°	90
β/°	110.0913(15)
γ/°	90
Volume/Å ³	2881.48(7)
Z	4
$\rho_{calc}g/cm^3$	1.855
µ/mm ^{•1}	6.029
F(000)	1560.0
Crystal size/mm ³	$0.2 \times 0.2 \times 0.18$
Radiation	MoKa ($\lambda = 0.71073$)
20 range for data collection/°	6.454 to 69.214
Index ranges	$-28 \le h \le 27, -18 \le k \le 16, -22 \le l \le 21$
Reflections collected	56183
Independent reflections	11614 [$R_{int} = 0.0429$, $R_{sigma} = 0.0369$]
Data/restraints/parameters	11614/0/329
Goodness-of-fit on F ²	1.067
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0295$, $wR_2 = 0.0571$
Final R indexes [all data]	$R_1 = 0.0470$, $wR_2 = 0.0652$
Largest diff. peak/hole / e Å ⁻³	2.00/-1.34

Table S22 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for ps35. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	У	z	U(eq)
C1	8694.7(15)	4860(2)	5428(2)	23.6(5)
I1	7624.1(2)	4329.8(2)	1955.2(2)	26.70(4)
P1	7207.8(4)	3406.6(6)	4164.3(6)	22.66(14)
Pt1	7962.1(2)	4776.0(2)	3966.2(2)	19.71(3)
C2	8765.5(16)	4174(3)	6261(2)	28.8(6)
C3	9434.9(17)	4213(3)	7122(2)	30.3(6)
C5	10004.8(16)	5597(3)	6438(2)	28.7(6)
C6	9339.4(16)	5583(2)	5542(2)	23.7(5)
F3	9488.7(11)	3500.7(19)	7894.3(15)	43.4(5)
C4	10060.7(17)	4904(3)	7242(2)	31.5(7)
C7	9274.8(15)	6310(2)	4686(2)	23.1(5)
N7	8578.4(13)	6226.2(19)	3890.1(17)	21.8(4)
C8	9842.0(17)	7070(3)	4654(3)	30.0(6)
C9	9680.2(19)	7755(3)	3830(3)	34.0(7)
C10	8935.6(18)	7744(3)	3076(3)	31.5(6)
C11	8380.9(17)	6979(2)	3128(2)	25.4(6)
C12	7539.4(17)	7045(2)	2442(2)	26.5(6)
C13	7310.2(19)	7183(2)	1379(2)	30.5(6)
C13A	7887(2)	7173(3)	809(3)	40.6(8)
C14	6505(2)	7267(3)	819(3)	37.3(8)
C15	5962.1(19)	7214(3)	1308(3)	38.6(8)
F15	5176.0(12)	7310(2)	734.8(19)	57.8(7)
C16	6163.9(19)	7084(3)	2339(3)	35.9(7)
C17	6968.2(17)	6998(3)	2914(2)	29.8(6)
C18	6316.4(16)	3160(3)	3049(2)	28.7(6)
C19	5731.0(17)	4097(3)	2713(3)	32.6(7)
C20	5161.7(18)	3957(3)	1614(3)	35.7(7)
C21	4487(2)	4784(3)	1288(3)	49.8(10)
C22	6796.7(17)	3557(2)	5196(2)	26.8(6)
C23	6601.2(18)	4711(3)	5418(3)	29.9(6)
C24	6252(2)	4761(3)	6287(3)	35.6(7)
C25	5532(2)	4047(3)	6119(3)	38.7(8)
C26	7645.0(18)	2054(3)	4430(2)	29.5(6)
C27	7933.6(19)	1587(3)	3611(3)	32.1(7)
C28	8121(2)	368(3)	3761(3)	36.3(7)
C29	8806(2)	118(3)	4725(3)	39.5(8)

Atom	U ₁₁	U_{22}	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C1	19.8(11)	29.9(15)	20.6(12)	-3.9(11)	6.1(9)	2.7(10)
I1	34.13(9)	25.16(10)	20.03(8)	-3.75(7)	8.31(7)	-4.62(7)
P1	20.2(3)	22.9(4)	23.8(3)	-0.2(3)	6.2(3)	0.7(2)
Pt1	18.46(4)	21.38(6)	18.17(5)	-1.93(4)	4.84(3)	-0.08(3)
C2	21.0(12)	42.5(19)	20.9(13)	2.3(12)	4.5(10)	3.2(11)
C3	28.5(14)	44(2)	17.7(12)	1.3(12)	7.6(10)	5.8(12)
C5	22.2(12)	34.5(17)	25.8(14)	-7.1(12)	3.6(10)	0.9(11)
C6	22.5(12)	25.7(15)	22.1(12)	-6.5(10)	6.7(10)	2(1)
F3	38.5(10)	63.0(15)	25.0(9)	13.5(9)	6.2(8)	1.4(9)
C4	24.3(13)	45(2)	21.0(13)	-7.4(12)	1.6(10)	5.3(12)
C7	22.3(12)	24.9(15)	22.3(12)	-10.4(10)	8.1(10)	-0.4(10)
N7	22.1(10)	21.0(12)	21.2(10)	-4.7(9)	6.0(8)	-0.6(8)
C8	24.3(13)	30.2(17)	33.8(15)	-7.5(12)	7.9(11)	-2.7(11)
C9	33.4(15)	28.3(18)	41.8(18)	-4.9(14)	14.8(13)	-7.9(12)
C10	35.3(15)	25.2(17)	33.8(16)	-0.9(12)	11.7(13)	-4.6(12)
C11	30.4(13)	21.7(15)	24.3(13)	-2.9(11)	9.8(11)	1.4(10)
C12	29.8(13)	19.7(14)	25.9(13)	1.1(11)	4.4(11)	3.1(10)
C13	42.2(16)	18.8(15)	27.3(14)	2.2(11)	8.0(12)	0.8(12)
C13A	51(2)	40(2)	29.4(16)	7.1(14)	12.3(15)	-1.0(15)
C14	44.5(18)	28.2(18)	29.5(16)	6.1(13)	0.1(13)	0.8(13)
C15	31.1(15)	31.4(19)	42.9(19)	3.3(14)	-0.7(14)	6.0(13)
F15	33.9(11)	65.6(16)	56.7(15)	11.1(12)	-6.4(10)	8.5(10)
C16	30.7(15)	32.3(18)	41.6(19)	-1.1(14)	8.5(13)	5.2(12)
C17	30.7(14)	25.5(16)	29.8(15)	-3.5(12)	6.1(12)	5.0(11)
C18	23.3(12)	28.9(17)	30.4(15)	-0.1(12)	4.8(11)	-4.7(11)
C19	25.1(13)	34.7(19)	33.0(16)	-3.1(13)	3.4(12)	2.3(11)
C20	30.5(15)	40(2)	30.9(16)	-0.4(14)	2.7(12)	-0.6(13)
C21	40.7(19)	48(2)	46(2)	-1.6(18)	-4.8(16)	7.5(16)
C22	25.5(13)	26.7(16)	28.7(14)	1.3(11)	10.1(11)	1.8(10)
C23	31.6(14)	26.2(16)	34.4(16)	0.0(12)	14.7(12)	2.2(11)
C24	44.1(18)	33.9(19)	33.0(16)	-2.2(14)	18.8(14)	4.4(14)
C25	36.9(17)	43(2)	43.3(19)	6.8(15)	22.3(15)	4.0(14)
C26	33.0(14)	27.3(16)	29.4(15)	2.0(12)	12.2(12)	4.2(12)
C27	40.0(16)	29.0(17)	29.1(15)	0.2(12)	14.3(13)	4.3(13)
C28	41.9(17)	30.3(19)	34.1(17)	-3.8(13)	9.6(14)	8.3(13)
C29	41.3(18)	34.2(19)	40.6(19)	-1.1(15)	10.9(15)	11.1(14)

 $Table \ S23 \ Anisotropic \ Displacement \ Parameters \ (\AA^2 \times 10^3) \ for \ ps35. \ The \ Anisotropic \ displacement \ factor \ exponent \ takes the \ form: \ -2\pi^2 [h^2 a^{\star 2} U_{11} + 2hka^{\star} b^{\star} U_{12} + \ldots].$

Table S24	Bond Leng	ths for ps35	•				
Atom	Atom	Length/Å		Ator	n	Atom	Length/Å
C1	Pt1	2.007(3)	C10		C11	1.390(4)
C1	C2	1.402(4)	C11		C12	1.486(4)
C1	C6	1.425(4)	C12		C13	1.400(4)
I1	Pt1	2.7024(2)	C12		C17	1.395(4)
P1	Pt1	2.2374(3)	C13		C13A	1.504(5)
P1	C18	1.830(3)	C13		C14	1.390(4)
P1	C22	1.833(3)	C14		C15	1.367(5)
P1	C26	1.823(3)	C15		F15	1.366(4)
Pt1	N7	2.122(2)	C15		C16	1.360(5)
C2	C3	1.374(4)	C16		C17	1.393(4)
C3	F3	1.363(4)	C18		C19	1.521(4)
C3	C4	1.373(5)	C19		C20	1.527(4)
C5	C6	1.397(4)	C20		C21	1.526(5)
C5	C4	1.381(5)	C22		C23	1.519(4)
C6	C7	1.461(4)	C23		C24	1.539(4)
C7	N7	1.358(3)	C24		C25	1.514(5)
C7	C8	1.395(4)	C26		C27	1.516(4)
N7	C11	1.359(4)	C27		C28	1.536(5)
C8	C9	1.370(5)	C28		C29	1.506(5)
C9	C10	1.386(4)				,
T.L. 625	D 1 4 1						
Table S25	Bond Angl	es for ps55.	Amolo/°			A 40m	
Atom	Atom	Atom	Angle/		Atom C11	Aton N7	n Atom
C2 C2			130.2(2)			IN /	
C2		C0	110.4(2)		C9		C/
C6		Pt1	111./(2)			C9 C10	C10
C18	PI D1	PtI	114.26(11)		C9	C10	CII
C18	PI	C22	102.05(14)		IN /		C10
C22	PI	PtI	116.29(10)		N/	CII	C12
C26	PI	PtI	118.45(10)		C10	CII	C12
C26	PI	C18	102.15(15)		C13	C12	CII
C26	PI	C22	101.24(14)		CI7	C12	CII
Cl	Pt1	11	153.15(8)		C17	C12	C13
C1	Pt1	P1	97.38(9)		C12	C13	C13A
C1	Pt1	N7	80.52(11)		C14	C13	C12
P1	Pt1	I1	92.48(2)		C14	C13	C13A
N7	Pt1	I1	93.17(6)		C15	C14	C13
N7	Pt1	P1	171.06(6)		F15	C15	C14
C3	C2	C1	120.1(3)		C16	C15	C14
F3	C3	C2	117.8(3)		C16	C15	F15

Angle/° 127.71(18) 119.5(3)

 119.8 (3)

 119.3 (3)

 120.2 (3)

 118.2 (3)

 121.2 (3)

 123.3 (3)

 116.5 (3)

 120.2 (3)

 123.2 (3)

 118.1 (3)

 120.0 (3)

 128.5 (3)

 123.4 (3)

118.1(3)

F3 C4 C4 C1 C5 C5 C3 N7 N7 C8 C7 C7	C3 C3 C5 C6 C6 C6 C4 C7 C7 C7 C7 N7 N7	C4 C2 C6 C7 C1 C7 C5 C6 C8 C6 Pt1 C11	118.0(3) 124.2(3) 120.9(3) 117.2(2) 121.3(3) 121.4(3) 117.1(3) 114.2(2) 120.2(3) 125.6(3) 111.91(19) 120.2(2)		C15 C16 C19 C18 C21 C23 C22 C25 C25 C27 C26 C29		216 117 118 119 220 222 23 224 226 227 228	C17 C12 P1 C20 C19 P1 C24 C23 P1 C28 C27	117.5(3) 120.8(3) 116.4(2) 112.1(3) 114.3(3) 115.9(2) 112.4(3) 114.3(3) 115.4(2) 112.6(3) 113.2(3)
Table A C1 C1 C1 C1 C1 C1 C1 C1 C1 P1 Pt1 C2 C2 C5 C5 C6 C6 C6 C6 C6 C6 C7 C7 C7 N7	S26 Torsi B C C2 C C2 C C2 C C4 C C2 C C4 C C5 C C1 C C1 C C1 C C1 C C1 C C1 C C3 C C4 C C5 C C7 N C7 C C3 C C5 C C7 N C7 C C3 C C5 C N7 C C5 C N7 C C5 C N7 C C5 C N7 C C8 C C7 C	$\begin{array}{c cccc} \text{on Angles for } \\ & \mathbf{D} \\ 3 & F3 \\ 3 & C4 \\ 7 & N7 \\ 7 & C8 \\ 19 & C20 \\ 23 & C24 \\ 27 & C28 \\ 2 & C3 \\ 6 & C5 \\ 6 & C7 \\ 18 & C19 \\ 22 & C23 \\ 26 & C27 \\ 11 & C10 \\ 11 & C12 \\ 6 & C5 \\ 6 & C7 \\ 4 & C5 \\ 7 & N7 \\ 7 & C8 \\ 2 & C3 \\ 4 & C3 \\ 7 & Pt1 \\ 7 & C11 \\ 8 & C9 \\ 4 & C5 \\ 6 & C1 \\ 11 & C12 \\ 9 & C10 \\ 11 & C12 \\ 9 & C10 \\ 8 & C9 \\ \end{array}$	or ps35. Angle? -177.5(3) 0.7(5) 2.4(4) -179.9(3) 161.7(2) 179.5(2) -167.2(2) 162.9(2) -166.4(2) 13.8(3) -60.0(3) 32.4(2) -60.8(3) -164.8(2) 22.6(4) 0.3(4) -179.6(3) -0.1(5) -177.5(3) 0.2(4) -0.8(4) -0.8(4) -0.8(4) -164.8(2) 168.4(2) -175.4(3) 178.1(3) 0.3(4) -179.8(3) 9.6(4) -163.0(3) 4.9(5) 2.2(4)		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} C \\ C12 \\ C12 \\ N7 \\ N7 \\ C10 \\ C11 \\ C11 \\ C12 \\ C12 \\ C13 \\ C13 \\ C17 \\ C16 \\ C17 \\ C15 \\ C15 \\ C14 \\ C16 \\ C17 \\ C16 \\ C13 \\ C22 \\ C26 \\ C20 \\ C18 \\ C22 \\ C28 \\ \end{array}$	D C13 C17 Pt1 C11 C11 C11 N7 C12 C13 C17 C13A C14 C16 C15 C16 C15 C16 C15 C16 C15 C17 C13A C14 C23 C27 C21 C17 C13A C17 C12 C12 C13 C17 C12 C17 C13 C16 C15 C16 C17 C12 C17 C12 C17 C12 C17 C12 C17 C12 C17 C13 C17 C12 C2 C17 C12 C2 C17 C2 C2 C19 C27 C22 C27 C22 C27 C22 C27 C22 C27 C22 C27 C22 C27 C22 C27 C22 C27 C22 C27 C22 C27 C22 C27 C22 C27 C22 C27 C22 C22	Angle -138 44.0 165. -9.4 -4.8 -2.4 169. 49.4 -128 6.0(-178 178. 0.0(176. -0.3 0.0(176. -0.3 0.0(-179 -176 -0.2 -92. 65.7 171. 66.4 170. 162. -65.	f° .1 (3) (4) 7 (2) (4) (5) (5) 9 (3) (4) .5 (3) 5) .0 (3) 1 (3) (5) 5) .4 (3) (5) 5) .4 (3) (5) 5) .4 (3) (2 (3) (4) 6 (2) (3) 8 (2) 7 (4) 8 (2) 2 (2) 2 (4)
Atom H2 H5 H4 H9 H10 H13A H13B H13C H14 H16 H17 H18A H18B	835 104 105 103 100 880 802 764 837 633 577 713 648 603 648	x 0 25 12 37 77 6 2 6 0 2 2 1 0 4 5 5	3681 6091 4906 7113 8237 8253 7921 6805 6786 7362 7054 6906 2958 2528	y 6230 6495 7852 5200 3776 2529 691 149 1215 97 2655 3636 2464 3201 	Ζ	U(eq) 35 34 38 36 41 38 61 61 61 45 43 36 34 34 34			
H19A H19B H20A H20B H21A H21B H21C H22A H22B H23A H23B	. 602 542 546 493 418 470 413 630 718 621 709	8 2 7 0 3 8 9 7 1 5 0	4785 4145 4013 3219 4692 5520 4672 3117 3251 5026 5156	2766 3180 1143 1539 557 1408 1689 5020 5832 4787 5610		39 39 43 43 75 75 75 32 32 36 36			

H24A	6669	4545	6936	43
H24B	6105	5523	6364	43
H25A	5132	4213	5452	58
H25B	5311	4182	6663	58
H25C	5688	3282	6136	58
H26A	8098	2081	5084	35
H26B	7246	1552	4528	35
H27A	8417	1981	3622	39
H27B	7522	1703	2930	39
H28A	7644	-20	3783	44
H28B	8245	92	3164	44
H29A	9280	501	4711	59
H29B	8906	-667	4769	59
H29C	8677	356	5323	59

Refinement model description

Number of restraints - 0, number of constraints - unknown. Details:

1. Fixed Uiso

At 1.2 times of:

All C(H) groups, All C(H,H) groups

All C(H) groups, All C(H,H) groups At 1.5 times of: All C(H,H,H) groups 2.a Secondary CH2 refined with riding coordinates: Cl8(H18A,H18B), C19(H19A,H19B), C20(H20A,H20B), C22(H22A,H22B), C23(H23A, H23B), C24(H24A,H24B), C26(H26A,H26B), C27(H27A,H27B), C28(H28A,H28B) 2.b Aromatic/amide H refined with riding coordinates: C2(H2), C5(H5), C4(H4), C8(H8), C9(H9), C10(H10), C14(H14), C16(H16), C17(H17) 2.c Idealised Me refined as rotating group: C13A(H13A,H13B,H13C), C21(H21A,H21B,H21C), C25(H25A,H25B,H25C), C29(H29A,H29B, H29C) H29C)

This report has been created with Olex2, compiled on 2016.02.19 svn.r3266 for OlexSys. Please let us know if there are any errors or if you would like to have additional features.

Figure SI7 Solid state structure of ps19 with only key atoms labeled. Thermal ellipsoids drawn at 50% probability level

Figure SI8 Bond lengths in the structure of Me-1-Pr

Figure SI9 Bond angles in the structure of Me-1-Pr

Crystal structure determination of [ps19]

The asymmetric unit contains the Pt complex, there are four in the unit cell. The ligand has a slight bevel. Difficult to find a way of defining this.

Plan A

Define mean planes through the three aromatic systems and the angles between them. This is detailed below by atoms used to define mean plane and the angle between them and the next defined mean plane

C1 C2 C3 C4 C5 C6 to C7 N7 C8 C9 C10 C11 angle 6.784 (0.365) degrees

C7 N7 C8 C9 C10 C11 to C12 C13 C14 C15 C16 C17 angle 8.229 (0.375) degrees

Plan B

Define mean plane through chelated atoms on Pt1 (with associated distances of relevant atoms out of this mean plane) then define the angle between this mean plan and mean planes through the aromatic rings

Mean plane of Pt1 and atoms attached to Pt1 and deviations of those atoms from mean plane

* 0.0778 (0.0027) C1

* -0.1027 (0.0029) N7

* 0.0822 (0.0028) C17

* -0.0678 (0.0018) P1

* 0.0105 (0.0019) Pt1

Rms deviation of fitted atoms = 0.0749

Angle between mean planes through the aromatic rings and the above mean plane are -C1 C2 C3 C4 C5 C6 to C1 N7 C17 P1 Pt1 angle 8.577 (0.325) degrees C7 N7 C8 C9 C10 C11 to C1 N7 C17 P1 Pt1 angle 11.522 (0.316) degrees C12 C13 C14 C15 C16 C17 to C1 N7 C17 P1 Pt1 angle 11.130 (0.329) degrees

There is some possible pi stacking described by angle between mean planes through the aromatic systems involved and closest atomic contact. The interaction is quite off-set

Several types of possible pi stacking

One between the concave surfaces of the ligand (reasonable) and one a bit longer between the convex surfaces of the ligand with little overlap (view via Mercury). There is also an overlap between ring C1-C6 and a symmetry related C1-C6 ring between just the ends of symmetry related complexes.

Concave pi stacking Angle between mean planes through interacting Pi systems is zero as interaction occurs across an inversion centre. Closest atomic contact C5 - C3_\$2 3.3539 (0.0093)

Convex pi stacking

Angle between mean planes through interacting Pi systems is zero as interaction occurs across an inversion centre. Closest atomic contact C12 - C10_\$1 3.5293 (0.0091)

C1-C6 ring interaction Angle between mean planes through interacting Pi systems is zero as interaction occurs across an inversion centre. Closest atomic contact C5 - C11 \$3 3.3911 (0.0087)

Further information on pi stacking from Olex2 (it has only considered the concave interaction and the end ring interaction) For plane C2-C3-C4-C5-C6-C1 C2-C3-C4-C5-C6-C1@3_556 (-X,-Y,1-Z) angle: 0.000, centroid-centroid distance: 3.716, shift distance 1.619 (the end ring interaction) N7-C11-C10-C9-C8-C7@3_566 (-X,1-Y,1-Z) angle: 6.840, centroid-centroid distance: 3.672, shift distance 0.946 (the concave interaction) For plane C17-C16-C15-C14-C13-C12 No interactions found For plane N7-C11-C10-C9-C8-C7 No interactions found

Additionally, there could be some sort of interaction between the C18 methyl hydrogens and the Pt of a symmetry related complex tabulated below Pt1 - H18A \$1 3.1775 Pt1 - C18 \$14.0701 (0.0092)

It's a bit long and offset but for consideration. Care here as the hydrogens are placed at calculated positions (a bit close to the Pt to try finding them and doing a free refinement)

Symmetry operators used to define symmetry related atoms in above discussions were \$1 1-X,1-Y,1-Z \$2 -X,-Y,1-Z

\$3 -X,1-Y,1-Z

Experimental

Single crystals of C₂₇H₃₂F₂NPPt **[ps19]** were grown from deuterated chloroform. A suitable crystal was selected and mounted on a Mitegen loop with Fromblin oil and placed on an Xcalibur Gemini diffractometer with a Ruby CCD area detector. The crystal was kept at 150(2) K during data collection. Using Olex2 [1], the structure was solved with the ShelXT [2] structure solution program using Direct Methods and refined with the XL [3] refinement package using Least Squares minimisation. 14 Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341. 15 Sheldrick, G.M. (2015). Acta Cryst. A71, 3-8. 16 Sheldrick, G.M. (2008). Acta Cryst. A64, 112-122.

Crystal Data for $C_{27}H_{32}F_2NPPt$ (M=634.59 g/mol): monoclinic, space group P2₁/c (no. 14), a = 9.9623(3) Å, b = 9.2215(3) Å, c = 27.2996(8) Å, β = 100.217(3)°, V = 2468.17(14) Å³, Z = 4, T = 150(2) K, μ (MoK α) = 5.780 mm⁻¹, Dcalc = 1.708 g/cm³, 24451 reflections measured (4.688° $\leq 2\Theta \leq 65.326^{\circ}$), 8370 unique ($R_{int} = 0.0602$, $R_{sigma} = 0.0681$) which were used in all calculations. The final R_1 was 0.0535 (I > 2σ (I)) and wR_2 was 0.1525 (all data).

Table S28 Crystal data and structure refinement for ps19.

Identification code	ps19
Empirical formula	$C_{27}H_{32}F_2NPPt$
Formula weight	634.59
Temperature/K	150(2)
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	9.9623(3)
b/Å	9.2215(3)
c/Å	27.2996(8)
α/°	90
β/°	100.217(3)
γ/°	90
Volume/Å ³	2468.17(14)
Z	4
$\rho_{calc}g/cm^3$	1.708
µ/mm ⁻¹	5.780
F(000)	1248.0
Crystal size/mm ³	$0.4 \times 0.08 \times 0.03$ yellow block
Radiation	MoK α ($\lambda = 0.71073$)
20 range for data collection/°	4.688 to 65.326
Index ranges	$-15 \le h \le 13, -13 \le k \le 13, -41 \le l \le 39$
Reflections collected	24451
Independent reflections	$8370 [R_{int} = 0.0602, R_{sigma} = 0.0681]$
Data/restraints/parameters	8370/0/293
Goodness-of-fit on F ²	1.155
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0535$, $wR_2 = 0.1316$
Final R indexes [all data]	$R_1 = 0.0811, wR_2 = 0.1525$
Largest diff. peak/hole / e Å ⁻³	1.72/-3.42

Table S29 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for ps19. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	у	z	U(eq)
Pt1	2409.3(2)	3746.1(2)	5890.3(2)	23.50(8)
C1	769(6)	2449(6)	5589(2)	24.3(12)
P1	2917.7(18)	2918.9(19)	6668.7(6)	28.0(3)
C2	-79(7)	1503(7)	5796(3)	33.4(15)
C3	-1144(7)	814(7)	5503(3)	33.2(15)
F3	-1888(4)	-138(5)	5735.1(19)	52.2(12)
C4	-1505(8)	1017(7)	4997(3)	36.4(16)
C5	-738(6)	1980(7)	4778(3)	31.5(14)
C6	395(6)	2682(6)	5064(2)	26.5(13)
C7	1207(7)	3719(6)	4839(2)	26.3(12)
N7	2137(5)	4431(5)	5174.0(18)	21.6(10)
C8	1132(8)	4020(7)	4334(3)	34.3(15)
C9	2009(9)	5018(8)	4194(3)	40.8(17)
C10	2946(8)	5715(8)	4542(3)	36.6(16)
C11	3022(6)	5432(7)	5045(2)	27.0(12)
C12	3932(7)	6064(6)	5485(3)	28.6(13)
C13	4802(7)	7267(7)	5457(3)	34.0(15)
C14	5544(7)	7804(8)	5893(3)	39.5(17)
F15	6114(5)	7806(6)	6765.9(18)	61.7(14)
C15	5401(8)	7225(8)	6339(3)	40.6(17)
C16	4589(8)	6047(8)	6377(3)	37.6(16)
C17	3814(6)	5391(6)	5955(2)	26.6(12)
C18	5038(9)	7983(8)	4965(3)	48(2)
C19	2303(9)	1124(7)	6844(3)	40.0(17)
C20	2652(9)	-142(9)	6545(4)	51(2)

C21	1948(12	2)	-1534(10)		6681(4)		67(3)	
C22	2260(7)		4103(8)		7111(2)		34.1(15)	
C23	713(8)		4325(9)		6961(3)		42.1(17)	
C24	112(9)		5351(10)		7295(3)		53(2)	
C24	1770/7)		3331(10)		(017)	2)		27 5 (10)	
C25	4//0(/)		2720(0)		6917(5)		37.3(10)	
C26	55/9(/)		2248(9)		6523(3)		43.9(18)	
C27	7088(8)		2056(12)		6738(4)		62(3)	
Table S30	Anisotropie	: Displacem	ent Parameters (Å ² ×10 ³) fo	or ps19. The Anis	otropic disp	olacement fac	ctor exponent	takes	
the form:	$-2\pi^{2}[h^{2}a^{*2}U]$	11+2ĥka*b*l	J ₁₂ +].	•			-		
Atom	II.		Un	Un		Un		II.,	U.,
Pt1	23 56/11	31	24 94(14)	22 15(12)		1 30 (8)		1 19(9)	-1 35(9)
Cl	23.30(1.))	24.94(14)	22.13(12)		1.30(0)		2.(2)	-1.33(3)
	21(3)		19(3)	33(3)		-3(2)		3(Z)	-1(2)
P1	27.2(8)		32.7(8)	24.1(8)		5.0(6)		4.8(6)	0.7(7)
C2	34(4)		31(3)	36(4)		-1(3)		9(3)	1(3)
C3	27(3)		25(3)	47(4)		3(3)		8(3)	-4(3)
F3	38(2)		52(3)	68(3)		0(2)		14(2)	-24(2)
C4	26(3)		30(4)	51(4)		-7(3)		1(3)	1(3)
C5	26(3)		26(3)	39(4)		-6(3)		-3(3)	1(3)
C5	20(3)		17(2)	21 (2)		2(2)		5(3)	7(2)
07	32(3)		17(3)	31(3)		-3(2)		0(3)	7(2)
C7	28(3)		23(3)	28(3)		3(2)		5(2)	9(2)
N7	28(3)		13(2)	24(2)		3.2(17)		6(2)	1.5(19)
C8	43(4)		33(3)	25(3)		1(2)		3(3)	1(3)
C9	59(5)		43(4)	21(3)		7(3)		8(3)	6(4)
C10	40(4)		36(4)	37(4)		13(3)		15(3)	4(3)
C11	22(3)		25(3)	34(3)		4(2)		8(3)	0(2)
C12	26(3)		23(3)	38(3)		2(2)		8(3)	-1(2)
C13	28(3)		27(3)	49(4)		4(3)		11(3)	-2(3)
C13	20(3)		27(3)	4)(4)		4(3)		11(3)	-2(3)
C14	29(4)		34(4)	56(5)		3(3)		8(3)	-14(3)
FIS	66(3)		/0(3)	45(3)		-15(2)		-2(2)	-34(3)
C15	35(4)		44(4)	40(4)		-6(3)		0(3)	-11(3)
C16	38(4)		43(4)	32(4)		-1(3)		3(3)	-3(3)
C17	29(3)		20(3)	30(3)		-1(2)		6(3)	-5(2)
C18	53(5)		33(4)	60(5)		13(4)		13(4)	-11(4)
C19	43(4)		33(4)	44(4)		9(3)		9(3)	-6(3)
C20	53(5)		43(4)	61(6)		17(4)		19(4)	10(4)
C21	90(8)		15(1)	72(7)		10(4)		27(6)	-9(5)
C21	26(4)		43(3)	10(2)		10(4)		27(0)	-5(3)
C22	30(4)		4/(4)	19(3)		-3(2)		4(3)	-6(3)
C23	35(4)		50(4)	39(4)		-10(3)		3(3)	10(3)
C24	45(5)		59(5)	60(6)		-18(4)		22(4)	2(4)
C25	33(4)		51(4)	29(3)		10(3)		7(3)	6(3)
C26	27(4)		58(5)	46(5)		15(4)		6(3)	5(3)
C27	29(4)		100(8)	56(6)		31(5)		10(4)	14(5)
	. ,			. ,		. ,		. ,	. ,
Tabla \$31	Rond Long	the for nelQ							
A tom	A tom	I snoth / Å				A 40 mm	Law ath / Å		
Atom	Atom	Length/A			Atom	Atom	Length/A		
PtI	CI	2.0/4(6)			C8	09	1.369(11)		
PtI	PI	2.2298(1	.6)		C9	C10	1.369(11)		
Pt1	N7	2.027(5)			C10	C11	1.388(9)		
Pt1	C17	2.050(6)			C11	C12	1.488(9)		
C1	C2	1.402(9)			C12	C13	1.418(9)		
C1	C6	1.430(9)			C12	C17	1.448(9)		
P1	C19	1.857(7)			C13	C14	1.378(10)		
P1	C22	1 833(7)			C13	C18	1 553(11)		
D1	C25	1 858(7)			C14	C15	1 360(11)		
	C25	1.000(7)			C14	C15 C15	1.300(11)		
C2	C3	1.300(10			F15		1.362(0)		
03	F3	1.3/3(8)			015	C16	1.369(10)		
C3	C4	1.377(11	.)		C16	C17	1.405(9)		
C4	C5	1.377(10)		C19	C20	1.501(11)		
C5	C6	1.411(9)			C20	C21	1.539(12)		
C6	C7	1.457(9)			C22	C23	1.536(10)		
C7	N7	1.351(8)			C23	C24	1.509(10)		
C7	C8	1.395(9)			C25	C26	1.521(10)		
N7	C11	1 364 (9)			C26	C27	1 524(10)		
1N/	011	1.004(0)			020	C27	±•J24(10)		
Tabl. 022	Dand 4	for							
1 able 832	Bond Angle	es for ps19.	A 1 /8				• .	• • 10	
Atom	Atom	Atom	Angle/		Aton	n Atom	Atom	Angle/	
Cl	Ptl	P1	102.18(18)		C7	N7	C11	123.4(5)	
N7	Pt1	C1	80.5(2)		C11	N7	Pt1	118.5(4)	
N7	Pt1	P1	174.21(15)		C9	C8	C7	119.0(7)	
N7	Pt1	C17	79.9(2)		C10	C9	C8	120.8(7)	
C17	Pt1	C1	159.8(3)		C9	C10	C11	120.7(7)	
C17	Pt1	P1	97.78(18)		N7	C11	C10	117.3(6)	
~ . /	· · ·				± • /	011	010		
C^2	C1	Pt1	133 4(5)		N7	C11	C12	112 7(5)	
C2 C2	C1	Pt1 C6	133.4(5)		N7	C11	C12	112.7(5)	

C6	C1	Pt1	111.0(4)	C13	C12	C11	123.6(6)
C19	P1	Pt1	121.4(3)	C13	C12	C17	121.9(6)
C19	P1	C25	99.9(4)	C17	C12	C11	114.4(5)
C22	P1	Pt1	112.1(2)	C12	C13	C18	124.6(7)
C22	P1	C19	100.9(4)	C14	C13	C12	118.3(7)
C22	P1	C25	105.3(3)	C14	C13	C18	117.1(6)
C25	P1	Pt1	115.1(2)	C15	C14	C13	120.5(6)
C3	C2	C1	120.9(7)	C14	C15	F15	119.3(7)
C2	C3	F3	116.9(7)	C14	C15	C16	122.4(7)
C2	C3	C4	124.2(7)	F15	C15	C16	118.3(7)
F3	C3	C4	118.9(6)	C15	C16	C17	121.7(7)
C5	C4	C3	117.2(6)	C12	C17	Pt1	113.7(4)
C4	C5	C6	120.5(7)	C16	C17	Pt1	131.0(5)
C1	C6	C7	117.1(5)	C16	C17	C12	115.0(6)
C5	C6	C1	121.7(6)	C20	C19	P1	115.7(6)
C5	C6	C7	121.1(6)	C19	C20	C21	111.0(8)
N7	C7	C6	113.5(5)	C23	C22	P1	111.3(5)
N7	C7	C8	118.9(6)	C24	C23	C22	114.2(7)
C8	C7	C6	127.6(6)	C26	C25	P1	112.7(5)
C7	N7	Pt1	117.4(4)	C25	C26	C27	111.8(7)

Table S33 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for ps19.

Atom	x	У	z	U(eq)
H2	88	1340	6145	40
H4	-2254	513	4807	44
H5	-972	2173	4431	38
H8	482	3539	4091	41
H9	1966	5229	3851	49
H10	3550	6400	4438	44
H14	6160	8585	5883	47
H16	4549	5662	6697	45
H18A	5419	7266	4763	72
H18B	5675	8795	5041	72
H18C	4167	8341	4780	72
H19A	2687	943	7199	48
H19B	1299	1169	6813	48
H20A	3653	-287	6609	61
H20B	2360	65	6186	61
H21A	963	-1458	6562	101
H21B	2126	-1660	7043	101
H21C	2307	-2370	6524	101
H22A	2464	3669	7447	41
H22B	2724	5055	7123	41
H23A	515	4701	6616	50
H23B	256	3372	6963	50
H24A	-883	5355	7200	80
H24B	464	6331	7260	80
H24C	366	5033	7642	80
H25A	5131	3669	7057	45
H25B	4899	2010	7191	45
H26A	5477	2980	6254	53
H26B	5206	1319	6376	53
H27A	7575	1749	6473	92
H27B	7195	1317	7000	92
H27C	7465	2978	6878	92

Refinement model description

Number of restraints - 0, number of constraints - unknown.

Details:

Details:
1. Fixed Uiso
At 1.2 times of:
All C(H) groups, All C(H,H) groups
At 1.5 times of:
All C(H,H,H) groups
2.a Secondary CH2 refined with riding coordinates:
C19(H19A,H19B), C20(H20A,H20B), C22(H22A,H22B), C23(H23A,H23B), C25(H25A,
H25B), C26(H26A,H26B)
2.b Aromatic/amide H refined with riding coordinates:
C2(H2), C4(H4), C5(H5), C8(H8), C9(H9), C10(H10), C14(H14), C16(H16)
2.c Idealised Me refined as rotating group:
C18(H18A,H18B,H18C), C21(H21A,H21B,H21C), C24(H24A,H24B,H24C), C27(H27A,H27B,
H27C) H27C)

This report has been created with Olex2, compiled on 2015.01.26 svn.r3150 for OlexSys. Please let us know if there are any errors or if you would like to have additional features.

Figure SI10 solid state structure of ps37 with only key atoms labeled and thermal ellipsoids at 50% probability level

Crystal structure determination of [ps37]

The asymmetric unit contains the complex, there are 4 in the unit cell.

Angle between mean planes through various pi systems to characterize some of the bond angles in the bis fluorophenylpyridine system

In the chelated fluorphenylpyridine Plane C1 C2 C3 C4 C5 C6 to plane N7 C11 C10 C9 C8 C7 is 9.770 (0.117) degrees

Between pyridine ring to dimethylated fluorophenyl ring Plane N7 C11 C10 C9 C8 C7 to plane C12 C13 C14 C15 C16 C17 is 64.907 (0.076) degrees

The chelate flurophenylpyridine ring is a little twisted (see above) and the Pt lies slightly outside this plane As a measure of this see the mean plane data below and how far the Pt lies outside this mean plane Mean plane through chelate fluorophenylpyridine ligand C1 C3 C5 N7 C8 C10 and how far Pt1 lies out of the plane

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

7.2721 (0.0027) x + 8.8397 (0.0125) y + 1.5906 (0.0120) z = 6.9680 (0.0054)

- * 0.0173 (0.0015) C1
- * 0.0978 (0.0016) C3
- * -0.0756 (0.0017) C5
- * -0.1499 (0.0015) N7
- * -0.0330 (0.0017) C8
- * 0.1436 (0.0016) C10
- -0.4505 (0.0025) Pt1

Rms deviation of fitted atoms = 0.0998

Similarly as a measure of how far the iodide is out of the plane formed by the other chelated atoms and Pt1

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane) 7.1038 (0.0040) x + 7.7981 (0.0062) y + 4.5290 (0.0199) z = 8.0890 (0.0119) * 0.0007 (0.0001) C1 * 0.0663 (0.0003) N7 * -0.1300 (0.0006) Pt1 * 0.0630 (0.0003) P1 -1.4930 (0.0029) I1

Rms deviation of fitted atoms = 0.0795

Probable pi stacking interaction between a chelated fluorophenylpyridine and a symmetry related chelated fluorophenylpyridine defined by atoms used to define the interacting systems, angles between these mean planes and closest atomic contact are Mean plane C1 C3 C5 N7 C8 C10 to mean plane C1_ $2 C3_2 C5_2 N7_2 C8_2 C10_2$ Angle between mean planes is zero because they are parallel related by another inversion centre Closest atomic contact is C5 - C7_2 3.3272 (0.0031)

There is also a possible interaction (but longer) on the other face of the fluorophenylpyridine ligand Plane C1 C2 C3 C4 C5 C6 to plane C1_\$1 C2_\$1 C3_\$1 C4_\$1 C5_\$1 C6_\$1 Angle between mean planes is zero because they are parallel related by an inversion centre Closest atomic contact is C1 - C3 \$1 3.6712 (0.0033) Angstroms

Symmetry operators used to generate equivalent atoms in above contacts were \$1 1-X,1-Y,1-Z \$2 -X,1-Y,1-Z

Some important bits

There is an A alert in the cif checker for a close contact between a hydrogen of a CH2 on the tris-propylphosphine to an H on the chelated fluorophenylpyridine ring

Alert level A

PLAT410_ALERT_2_A Short Intra H...H Contact H2 .. H21A .. 1.78 Ang.

I can see the electron density associated with these hydrogens in a difference density map and placing them at calculated positions puts them in the correct orientation relative to the observed electron density so I am happy the hydrogens are there and occupying the correct orientations.

I believe that this steric interaction comes about because the tri-propylphosphine has to adopt the best (?) angle in relation to the Pt1-I1 and Pt1-C1 bonds to stop the steric clash with the bonds between the P-C bonds to the propyl chains (P1-C18, P1-21 and P1-C24). I have tried to show this below but it ends up being cluttered.

Figure SI11 Picture looking very roughly down the P1-Pt1 bond trying to highlight how the P-C bonds of the trispropylphophine don't overlap with the Pt1-I1 and Pt1-C1 bonds. The clashing atoms H2 and H21A are labeled

I guess this must be the lowest energy orientation with respect to crystal packing forces?

Experimental

Single crystals of $C_{28}H_{35}F_2INPPt$ [ps37] were grown from chloroform (?). A suitable crystal was selected and mounted on a Rigaku Oxford Diffraction Xcalibur Gemini diffractometer with a CCD area detector. The crystal was kept at 150(2) K during data collection. Using Olex2 [1], the structure was solved with the ShelXT [2] structure solution program using Direct Methods and refined with the ShelXL [3] refinement package using Least Squares minimisation.

17 Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341. 18 Sheldrick, G.M. (2015). Acta Cryst. A71, 3-8.

19 Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8.

Crystal Data for C₂₈H₃₅F₂INPPt (*M*=776.53 g/mol): monoclinic, space group P2₁/c (no. 14), *a* = 8.56227(7) Å, *b* = 17.96588(15) Å, *c* = 18.24470(15) Å, β = 96.9421(8)°, *V* = 2785.98(4) Å³, *Z* = 4, *T* = 150(2) K, μ (MoK α) = 6.232 mm⁻¹, *Dcalc* = 1.851 g/cm³, 85124 reflections measured (4.792° ≤ 2 Θ ≤ 64.83°), 9618 unique (R_{int} = 0.0428, R_{sigma} = 0.0258) which were used in all calculations. The final R_1 was 0.0223 (I > 2 σ (I)) and wR_2 was 0.0437 (all data).

Table S34 Crystal data and structure refinement for ps3	37.
Identification code	ps37
Empirical formula	C ₂₈ H ₃₅ F ₂ INPPt
Formula weight	776.53
Temperature/K	150(2)
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	8.56227(7)
b/Å	17.96588(15)
c/Å	18.24470(15)
a/°	90
β/°	96.9421(8)
γ/°	90
Volume/Å ³	2785.98(4)
Z	4
$\rho_{calc}g/cm^3$	1.851
µ/mm ^{•1}	6.232
F(000)	1496.0
Crystal size/mm ³	$0.3 \times 0.3 \times 0.2$ orange block
Radiation	MoK α ($\lambda = 0.71073$)
20 range for data collection/°	4.792 to 64.83
Index ranges	$-12 \le h \le 12, -27 \le k \le 26, -27 \le l \le 27$
Reflections collected	85124
Independent reflections	9618 $[R_{int} = 0.0428, R_{sigma} = 0.0258]$
Data/restraints/parameters	9618/0/312
Goodness-of-fit on F ²	1.054
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0223$, $wR_2 = 0.0413$
Final R indexes [all data]	$R_1 = 0.0306$, $wR_2 = 0.0437$
Largest diff. peak/hole / e Å ⁻³	0.72/-0.84

Table S35 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for ps37. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{1J} tensor.

Atom	x	v	z	U(eq)
Pt1	2424.1(2)	4203.0(2)	6534.5(2)	15.68(2)
I1	510.6(2)	3647.6(2)	7482.6(2)	25.62(4)
P1	3798.6(7)	3136.1(3)	6641.8(3)	19.52(11)
C1	2892(2)	4527.9(12)	5529.4(11)	18.5(4)
C2	3602(3)	4137.7(13)	4994.8(12)	25.4(5)
C3	3458(3)	4379.7(14)	4274.7(13)	28.4(5)
C4	2636(3)	4998.5(14)	4027.7(12)	27.7(5)
C5	1924(3)	5398.0(13)	4537.5(11)	23.0(4)
F3	4154(2)	3958.5(10)	3783.8(8)	47.0(4)
C6	2041(2)	5178.5(12)	5279.1(11)	18.5(4)
C7	1338(3)	5609.7(12)	5827.5(11)	18.9(4)
N7	1500.4(19)	5305.9(9)	6517.6(9)	15.9(3)
C8	631(3)	6301.7(13)	5694.4(13)	28.5(5)
C9	153(3)	6703.3(14)	6267.8(13)	31.2(5)
C10	447(3)	6421.9(13)	6975.6(12)	25.1(5)
C11	1124(2)	5725.9(12)	7093.9(11)	18.0(4)
C12	1582(2)	5485.3(11)	7871.4(11)	17.3(4)
C13	434(2)	5393.2(12)	8350.8(11)	20.2(4)
C13A	-1307(3)	5407.6(15)	8092.7(12)	26.8(5)
C14	901(3)	5253.9(13)	9095.7(12)	24.8(5)
C15	2476(3)	5228.9(13)	9342.0(12)	27.3(5)
F15	2910.0(19)	5117.9(9)	10080.3(7)	40.7(4)
C16	3626(3)	5314.9(13)	8891.0(12)	26.0(5)
C17	3187(2)	5451.7(12)	8142.0(12)	19.8(4)
C17A	4446(3)	5584.7(14)	7648.1(14)	27.5(5)
C18	2762(3)	2324.6(12)	6221.1(13)	24.0(4)
C19	2447(3)	2343.5(14)	5381.0(14)	34.8(6)
C20	1620(4)	1654.5(16)	5053.9(16)	41.5(7)
C21	5745(3)	3122.6(13)	6318.8(13)	26.1(5)
C22	6601(4)	2386.3(16)	6377(2)	51.7(9)
C23	7986(3)	2361.8(16)	5934.3(17)	40.3(6)
C24	4310(3)	2845.5(14)	7601.6(12)	29.0(5)
C25	5182(4)	3430.6(17)	8097.6(15)	43.8(7)
C26	5647(6)	3134(2)	8875.4(18)	78.2(13)

Atom	U11	U_{22}	U ₃₃	U ₂₃	U ₁₃	U_{12}
Pt1	19.27(4)	13.93(4)	14.41(4)	1.25(3)	4.36(3)	1.32(3)
I1	32.57(8)	20.57(7)	26.30(7)	2.20(5)	14.13(6)	-1.88(6)
P1	23.3(3)	15.2(2)	20.7(3)	1.8(2)	5.2(2)	2.5(2)
C1	21(1)	19.4(10)	15.8(9)	1.9(8)	5.6(7)	-0.8(8)
C2	31.4(12)	23.0(11)	23.3(11)	0.7(9)	10.0(9)	3.2(9)
C3	38.7(13)	27.5(12)	21.7(11)	-3.4(9)	14.3(10)	-1.3(10)
C4	37.7(13)	28.9(12)	17(1)	2.3(9)	5.9(9)	-5.7(10)
C5	28.4(11)	22.0(11)	18.5(10)	2.6(8)	2.3(8)	-3.7(9)
F3	76.3(12)	44.2(10)	25.8(8)	-1.1(7)	28.0(8)	14.1(9)
C6	20.6(10)	18.5(10)	16.6(9)	1.3(8)	3.6(7)	-2.3(8)
C7	21.9(10)	17.9(10)	17.2(9)	2.5(8)	3.4(8)	-0.2(8)
N7	17.3(8)	15.5(8)	15.1(7)	1.0(6)	2.7(6)	0.7(6)
C8	40.1(14)	23.4(11)	22.1(11)	7.6(9)	4.5(10)	8.5(10)
C9	41.5(14)	22.9(12)	29.2(12)	5.1(9)	4.6(10)	14.6(10)
C10	31.2(12)	20.5(11)	24.3(11)	-0.9(9)	5.5(9)	7.8(9)
C11	18.2(9)	18.8(10)	17.6(9)	-0.5(7)	3.8(7)	0.9(8)
C12	19.3(9)	14.9(9)	17.6(9)	-1.9(7)	1.7(7)	1.7(7)
C13	20.9(10)	20.9(10)	18.9(9)	-1.7(8)	2.6(8)	1.3(8)
C13A	18.5(10)	38.8(14)	23.8(11)	-4(1)	5.7(8)	3.1(9)
C14	30.1(11)	27.1(12)	18.1(10)	1.1(9)	6.5(8)	-1.3(9)
C15	38.4(13)	24.3(12)	17.4(10)	3.5(9)	-3.9(9)	0.3(10)
F15	52.5(10)	48.2(10)	18.4(7)	6.5(6)	-8.2(6)	-2.6(8)
C16	23.4(11)	24.9(11)	27.3(11)	-1.3(9)	-5.9(9)	1.7(9)
C17	19.0(9)	16.1(10)	24.2(10)	-2.9(8)	1.8(8)	-0.5(8)
C17A	18.5(10)	30.9(12)	33.4(12)	-5.7(10)	5.1(9)	-2.0(9)
C18	26.0(11)	15(1)	32.0(12)	0.2(9)	7.3(9)	-0.3(8)
C19	48.1(16)	21.4(12)	33.5(13)	-0.4(10)	-0.8(11)	-3.6(11)
C20	54.5(18)	30.1(14)	39.4(15)	-4.5(12)	3.6(13)	-5.6(13)
C21	25.6(11)	20.4(11)	32.9(12)	4.1(9)	6.1(9)	4.0(9)
C22	35.8(15)	26.5(14)	98(3)	12.4(15)	30.5(16)	10.4(12)
C23	30.7(13)	34.6(15)	56.7(18)	-6.9(13)	9.4(12)	6.2(11)
C24	37.4(13)	24.6(12)	25.2(11)	5.0(9)	4.4(10)	8.6(10)
C25	56.4(19)	38.4(16)	32.8(14)	-2.9(12)	-9.7(13)	10.2(14)
C26	115(4)	80(3)	32.6(17)	3.1(18)	-19(2)	14(3)

Table S36 Anisotropic Displacement Parameters (Å²×10³) for ps37. The Anisotropic displacement factor exponent takes the form: $-2\pi^{2}[h^{2}a^{*2}U_{11}+2hka^{*}b^{*}U_{12}+...]$.

Table 4 B	ond Length	s for ps37.					
Atom	Atom	Length/Å	L Contraction of the second seco	Atom	Atom	Length/Å	
Pt1	I1	2.71245	5(16)	С9	C10	1.381(3)	
Pt1	P1	2.2454	(6)	C10	C11	1.384(3)	
Pt1	C1	2.010(2	2)	C11	C12	1.489(3)	
Pt1	N7	2.1324	(17)	C12	C13	1.402(3)	
P1	C18	1.827(2	2)	C12	C17	1.405(3)	
P1	C21	1.834(2	2)	C13	C13A	1.508(3)	
P1	C24	1.829(2	2)	C13	C14	1.392(3)	
C1	C2	1.398(3	3)	C14	C15	1.370(3)	
C1	C6	1.423(3	3)	C15	F15	1.368(2)	
C2	C3	1.375(3	3)	C15	C16	1.366(3)	
C3	C4	1.363(4	1)	C16	C17	1.395(3)	
C3	F3	1.364(3	3)	C17	C17A	1.505(3)	
C4	C5	1.375(3	3)	C18	C19	1.524(3)	
C5	C6	1.401(3	3)	C19	C20	1.513(4)	
C6	C7	1.453(3	3)	C21	C22	1.509(3)	
C7	N7	1.364(3	3)	C22	C23	1.514(4)	
C7	C8	1.391(3	3)	C24	C25	1.523(4)	
N7	C11	1.364(3	3)	C25	C26	1.523(4)	
C8	C9	1.373(3	3)				
Table S37	Bond Ang	les for ps37					
Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
P1	Pt1	I1	88.912(15)	C7	N7	C11	118.88(18)
C1	Pt1	I1	152.99(6)	C11	N7	Pt1	128.65(13)
C1	Pt1	P1	99.62(6)	C9	C8	C7	120.0(2)
C1	Pt1	N7	80.30(7)	C8	C9	C10	118.9(2)
N7	Pt1	I1	95.71(4)	C9	C10	C11	120.1(2)
N7	Pt1	P1	169.77(5)	N7	C11	C10	120.86(19)
C18	P1	Pt1	114.93(8)	N7	C11	C12	120.95(18)
C18	P1	C21	105.60(11)	C10	C11	C12	117.88(19)
C18	P1	C24	102.85(11)	C13	C12	C11	120.32(18)
C21	P1	Pt1	118.06(8)	C13	C12	C17	120.38(19)
C24	P1	Pt1	112.91(8)	C17	C12	C11	118.73(19)
C24	P1	C21	100.50(11)	C12	C13	C13A	122.96(19)
C2	C1	Pt1	129.95(16)	C14	C13	C12	119.3(2)
C2	C1	C6	115.89(19)	C14	C13	C13A	117.7(2)
C6	C1	Pt1	112.36(14)	C15	C14	C13	118.8(2)
C3	C2	C1	120.8(2)	F15	C15	C14	117.8(2)
C4	C3	C2	123.8(2)	C16	C15	C14	123.5(2)
C4	C3	F3	119.0(2)	C16	C15	F15	118.7(2)
F3				015	010	017	110 0 (0)
1.2	C3	C2	117.1(2)	C15	C16	CI/	118.8(2)

C4	C5	C6	121.4(2)		C16	C17	C12	119.2(2)
C1	C6	C7	117.12(18)		C16	C17	C17A	119.1(2)
C5	C6	C1	121.0(2)		C19	C18	P1	114.99(16)
C5	C6	C7	121.84(19)		C20	C19	C18	113.3(2)
N7	C7	C6	114.70(18)		C22	C21	P1	116.17(18)
N7	C7	C8	120.84(19)		C21	C22	C23	113.1(2)
C8	C7	C6	124.35(19)		C25	C24	P1	114.54(18)
C7	N7	Pt1	112.43(13)		C26	C25	C24	111.5(3)
Table S3	8 Hydrogen	Atom Co	ordinates (Å×10 ⁴) and Iso	otropic Displacement	Parameters (Å	² ×10 ³) for p	s37.	
Atom		x	У	z	U	(eq)		
H2	4190		3700	5131	3()		
H4	2560		5147	3525	33	3		
H5	1340		5832	4384	28	3		
H8	479		6496	5207	34	1		
H9	-371		7167	6179	3.	7		
H10	184		6707	7382	30)		
H13A	-1568		5863	7808	40)		
H13B	-1894		5397	8522	40)		
H13C	-1590		4972	7781	4 ()		
H14	142		5177	9427	3()		
H16	4706		5282	9084	3	-		
H17A	4544		5145	7339	4	-		
H17B	5451		5679	7951	4	-		
H17C	4162		6017	7332	4	L		
H18A	3387		1874	6370	2.9	9		
H18B	1743		2278	6422	29)		
H19A	1795		2785	5229	42	2		
H19B	3460		2399	5177	42	2		
H20A	1482		1692	4514	62	2		
H20B	588		1611	5231	62	2		
H20C	2254		1214	5204	62	2		
H21A	5625		3281	5795	3			
H21B	6415		3497	6604	31	-		
H22A	5853		1986	6202	62	2		
H22B	6979		2287	6902	62	2		
H23A	7612		2428	5409	6()		
H23B	8518		1880	6009	6()		
H23C	8724		2762	6099	60)		
H24A	3331		2711	7809	35	5		
H24B	4971		2393	7610	35	5		
H25A	6139		3587	7883	53	3		
H25B	4502		3874	8120	53	3		
H26A	6349		2706	8856	11	L7		
H26B	4701		2981	9089	11	L7		
H26C	6192		3526	9182	11	L7		

Refinement model description

Number of restraints - 0, number of constraints - unknown.

Details:

1. Fixed Uiso

At 1.2 times of: All C(H) groups, All C(H,H) groups

At 1.5 times of: All C(H, H, H) groups 2.a Secondary CH2 refined with riding coordinates: C18(H18A, H18B), C19(H19A, H19B), C21(H21A, H21B), C22(H22A, H22B), C24(H24A, H24B), C25(H25A, H25B)

H24B), C25(H25A, H25B) 2.b Aromatic/amide H refined with riding coordinates: C2(H2), C4(H4), C5(H5), C8(H8), C9(H9), C10(H10), C14(H14), C16(H16) 2.c Idealised Me refined as rotating group: C13A(H13A, H13B, H13C), C17A(H17A, H17B, H17C), C20(H20A, H20B, H20C), C23(H23A, H23B, H23C), C26(H26A, H26B, H26C)

This report has been created with Olex2, compiled on 2016.02.19 svn.r3266 for OlexSys. Please let us know if there are any errors or if you would like to have additional features.

Comparison of structures of Me-6-Pr and Me₂-6-Pr

It is possible to overlay the structures of Me-6-Pr ps25 with Me₂-6-Pr ps37.

The steric clash is avoided in ps25(green) as the relevant propyl chain with H22B adopts a downward trajectory/direction/orientation thus getting a bit further away from H2(b)

The same propyl chain in ps37 is rotated by roughly 180 degrees about P1-C21 bond which forces H21A close to H2(a) (the red molecule).

The propyl chain in ps37 is forced into this orientation because of the clash with the (second) methyl group C17A

Figure SI12 An overlay of the structures of Me-6-Pr with Me₂-6-Pr