Supporting Information

Site-Selective Silylation of Aliphatic C–H Bonds Mediated by [1,5]-Hydrogenation Transfer: Synthesis of α-Sila Benzamides

Pei Liu,[†] Jinghua Tang,[†] and Xiaoming Zeng^{*,†,‡,#}

[†]Center for Organic Chemistry, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China; [‡]Department of Chemistry, Northeast Normal University, Changchun 130024, China; [#]State Key Laboratory of Elementoorganic Chemistry, Nankai University, Tianjin 300071, China

Table of Contents

1. Materials and Methods	S2
2. Procedure for the Preparation of N-Alkyl-Substituted 2-Fluorobenzamides	S2
3. Optimizing Reaction Parameters	S11
4. General Procedure for the Silylation of α-C(sp ³)–H Bonds	S14
5. Late-Stage Functionalization of α-Sila Benzamides	S27
6. The Measurement of [1,5]-D Transfer	S32
7. H/D Crossover Experiment	S33
8. Kinetic Isotope Effect on the Silylation of C(sp ³)–H bond	S33
9. X-Ray Crystal Structure of 3ba	S34
10. ¹ H, ¹³ C and ¹⁹ F NMR Spectra	S50

1. Materials and Methods

General. All reactions dealing with air- or moisture-sensitive compounds were carried out in a flame-dried, sealed Schlenk reaction tube under an atmosphere of nitrogen. Analytical thin-layer chromatography was performed on glass plates coated with 0.25 mm 230–400 mesh silica gel containing a fluorescent indicator (Merck). Flash silica gel column chromatography was performed on silica gel 60N (spherical and neutral, 140–325 mesh) as described by Still.¹NMR spectra were measured on a Bruker AV-400 spectrometer and reported in parts per million. ¹H NMR spectra were recorded at 400 MHz in CDCl₃ were referenced internally to tetramethylsilane as a standard, and ¹³C NMR spectra were recorded at 100 MHz and referenced to the solvent resonance. Analytical gas chromatography (GC) was carried out on a Thermo Trace 1300 gas chromatograph, equipped with a flame ionization detector. Mass spectra (GC-MS) were taken at Thermo Trace 1300 gas chromatograph mass spectrometer. High resolution mass spectra (HRMS) were recorded on the Exactive Mass Spectrometer (Thermo Scientific, USA) equipped with ESI ionization source. Melting points were determined with a Hanon MP-300.

Materials. Unless otherwise noted, materials were purchased from Tokyo Chemical Industry Co., Aldrich Inc., Alfa Aesar, and other commercial suppliers and used as received. Solvents were dried over sodium (for THF and ether) by refluxing for overnight and freshly distilled prior to use. Grignard reagents were purchased from commercial suppliers or prepared by the reaction between related organic halides and magnesium turnings in anhydrous THF, and titrated prior to use.

2. Procedure for the Preparation of N-Alkyl-Substituted 2-Fluorobenzamides

N-alkyl-substituted 2-fluorobenzamides were prepared by the reaction of related 2-fluorobenzoyl chlorides with alkyl amines. 2-Chloro-*N*-methylbenzamide,² 2-bromo-

N-methylbenzamide,³ 2-iodo-*N*-methylbenzamide⁴ were synthesized according to the known procedures.

Synthesis of 2-fluorobenzoyl chloride: In a dried flask, 2-fluorobenzoic acid was dissolved in DCM and a few drops of DMF were then added. The resulting solution was added slowly via syringe immersed deeply solution of oxalyl dichloride (3 equiv) in DCM. After stirring at room temperature for 6 h, the volatiles were removed under vacuum. The crude product was used directly for next-step synthesis.

Synthesis of N-alkyl-substituted 2-fluorobenzamide: 2-Fluorobenzoyl chloride, *N*-alkyl-substituted amine (1.5 equiv), Et_3N (2 equiv) and DCM (2 M) were putted into a dried flask and the solution was stirred at room temperature for 3 h. The crude product was then purified by flash chromatography on silica gel to give the product as a white solid or colorless oil (60–96% yields).

2-Fluoro-N-methylbenzamide (1a)

The title compound was obtained as a white solid, Melting point: 48–50 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.08-7.96$ (m, 1H), 7.40 (d, J = 5.0 Hz, 1H), 7.21–7.17 (m, 1H), 7.08–7.03 (m, 1H), 6.82 (brs, 1H), 2.98 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 163.9$ (d, $J_{C-F} = 2.9$ Hz), 160.4 (d, $J_{C-F} = 245$ Hz), 132.9 (d, $J_{C-F} = 9.2$ Hz), 131.7 (d, $J_{C-F} = 2.4$ Hz), 124.6 (d, $J_{C-F} = 3.0$ Hz), 121.0 (d, $J_{C-F} = 11.8$ Hz), 115.8 (d, $J_{C-F} = 25$ Hz), 26.6; ¹⁹F NMR (377 MHz, CDCl₃): $\delta = -114.0$. IR (neat): 3355, 1646, 1538, 1308, 1308, 1216, 758 cm⁻¹. GC-MS (EI): calcd for C₈H₈FNO [M⁺] 153.06, found 153.09. Spectroscopic data are in accordance with those described in the literature.²

2-Fluoro-N-methyl-4-(trifluoromethyl)benzamide (1b)

The title compound was obtained as a white solid. Melting point: 88–90 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.23 (t, *J* = 7.0 Hz, 1H), 7.70 (t, *J* = 6.8 Hz, 1H), 7.33 (t, *J* = 7.7 Hz, 1H), 6.79 (brs, 1H), 3.02 (d, *J* = 4.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 162.7 (d, *J*_{*C*-*F*} = 3 Hz), 157.5 (dd, *J*_{*C*-*F*} = 255, 2.9 Hz), 135.8 (d, *J*_{*C*-*F*} = 2 Hz), 129.9 (dd, *J*_{*C*-*F*} = 2 Hz), 124.5 (d, *J*_{*C*-*F*} = 4 Hz), 122.9 (d, *J*_{*C*-*F*} = 12 Hz), 122.2 (dd, *J*_{*C*-*F*} = 271 Hz), 118.9 (dd, *J*_{*C*-*F*} = 15 Hz), 26.9; ¹⁹F NMR (377 MHz, CDCl₃): δ = -61.3, -117.2. IR (neat): 3308, 1659, 1457, 1223, 1079, 776 cm⁻¹. GC-MS (EI): calcd for C₉H₇F₄NO [M⁺] 221.05, found 221.08.

2,4-Difluoro-N-methylbenzamide (1c)

The title compound was obtained as a white solid. Melting point: 76–78 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.13–8.07 (m, 1H), 6.96 (t, *J* = 7.3 Hz, 1H), 6.89–6.77 (m, 1H), 6.69 (brs, 1H), 3.00 (d, *J* = 3.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 164.6 (dd, *J*_{C-F} =254 ,13 Hz), 163.0 (d, *J*_{C-F} = 3 Hz), 160.8 (dd, *J*_{C-F} =248, 12 Hz), 133.6 (dd, *J*_{C-F} = 10.1, 4.0 Hz), 117.5 (dd, *J*_{C-F} = 12.1, 3.7 Hz), 112.2 (dd, *J*_{C-F} = 21.2, 3.3 Hz), 104.5 (dd, *J*_{C-F} = 28, 25 Hz), 26.7; ¹⁹F NMR (377 MHz, CDCl₃): δ = -104.4 (*J* = 10.7 Hz), -109.6 (*J* = 10.7 Hz). IR (neat): 3381, 1645, 1537, 1266, 1076, 765 cm⁻¹. GC-MS (EI): calcd for C₈H₇F₂NO [M⁺] 171.05, found 171.08.

4-Chloro-2-fluoro-N-methylbenzamide (1d)

The title compound was obtained as a white solid. Melting point: 79–81 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.02$ (t, J = 8.4 Hz, 1H), 7.23 (t, J = 9.7 Hz, 1H), 7.12 (d, J = 11.5 Hz, 1H), 6.70 (brs, 1H), 3.00 (d, J = 4.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 162.9$ (d, $J_{C-F} = 3.4$ Hz), 160.1 (d, $J_{C-F} = 249$ Hz), 138.3 (d, $J_{C-F} = 11.2$ Hz), 132.9 (d, $J_{C-F} = 3.3$ Hz), 125.3 (d, $J_{C-F} = 3.3$ Hz), 119.6 (d, $J_{C-F} = 12.1$ Hz), 116.6 (d, $J_{C-F} = 29$ Hz), 26.8; ¹⁹F NMR (377 MHz, CDCl₃): $\delta = -114.0$. IR (neat): 3358, 1644, 1532, 1403, 1078, 901, 769 cm⁻¹. GC-MS (EI): calcd for C₈H₇CIFNO [M⁺] 187.02, found187.04.

2-Fluoro-N,4-dimethylbenzamide (1e)

The title compound was obtained as a white solid. Melting point: 67–69 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.98 (t, *J* = 8.2 Hz, 1H), 7.05 (d, *J* = 7.9 Hz, 1H), 6.90 (d, *J* = 13.2 Hz, 1H), 6.73 (brs, 1H), 3.01 (d, *J* = 4.5 Hz, 3H), 2.37 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 164.0 (d, *J*_{C-F} = 3.4 Hz), 160.5 (d, *J*_{C-F} = 244 Hz), 144.4 (d, *J*_{C-F} = 9.2 Hz), 131.8 (d, *J*_{C-F} = 2.8 Hz), 125.6 (d, *J*_{C-F} = 2.7 Hz), 119.0 (d, *J*_{C-F} = 11.7 Hz), 116.3 (d, *J*_{C-F} = 25 Hz), 26.7, 21.2 (d, *J*_{C-F} = 1.5 Hz); ¹⁹F NMR (377 MHz, CDCl₃): δ = -114.8. IR (neat): 3309, 1634, 1539, 1405, 1065, 730 cm⁻¹. GC-MS (EI): calcd for C₉H₁₀FNO [M⁺] 167.07, found 167.10.

2-Fluoro-4-methoxy-N-methylbenzamide (1f)

The title compound was obtained as a white solid. Melting point: 77–79 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.03 (t, *J* = 9.1 Hz, 1H), 6.76 (dd, *J* = 8.8, 2.4 Hz, 1H), 6.67 (brs, 1H), 6.59 (dd, *J* = 14.1, 2.4 Hz, 1H), 3.82 (s, 3H), 3.04–2.93 (m, 3H); ¹³C NMR

(100 MHz, CDCl₃): δ = 163.8 (d, J_{C-F} = 3.6 Hz), 163.3 (d, J_{C-F} = 12.3 Hz), 161.6 (d, J_{C-F} = 245 Hz), 133.6 (d, J_{C-F} = 4.3 Hz), 113.3 (d, J_{C-F} = 12.0 Hz), 110.5 (d, J_{C-F} = 2.5 Hz), 101.4 (d, J_{C-F} = 29 Hz), 55.7, 26.6; ¹⁹F NMR (377 MHz, CDCl₃): δ = -111.3. IR (neat): 3308, 1621, 1439, 1269, 1026, 831, 675 cm⁻¹. GC-MS (EI): calcd for C₉H₁₀FNO [M⁺] 183.07, found 183.10.

2-Fluoro-3-methoxy-N-methylbenzamide (1g)

The title compound was obtained as a white solid. Melting point: 81–83 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.62–7.58 (m, 1H), 7.17–7.13 (m, 1H), 7.10–7.05 (m, 1H), 6.71 (brs, 1H), 3.90 (s, 3H), 3.03 (dd, *J* = 4.8, 0.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 164.0 (d, *J*_{*C-F*} = 2.3 Hz), 150.7 (d, *J*_{*C-F*} = 246 Hz), 147.8 (d, *J*_{*C-F*} = 12.5 Hz), 124.2 (d, *J*_{*C-F*} = 4.4 Hz), 122.4 (d, *J*_{*C-F*} = 1.2 Hz), 122.1 (d, *J*_{*C-F*} = 9.4 Hz), 116.0 (d, *J*_{*C-F*} = 2.5 Hz), 56.5, 26.8; ¹⁹F NMR (377 MHz, CDCl₃): δ = -111.3. IR (neat): 3292, 1640, 1480, 1270, 1072, 715 cm⁻¹. GC-MS (EI): calcd for C₉H₁₀FNO [M⁺] 183.07, found 183.10.

4-Amino-2-fluoro-N-methylbenzamide (1h)

The title compound was obtained as a white solid. Melting point: 92–94 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.91 (t, *J* = 8.6 Hz, 1H), 6.61 (brs, 1H), 6.48 (d, *J* = 7.8 Hz, 1H), 6.31 (d, *J* = 14.1 Hz, 1H), 4.11 (brs, 2H), 2.98 (d, *J* = 3.7 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 163.8, 162.2 (d, *J*_{C-F} = 243Hz), 151.3 (d, *J*_{C-F} = 12.7 Hz), 133.3 (d, *J*_{C-F} = 4.4 Hz), 110.9 (d, *J*_{C-F} = 1.8 Hz), 110.4 (d, *J*_{C-F} = 12 Hz), 100.8 (d, *J*_{C-F})

= 29 Hz), 26.6; ¹⁹F NMR (377 MHz, CDCl₃): δ = -112.9. IR (neat): 3674, 2987, 1632, 1406, 1250, 1065, 891 cm⁻¹. GC-MS (EI): calcd for C₈H₉FN₂O [M⁺] 168.07, found 168.09.

4'-(Dimethylamino)-3-fluoro-N-methyl-[1,1'-biphenyl]-4-carboxamide (1i)

The title compound was obtained as a white solid. Melting point: 153–155 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.03$ (t, J = 8.4 Hz, 1H), 7.44 (d, J = 8.8 Hz, 2H), 7.37 (d, J = 9.4 Hz, 1H), 7.20 (d, J = 13.8 Hz, 1H), 6.70 (d, J = 8.8 Hz, 3H), 2.96 (d, J = 4.6 Hz, 3H), 2.93 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 164.1$ (d, $J_{C-F} = 3.4$ Hz), 161.1 (d, $J_{C-F} = 244$ Hz), 150.7, 146.5 (d, $J_{C-F} = 9.3$ Hz), 132.2 (d, $J_{C-F} = 3.0$ Hz), 127.7, 126.9, 125.9 (d, $J_{C-F} = 2.0$ Hz), 121.9 (d, $J_{C-F} = 2.4$ Hz), 117.7 (d, $J_{C-F} = 11.9$ Hz), 113.0, 112.6 (d, $J_{C-F} = 26$ Hz), 112.5, 40.3, 26.7; ¹⁹F NMR (377 MHz, CDCl₃): $\delta = -113.9$. IR (neat): 3299, 1636, 1557, 1403, 1076, 808, 773 cm⁻¹. GC-MS (EI): calcd for C₁₆H₁₇FN₂O [M⁺] 272.13, found 272.09.

2-Fluoro-4-hydroxy-N-methylbenzamide (1j)

The title compound was obtained as a white solid. Melting point: 104–106 °C. ¹H NMR (400 MHz, DMSO- d_6): $\delta = 10.44$ (s, 1H), 7.93 (s, 1H), 7.60 (t, J = 8.8 Hz, 1H), 6.71 (d, J = 9.4 Hz, 1H), 6.64 (d, J = 13.0 Hz, 1H), 2.80 (d, J = 4.4 Hz, 3H); ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 164.2$ (d, $J_{C-F} = 2.3$ Hz), 161.5 (d, $J_{C-F} = 12$ Hz), 161.0 (d, $J_{C-F} = 247$ Hz), 132.1 (d, $J_{C-F} = 4.9$ Hz), 114.4 (d, $J_{C-F} = 13.6$ Hz), 112.1 (d, $J_{C-F} = 2.5$ Hz), 103.1 (d, $J_{C-F} = 25$ Hz), 26.8; ¹⁹F NMR (377 MHz, DMSO- d_6): $\delta = -111.6$. IR

(neat): 3480, 1615, 1548, 1252, 1089, 850, 756 cm⁻¹. GC-MS (EI): calcd for $C_8H_8FNO_2$ [M⁺] 169.05, found 169.07.

N-butyl-2-fluorobenzamide (1k)

The title compound was obtained as a colorless oil. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.00$ (t, J = 7.8 Hz, 1H), 7.38 (dd, J = 13.4, 7.1 Hz, 1H), 7.17 (t, J = 7.5 Hz, 1H), 7.03 (dd, J = 11.6, 8.7 Hz, 1H), 6.75 (brs, 1H), 3.42 (dd, J = 13.0, 6.6 Hz, 2H), 1.60–1.51 (m, 2H), 1.41–1.31 (m, 2H), 0.90 (t, J = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 163.1$ (d, $J_{C-F} = 3.1$ Hz), 161.4 (d, $J_{C-F} = 245$ Hz), 132.8 (d, $J_{C-F} = 9.3$ Hz), 131.75 (d, $J_{C-F} = 2.2$ Hz), 124.5 (d, $J_{C-F} = 3.3$ Hz), 121.3 (d, $J_{C-F} = 11.8$ Hz), 115.7 (d, $J_{C-F} = 25$ Hz), 39.6, 31.4, 20.0, 13.6; ¹⁹F NMR (377 MHz, CDCl₃): $\delta = -114.1$. IR (neat): 3307, 1644, 1532, 1481, 1305, 754 cm⁻¹. GC-MS (EI): calcd for C₁₁H₁₄FNO [M⁺] 195.11, found 195.12. Spectroscopic data are in accordance with those described in the literature.⁵

N-benzyl-2-fluorobenzamide (11)

The title compound was obtained as a white solid. Melting point: 67–69 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.13$ (t, J = 7.7 Hz, 1H), 7.46 (dd, J = 13.2, 6.4 Hz, 1H), 7.35 (t, J = 6.1 Hz, 4H), 7.31–7.24 (m, 2H), 7.10 (dd, J = 12.0, 8.4 Hz, 2H), 4.68 (d, J = 5.3 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 163.2$ (d, $J_{C-F} = 3.1$ Hz), 160.6 (d, $J_{C-F} = 245$ Hz), 138.0, 133.3 (d, $J_{C-F} = 9.3$ Hz), 132.1 (d, $J_{C-F} = 2.0$ Hz), 128.7, 127.7, 127.5, 124.8 (d, $J_{C-F} = 3.2$ Hz), 120.9 (d, $J_{C-F} = 11.5$ Hz), 116.0 (d, $J_{C-F} = 25$ Hz), 44.0; ¹⁹F NMR (377 MHz, CDCl₃): $\delta = -113.5$. IR (neat): 3262, 1637, 1538, 1225, 1078,

779, 731 cm⁻¹. GC-MS (EI): calcd for $C_{14}H_{12}FNO$ [M⁺] 229.09, found 229.13. Spectroscopic data are in accordance with those described in the literature.⁶

2-Fluoro-N-(4-methoxybenzyl)benzamide (1m)

The title compound was obtained as a white solid. Melting point: 71–73 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.13$ (t, J = 7.5 Hz, 1H), 7.46 (dd, J = 12.8, 6.1 Hz, 1H), 7.27 (dd, J = 15.5, 7.6 Hz, 3H), 7.09 (dd, J = 11.8, 8.5 Hz, 1H), 6.99 (s, 1H), 6.88 (d, J = 8.3 Hz, 2H), 4.61 (d, J = 5.1 Hz, 2H), 3.80 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 163.1$, 160.6 (d, $J_{C-F} = 256$ Hz), 159.0, 133.3 (d, $J_{C-F} = 9.4$ Hz), 132.1, 130.0, 129.1, 124.8 (d, $J_{C-F} = 3.3$ Hz), 122.0 (d, $J_{C-F} = 11.5$ Hz), 116.0 (d, $J_{C-F} = 11.5$ Hz), 114.1, 55.3, 43.5; ¹⁹F NMR (377 MHz, CDCl₃): $\delta = -113.5$. IR (neat): 3302, 1639, 1511, 1250, 1214, 1034, 754 cm⁻¹. GC-MS (EI): calcd for C₁₅H₁₄FNO₂ [M⁺] 259.10, found 259.11.

2-Fluoro-*N*-(4-methylbenzyl)benzamide (1n)

The title compound was obtained as a white solid. Melting point: 85–87 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.11 (t, *J* = 7.6 Hz, 1H), 7.44 (dd, *J* = 12.7, 6.1 Hz, 1H), 7.25 (d, *J* = 7.3 Hz, 3H), 7.15 (d, *J* = 7.6 Hz, 2H), 7.08 (dd, *J* = 11.9, 8.5 Hz, 2H), 4.63 (d, *J* = 5.1 Hz, 2H), 2.33 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 163.1 (d, *J*_{C-F} = 2.9 Hz), 160.5 (d, *J*_{C-F} = 245 Hz), 137.1, 134.9, 133.2 (d, *J*_{C-F} = 9.3 Hz), 132.0 (d, *J*_{C-F} = 1.7 Hz), 129.3, 127.7, 124.7 (d, *J*_{C-F} = 3.3 Hz), 122.0 (d, *J*_{C-F} = 11.5 Hz), 115.9 (d, *J*_{C-F} = 24 Hz), 43.8, 21.0; ¹⁹F NMR (377 MHz, CDCl₃): δ = -113.4. IR (neat):3278, 1639, 1531, 1406, 1065, 780 cm⁻¹. GC-MS (EI): calcd for C₁₅H₁₄FNO [M⁺] 243.11, found 243.13.

N-(3-chlorobenzyl)-2-fluorobenzamide (10)

The title compound was obtained as a white solid. Melting point: 88–91 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.07-8.02$ (m, 1H), 7.44–7.36 (m, 1H), 7.23–7.14 (m, 4H), 7.10–6.98 (m, 2H), 4.58 (d, J = 5.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 163.4$ (d, $J_{C-F} = 3.1$ Hz), 160.6 (d, $J_{C-F} = 246$ Hz), 140.1, 134.5, 133.5 (d, $J_{C-F} = 9.4$ Hz), 132.2 (d, $J_{C-F} = 2.0$ Hz), 123.0, 127.7 (d, $J_{C-F} = 4.0$ Hz), 125.8, 124.9 (d, $J_{C-F} = 3.2$ Hz), 120.6 (d, $J_{C-F} = 11.4$ Hz), 116.0 (d, $J_{C-F} = 25$ Hz), 115.6(d, $J_{C-F} = 21$ Hz), 43.4; ¹⁹F NMR (377 MHz, CDCl₃): $\delta = -113.3$. IR (neat): 3310, 1663, 1551, 1224, 1054, 765, 680 cm⁻¹. GC-MS (EI): calcd for C₁₄H₁₁CIFNO [M⁺] 263.05, found 263.07.

N-Allyl-2-fluorobenzamide (1p)

The title compound was obtained as a colorless oil. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.04-8.0$ (m, 1H), 7.42–7.36 (m, 1H), 7.18 (t, J = 7.7 Hz, 1H), 7.04 (dd, J = 12.1, 8.3 Hz, 1H), 6.78 (brs, 1H), 5.92–5.82 (m, 1H), 5.20 (dd, J = 17.2, 1.3 Hz, 1H), 5.11 (dd, J = 10.3, 1.2 Hz, 1H), 4.06–4.02 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 163.1$ (d, $J_{C-F} = 3.1$ Hz), 160.6 (d, $J_{C-F} = 245$ Hz), 133.8, 133.2 (d, $J_{C-F} = 9.3$ Hz), 132.0 (d, $J_{C-F} = 1.3$ Hz), 124.7 (d, $J_{C-F} = 3.2$ Hz), 120.9 (d, $J_{C-F} = 11.6$ Hz), 116.4, 115.9 (d, $J_{C-F} = 11.6$ Hz), 42.3; ¹⁹F NMR (377 MHz, CDCl₃): $\delta = -113.7$. IR (neat): 3306, 1651, 1532, 1482, 1303, 1098, 895, 785 cm⁻¹. GC-MS (EI): calcd for C₁₀H₁₀FNO [M⁺] 179.07, found 179.10.

2-Fluoro-N-(2-methylallyl)benzamide (1q)

The title compound was obtained as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ = 8.03–7.98 (m, 1H), 7.43–7.37 (m, 1H), 7.23–7.14 (m, 1H), 7.08–7.03 (m, 1H), 6.89 (brs, 1H), 4.84 (dd, *J* = 10.1, 8.8 Hz, 2H), 3.98 (d, *J* = 5.8 Hz, 2H), 1.74 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 163.1 (d, *J*_{*C*-*F*} = 3.0 Hz), 160.4 (d, *J*_{*C*-*F*} = 246 Hz), 141.5, 133.0 (*J*_{*C*-*F*} = 9.3 Hz), 131.8, 124.6 (*J*_{*C*-*F*} = 3.1 Hz), 121.0 (*J*_{*C*-*F*} = 11.7 Hz), 115.8 (*J*_{*C*-*F*</sup> = 25 Hz),, 110.8, 45.2, 20.2; ¹⁹F NMR (377 MHz, CDCl₃): δ = –113.8. IR (neat): 3326, 1632, 1501, 1493, 1357, 1172, 932, 756 cm⁻¹. GC-MS (EI): calcd for C₁₁H₁₂FNO [M⁺] 193.09, found 193.12.}

The title compound was obtained as a colorless oil. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.12-8.08$ (m, 1H), 7.49–7.43 (m, 1H), 7.28–7.23 (m, 1H), 7.11 (dd, J = 12.1, 8.3 Hz, 1H), 6.77 (brs, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 164.0$ (d, $J_{C-F} = 2.7$ Hz), 160.6 (d, $J_{C-F} = 245$ Hz), 133.1 (d, $J_{C-F} = 9.3$ Hz), 132.0 (d, $J_{C-F} = 2.3$ Hz), 124.7 (d, $J_{C-F} = 3.2$ Hz), 122.0 (d, $J_{C-F} = 11.7$ Hz), 115.9 (d, $J_{C-F} = 24$ Hz); ¹⁹F NMR (377 MHz, CDCl₃): $\delta = -114.0$. IR (neat): 3359, 1632, 1575, 1325, 1245, 760 cm⁻¹. GC-MS (EI): calcd for C₈H₅D₃FNO [M⁺] 156.08, found 156.10.

3. Optimizing Reaction Parameters

Table S1. Investigation of the Effect of Ligands on the Silylation^a

^aReaction conditions: **1a** (0.2 mmol), **2a** (4 equiv), Ligand (10 mol%), *t*-BuMgCl (4 equiv), in

THF (0.5 mL), 50 °C, 12 h. ^bIsolated yield.

Table S2. Investigation of the Effect of Grignard Reagents on the Silylation^a

3	BnMgCl	nd
4	MeMgBr	nd
5	AllylMgBr	nd
6	VinylMgBr	18
7	CyMgCl	28
8	EtMgBr	14
9	<i>i</i> -PrMgCl	20
10	<i>t</i> -BuMgCl	76
11	<i>n</i> -HepMgBr	12
12	<i>i</i> -PrMgCl•LiCl	20

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (4 equiv), dtbpy (10 mol%), Grignard reagent (4 equiv), THF (0.5 mL), 50 °C, 12 h. ^{*b*}Isolated yield.

	O H H H H	Et ₃ Si–Cl	N H SiEt ₃
	1a	2a	3aa
Entr	y Ligand	Grignard Reagent	Yield $(\%)^b$
1	dtbpy	t-BuMgCl (0.2 equiv)	nd
2	dtbpy	t-BuMgCl (0.5 equiv)	nd
3	dtbpy	<i>t</i> -BuMgCl (1.0 equiv)	nd
4	dtbpy	t-BuMgCl (2.0 equiv)	24
5	dtbpy	t-BuMgCl(2.5 equiv)	37
6	dtbpy	<i>t</i> -BuMgCl(3.0 equiv)	49
7	dtbpy	t-BuMgCl(3.5 equiv)	51
8	dtbpy	<i>t</i> -BuMgCl(4.0 equiv)	76
9	dtbpy	<i>t</i> -BuMgCl(5.0 equiv)	67
10	dtbpy	<i>t</i> -BuMgCl(6.0 equiv)	65

Table S3. Investigating the Effect of the Amount of *t*-BuMgCl on the Silylation^{*a*}

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (4 equiv), dtbpy (10 mol%), *t*-BuMgCl, THF (0.5 mL), 50 °C, 12 h. ^{*b*}Isolated yield.

Table S4. Investigating the Effect of the Amount of Chlorotriethylsilane^{*a*}

1	dtbpy	2 equiv	<i>t</i> -BuMgCl (4 equiv)	48
2	dtbpy	3 equiv	t-BuMgCl (4 equiv)	58
3	dtbpy	4 equiv	t-BuMgCl (4 equiv)	76
4	dtbpy	5 equiv	t-BuMgCl (4 equiv)	56
5	dtbpy	6 equiv	t-BuMgCl (4 equiv)	47

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a**, dtbpy (10 mol%), *t*-BuMgCl (4 equiv), THF (0.5 mL), 50 °C, 12 h. ^{*b*}Isolated yield.

Table S5. Investigation of the Effect of Temperature on the Silylation^a

	O N H F	Et₃ <mark>Si</mark> –Cl	dtbpy (10 mol%) <i>t</i> -BuMgCl (4 equiv) THF, 12 h	O │ N SiEt ₃ H
	1a	2a		3aa
Entry	Ligand	T (°C)	Grignard	$\operatorname{Yield}(\%)^b$
1	dtbpy	25	t-BuMgCl(4 equiv)	42
2	dtbpy	30	t-BuMgCl(4 equiv)	43
3	dtbpy	40	t-BuMgCl(4 equiv)	50
4	dtbpy	50	t-BuMgCl(4 equiv)	76
5	dtbpy	60	t-BuMgCl(4 equiv)	36
6	dtbpy	70	t-BuMgCl(4 equiv)	35

^aReaction conditions: **1a** (0.2 mmol), **2a**, dtbpy (10 mol%), *t*-BuMgCl (4 equiv), THF (0.5 mL), 12 h. ^{*b*}Isolated yield.

4. General Procedure for the Silylation of α-C(sp³)–H Bonds

In a dried Schlenk tube were placed 2-fluorobenzamides **1** (0.2 mmol), silane **2** (0.8 mmol) and dtbpy (6 mg, 0.02 mmol), then a freshly distilled THF (0.5–0.6 mL) was added by a syringe under nitrogen atmosphere. *tert*-Butylmagnesium chloride (0.8–1.2 mL, 1.0 M in THF, 0.8 mmol or 1.2 mmol) was dropwise added at 50 °C and the

mixture was stirred for 12 h. After quenched by a solution of NH₄Cl, the crude product was extracted with ethyl acetate (3 × 10 mL). The combined organic layer was dried over anhydrous Na₂SO₄ and concentrated under vacuum. The crude product was further purified by flash chromatography on silica gel to afford the desired α -sila benzamide **3**.

N-[(triethylsilyl)methyl]benzamide (3aa)

The general procedure was applied to 2-fluoro-*N*-methylbenzamide (31 mg, 0.2 mmol), triethylchlorosilane (121 mg, 0.8 mmol), *tert*-butylmagnesium chloride (0.8 mL, 1.0 M in THF, 0.8 mmol) and dtbpy (6 mg, 0.02 mmol) at 50 °C for 12 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/30) to afford the title compound as a white solid (38 mg, 76% yield). Melting point: 44–46 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.69 (d, *J* = 7.2 Hz, 2H), 7.41 (t, *J* = 7.2 Hz, 1H), 7.34 (t, *J* = 7.4 Hz, 2H), 6.29 (brs, 1H), 2.97 (d, *J* = 5.7 Hz, 2H), 0.96 (t, *J* = 8.0 Hz, 9H), 0.61 (q, *J* = 8.0 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ = 167.7, 135.0, 130.9, 128.3, 126.6, 26.0, 7.1, 2.5. IR (neat): 3302, 1630, 1542, 1312, 1015, 883, 744 cm⁻¹. HRMS (APCI⁻): calcd for C₁₄H₂₂NOSi [M-H]⁻ 248.1471, found 248.1464.

N-[(triethylsilyl)methyl]-4-(trifluoromethyl)benzamide (3ab)

The general procedure was applied to 2-fluoro-*N*-methyl-4-(trifluoromethyl)benzamide (45 mg, 0.2 mmol), triethylchlorosilane (121 mg, 0.8 mmol), *tert*-butylmagnesium chloride (0.8 mL, 1.0 M in THF, 0.8 mmol) and dtbpy (6 mg, 0.02 mmol) at 50 °C for 12 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/30) to afford the title compound as a colorless oil (53 mg, 83% yield). ¹H NMR (400 MHz, CDCl₃): δ = 7.98 (s, 1H), 7.86 (d, *J* = 7.7 Hz, 1H), 7.71 (d, *J* = 7.7 Hz, 1H), 7.52 (t, *J* = 7.7 Hz, 1H), 6.17 (brs, 1H), 3.02 (d, *J* = 5.7 Hz, 2H), 0.99 (t, *J* = 7.9 Hz, 9H), 0.64 (q, *J* = 7.9 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ = 166.3, 135.9, 131.1 (d, *J*_{C-F} = 22 Hz), 123.7 (d, *J*_{C-F} = 271 Hz), 26.4, 7.2, 2.6; ¹⁹F NMR (377 MHz, CDCl₃): δ = -62.8. IR (neat): 3279, 1633, 1548, 1305, 1127, 797, 696 cm⁻¹. HRMS (APCI): calcd for C₁₅H₂₁F₃NOSi [M-H]⁻ 316.1345, found 316.1329.

4-Fluoro-*N*-[(triethylsilyl)methyl]benzamide (3ac)

The general procedure was applied to 2,4-difluoro-*N*-methylbenzamide (35 mg, 0.2 mmol), triethylchlorosilane (121 mg, 0.8 mmol), *tert*-butylmagnesium chloride (0.8 mL, 1.0 M in THF, 0.8 mmol) and dtbpy (6 mg, 0.02 mmol) at 50 °C for 12 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/30) to afford the title compound as a colorless oil (37 mg, 68% yield). ¹H NMR (400 MHz, CDCl₃): δ = 7.71 (dd, *J* = 8.0, 5.6 Hz, 2H), 7.08 (t, *J* = 8.5 Hz, 2H), 5.89 (brs, 1H), 3.00 (d, *J* = 5.6 Hz, 2H), 0.99 (t, *J* = 7.9 Hz, 9H), 0.64 (q, *J* = 7.9 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ = 166.8, 164.5 (d, *J*_{C-F} = 250 Hz), 131.3 (d, *J*_{C-F} = 4 Hz), 128.9 (d, *J*_{C-F} = 9 Hz), 115.5 (d, *J*_{C-F} = 22 Hz), 26.1, 7.3, 2.6; ¹⁹F NMR (377 MHz, CDCl₃): δ = -108.8. IR (neat): 3296, 1632, 1504, 1235, 849, 744 cm⁻¹. HRMS (APCI⁻): calcd for C₁₄H₂₁FNOSi [M-H]⁻ 266.1376, found 266.1365.

4-Chloro-N-[(triethylsilyl)methyl]benzamide (3ad)

The general procedure was applied to 4-chloro-2-fluoro-*N*-methylbenzamide (38 mg, 0.2 mmol), triethylchlorosilane (121 mg, 0.8 mmol), *tert*-butylmagnesium chloride (1.2 mL, 1.0 M in THF, 1.2 mmol) and dtbpy (6 mg, 0.02 mmol) at 50 °C for 12 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/30) to afford the title compound as a white solid (29 mg, 51% yield). Melting point: 73–75 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.64 (d, *J* = 8.5 Hz, 2H), 7.38 (d, *J* = 8.5 Hz, 2H), 5.93 (brs, 1H), 3.00 (d, *J* = 5.7 Hz, 2H), 0.99 (t, *J* = 7.9 Hz, 9H), 0.64 (q, *J* = 7.9 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ = 166.7, 137.3, 133.5, 128.8, 128.1, 26.2, 7.3, 2.6. IR (neat): 3296, 1629, 1585, 1318, 1248, 1017, 823, 741 cm⁻¹. HRMS (APCI⁻): calcd for C₁₄H₂₁CINOSi [M+Cl]⁻ 318.0848, found 318.0836.

4-Methyl-N-[(triethylsilyl)methyl]benzamide (3ae)

The general procedure was applied to 2-fluoro-*N*,4-dimethylbenzamide (34 mg, 0.2 mmol), triethylchlorosilane (121 mg, 0.8 mmol), *tert*-butylmagnesium chloride (0.8 mL, 1.0 M in THF, 0.8 mmol) and dtbpy (6 mg, 0.02 mmol) at 50 °C for 12 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/30) to afford the title compound as a colorless oil (29 mg, 55% yield). ¹H NMR (400 MHz, CDCl₃): δ = 7.61 (d, *J* = 8.1 Hz, 2H), 7.21 (d, *J* = 8.0 Hz, 2H), 5.93 (brs, 1H), 3.00 (d, *J* = 5.6 Hz, 2H), 2.38 (s, 3H), 0.99 (t, *J* = 7.9 Hz, 9H), 0.63 (q, *J* = 7.9 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ = 167.7, 141.4, 132.3, 129.2, 126.6, 25.9, 21.4, 7.3, 2.6. IR (neat): 3304, 1628, 1547, 1322, 1016, 743 cm⁻¹. HRMS (APCI): calcd for C₁₅H₂₄NOSi [M-H]⁻ 262.1627, found 262.1615.

4-Methoxy-N-[(triethylsilyl)methyl]benzamide (3af)

The general procedure was applied to 2-fluoro-4-methoxy-*N*-methylbenzamide (37 mg, 0.2 mmol), triethylchlorosilane (121 mg, 0.8 mmol), *tert*-butylmagnesium chloride (0.8 mL, 1.0 M in THF, 0.8 mmol) and dtbpy (6 mg, 0.02 mmol) at 50 °C for 12 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/30) to afford the title compound as a colorless oil (27 mg, 48% yield). ¹H NMR (400 MHz, CDCl₃): δ = 7.68 (d, *J* = 8.8 Hz, 2H), 6.91 (d, *J* = 8.8 Hz, 2H), 5.83 (brs, 1H), 3.84 (s, 3H), 3.00 (d, *J* = 5.6 Hz, 2H), 0.99 (t, *J* = 7.9 Hz, 9H), 0.64 (q, *J* = 7.9 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ = 167.4, 161.9, 128.4, 127.5, 113.8, 55.4, 25.9, 7.3, 2.6. IR (neat): 3304, 1624, 1505, 1254, 1035, 843, 743 cm⁻¹. HRMS (APCI⁻): calcd for C₁₅H₂₄NO₂Si [M-H]⁻ 278.1576, found 278.1563.

3-Methoxy-N-[(triethylsilyl)methyl]benzamide (3ag)

The general procedure was applied to 2-fluoro-5-methoxy-*N*-methylbenzamide (37 mg, 0.2 mmol), triethylchlorosilane (121 mg, 0.8 mmol), *tert*-butylmagnesium chloride (0.8 mL, 1.0 M in THF, 0.8 mmol) and dtbpy (6 mg, 0.02 mmol) at 50 °C for 12 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/30) to afford the title compound as a colorless oil (30 mg, 52% yield). ¹H NMR (400 MHz, CDCl₃): δ = 7.33 – 7.27 (m, 2H), 7.20 (d, *J* = 7.7 Hz, 1H), 7.01 – 6.99 (m, 1H), 5.98 (brs, 1H), 3.83 (s, 3H), 3.00 (d, *J* = 5.7 Hz, 2H), 0.99 (t, *J* = 7.9 Hz, 9H), 0.63 (q, *J* = 7.9 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ = 167.6, 159.8, 136.6, 129.5, 118.3, 117.2, 112.2, 55.3, 26.0, 7.3, 2.5. IR (neat): 3296, 1629, 1543, 1249,

1017, 823, 741 cm⁻¹. HRMS (APCI⁺): calcd for $C_{15}H_{26}NO_2Si [M+H]^+$ 280.1733, found 280.1715.

4-Amino-N-[(triethylsilyl)methyl]benzamide (3ah)

The general procedure was applied to 4-amino-2-fluoro-*N*-methylbenzamide (34 mg, 0.2 mmol), triethylchlorosilane (121 mg, 0.8 mmol), *tert*-butylmagnesium chloride (0.8 mL, 1.0 M in THF, 0.8 mmol) and dtbpy (6 mg, 0.02 mmol) at 50 °C for 12 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/10) to afford the title compound as a colorless oil (32 mg, 60% yield). ¹H NMR (400 MHz, CDCl₃): δ = 7.54 (d, *J* = 8.4 Hz, 2H), 6.65 (d, *J* = 8.4 Hz, 2H), 5.75 (brs, 1H), 3.96 (brs, 2H), 2.98 (d, *J* = 5.6 Hz, 2H), 0.99 (t, *J* = 7.9 Hz, 9H), 0.63 (q, *J* = 7.9 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ = 167.6, 149.2, 128.3, 124.8, 114.2, 25.7, 7.3, 2.6. IR (neat): 3337, 1605, 1505, 1296, 1016, 744 cm⁻¹. HRMS (APCI): calcd for C₁₄H₂₃N₂OSi [M-H]⁻ 263.1580, found 263.1579.

4'-(Dimethylamino)-*N***-[(triethylsilyl)methyl]-[1, 1'-biphenyl]-4-carboxamide (3ai)** The general procedure was applied to 4'-(dimethylamino)-3-fluoro-*N*-methyl-[1,1'biphenyl]-4-carboxamide (55 mg, 0.2 mmol), triethylchlorosilane (121 mg, 0.8 mmol), *tert*-butylmagnesium chloride (0.8 mL, 1.0 M in THF, 0.8 mmol) and dtbpy (6 mg, 0.02 mmol) at 50 °C for 12 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/10) to afford the title compound as a white solid (74 mg, 63% yield). Melting point: 107–109 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.74 (d, *J* = 8.3 Hz, 2H), 7.61 (d, *J* = 8.2 Hz, 2H), 7.53 (d, *J* = 8.7 Hz, 2H), 6.80 (d, *J* = 8.7 Hz, 2H), 5.95 (brs, 1H), 3.04 (d, *J* = 5.6 Hz, 2H), 3.01 (s, 6H), 1.02 (t, *J* = 7.9 Hz, 9H), 0.66 (q, *J* = 7.9 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ = 167.7, 150.4, 144.0, 132.3, 127.7, 127.69, 127.1, 126.1, 112.6, 40.4, 26.0, 7.3, 2.6. IR (neat): 3290, 1605, 1538, 1218, 1006, 812, 719 cm⁻¹. HRMS (APCI⁺): calcd for C₂₂H₃₃N₂OSi [M+H]⁺ 369.2362, found 369.2361.

4-Hydroxy-N-[(triethylsilyl)methyl]benzamide (3aj)

The general procedure was applied to 2-fluoro-4-hydroxy-*N*-methylbenzamide (34 mg, 0.2 mmol), triethylchlorosilane (121 mg, 0.8 mmol), *tert*-butylmagnesium chloride (1.2 mL, 1.0 M in THF, 1.2 mmol) and dtbpy (6 mg, 0.02 mmol) at 50 °C for 12 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/10) to afford the title compound as a white solid (22 mg, 40% yield). Melting point: 69–72 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.88 (brs, 1H), 7.55 (d, *J* = 8.6 Hz, 2H), 6.87 (d, *J* = 8.7 Hz, 2H), 6.00 (brs, 1H), 3.01 (d, *J* = 5.7 Hz, 2H), 0.98 (t, *J* = 7.9 Hz, 9H), 0.63 (q, *J* = 7.9 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ = 168.7, 160.1, 128.5, 125.7, 115.7, 26.2, 7.3, 2.6. IR (neat): 3152, 1607, 1504, 1278, 1010, 846, 741 cm⁻¹. HRMS (APCI⁺): calcd for C₁₄H₂₄NO₂Si [M+H]⁺ 266.1576, found 266.1573.

N-[1-(triethylsilyl)butyl]benzamide (3ak)

The general procedure was applied to *N*-butyl-2-fluorobenzamide (40 mg, 0.2 mmol), triethylchlorosilane (121 mg, 0.8 mmol), *tert*-butylmagnesium chloride (0.8 mL, 1.0 M in THF, 0.8 mmol) and dtbpy (6 mg, 0.02 mmol) at 50 °C for 12 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/20) to

afford the title compound as a white solid (14 mg, 23% yield). Melting point: 172– 174 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.72 (d, *J* = 6.9 Hz, 2H), 7.50–7.46 (m, 1H), 7.42 (t, *J* = 7.2 Hz, 2H), 5.76 (d, *J* = 9.8 Hz, 1H), 3.99–3.93 (m, 1H), 1.60–1.36 (m, 4H), 1.01 (t, *J* = 8.0 Hz, 9H), 0.91 (t, *J* = 7.1 Hz, 3H), 0.63 (q, *J* = 7.9 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ = 167.0, 135.4, 131.0, 128.6, 126.6, 38.3, 34.1, 20.6, 13.9, 7.6, 2.2. IR (neat): 3282, 1626, 1537, 1328, 1016, 711 cm⁻¹. HRMS (APCI⁺): calcd for C₁₇H₃₀NOSi [M+H]⁺ 292.2097, found 292.2095.

N-[phenyl(triethylsilyl)methyl]benzamide (3al)

The general procedure was applied to *N*-benzyl-2-fluorobenzamide (46 mg, 0.2 mmol), triethylchlorosilane (121 mg, 0.8 mmol), *tert*-butylmagnesium chloride (1.2 mL, 1.0 M in THF, 1.2 mmol) and dtbpy (6 mg, 0.02 mmol) at 50 °C for 12 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/30) to afford the title compound as a white solid (27 mg, 40% yield). Melting point: 94–96 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.70 (d, *J* = 7.0 Hz, 2H), 7.44 (t, *J* = 7.3 Hz, 1H), 7.38 (t, *J* = 7.3 Hz, 2H), 7.24–7.19 (m, 2H), 7.12–7.06 (m, 3H), 6.53 (d, *J* = 8.5 Hz, 1H), 4.91 (d, *J* = 8.8 Hz, 1H), 0.89 (t, *J* = 7.9 Hz, 9H), 0.57 (q, *J* = 7.7 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ = 167.0, 141.7, 135.0, 131.4, 128.7, 128.4, 126.8, 125.9, 125.7, 44.4, 7.4, 2.0. IR (neat): 3293, 1628, 1537, 1313, 1007, 704 cm⁻¹. HRMS (APCl⁺): calcd for C₂₀H₂₈NOSi [M+H]⁺ 326.1940, found 326.1939.

N-[(4-methoxyphenyl)(triethylsilyl)methyl]benzamide (3am)

The general procedure was applied to 2-fluoro-*N*-(4-methoxybenzyl)benzamide (52 mg, 0.2 mmol), triethylchlorosilane (121 mg, 0.8 mmol), *tert*-butylmagnesium

chloride (1.2 mL, 1.0 M in THF, 1.2 mmol) and dtbpy (6 mg, 0.02 mmol) at 50 °C for 12 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/30) to afford the title compound as a colorless oil (24 mg, 33% yield). ¹H NMR (400 MHz, CDCl₃): δ = 7.75 (d, *J* = 7.2 Hz, 2H), 7.50 (t, *J* = 7.2 Hz, 1H), 7.43 (t, *J* = 7.4 Hz, 2H), 7.11 (d, *J* = 8.6 Hz, 2H), 6.83 (d, *J* = 8.6 Hz, 2H), 6.55 (d, *J* = 8.7 Hz, 1H), 4.92 (d, *J* = 8.8 Hz, 1H), 3.77 (s, 3H), 0.97 (d, *J* = 8.0 Hz, 8H), 0.64 (q, *J* = 7.9 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ = 167.0, 157.7, 135.1, 133.8, 131.3, 128.6, 127.2, 126.8, 114.0, 55.2, 43.8, 7.4, 2.1. IR (neat): 3301, 1630, 1509, 1245, 1035, 830, 714 cm⁻¹. HRMS (APCI⁻): calcd for C₂₁H₂₈NO₂Si [M-H]⁻ 354.1889, found 354.1892.

N-[p-tolyl(triethylsilyl)methyl]benzamide (3an)

The general procedure was applied to 2-fluoro-*N*-(4-methylbenzyl)benzamide (49 mg, 0.2 mmol), triethylchlorosilane (121 mg, 0.8 mmol), *tert*-butylmagnesium chloride (1.2 mL, 1.0 M in THF, 1.2 mmol) and dtbpy (6 mg, 0.02 mmol) at 50 °C for 12 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/30) to afford the title compound as a colorless oil (28 mg, 41% yield). ¹H NMR (400 MHz, CDCl₃): δ = 7.76 (d, *J* = 7.4 Hz, 2H), 7.53–7.47 (m, 1H), 7.44 (t, *J* = 7.3 Hz, 2H), 7.13–7.01 (m, 4H), 6.56 (d, *J* = 8.5 Hz, 1H), 4.94 (d, *J* = 8.8 Hz, 1H), 2.30 (s, 3H), 0.96 (t, *J* = 7.9 Hz, 9H), 0.63 (q, *J* = 7.9 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ = 167.0, 138.5, 135.2, 135.1, 131.3, 129.1, 128.6, 126.8, 125.9, 44.2, 21.0, 7.4, 2.1. IR (neat): 3298, 1630, 1512, 1312, 1019, 819, 713 cm⁻¹. HRMS (APCI⁻): calcd for C₂₁H₂₈NOSi [M-H]⁻ 338.1940, found 338.1930.

N-[(3-chlorophenyl)(triethylsilyl)methyl]benzamide (3ao)

The general procedure was applied to *N*-(3-chlorobenzyl)-2-fluorobenzamide (53 mg, 0.2 mmol), triethylchlorosilane (121 mg, 0.8 mmol), *tert*-butylmagnesium chloride (1.2 mL, 1.0 M in THF, 1.2 mmol) and dtbpy (6 mg, 0.02 mmol) at 50 °C for 12 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/30) to afford the title compound as a colorless oil (28 mg, 38% yield). ¹H NMR (400 MHz, CDCl₃): δ = 8.09 (t, *J* = 7.8 Hz, 1H), 7.50 (d, *J* = 7.0 Hz, 1H), 7.37–7.05 (m, 8H), 4.93 (d, *J* = 7.4 Hz, 1H), 0.96 (t, *J* = 7.8 Hz, 9H), 0.64 (q, *J* = 7.9 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ = 163.1, 144.1, 134.4, 133.4, 132.4, 129.6, 125.8, 125.0, 124.0, 116.1, 115.9, 44.2, 7.2, 1.8. IR (neat): 3312, 1651, 1521, 1479, 1293, 1097, 786, 755 cm⁻¹. HRMS (APCI⁺): calcd for C₂₀H₂₆CINOSi [M+Na]⁺ 382.1370, found 382.1351.

N-[1-(triethylsilyl)allyl]benzamide (3ap)

The general procedure was applied to *N*-allyl-2-fluorobenzamide (90 mg, 0.5 mmol), triethylchlorosilane (303 mg, 2.0 mmol), *tert*-butylmagnesium chloride (2.0 mL, 1.0 M in THF, 2.0 mmol) and dtbpy (15 mg, 0.02 mmol) at 50 °C for 12 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/50) to afford the title compound as a white solid (69 mg, 50% yield). Melting point: 100–102 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.76 (d, *J* = 7.2 Hz, 2H), 7.51 (t, *J* = 7.3 Hz, 1H), 7.45 (t, *J* = 7.4 Hz, 2H), 6.12 (d, *J* = 8.6 Hz, 1H), 6.00–5.92 (m, 1H), 5.03–4.99 (m, 1H), 4.98 (d, *J* = 1.7 Hz, 1H), 4.64–4.52 (m, 1H), 1.02 (t, *J* = 7.9 Hz, 9H), 0.68 (q,

J = 7.9 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 166.9$, 136.6, 135.0, 131.3, 128.7, 126.7, 110.3, 42.7, 7.4, 2.0. IR (neat): 3278, 1626, 1532, 1324, 1010, 714 cm⁻¹. HRMS (APCI⁺): calcd for C₁₆H₂₆NOSi [M+H]⁺ 276.1784, found 276.1780. Spectroscopic data are in accordance with those described in the literature.⁷

N-[2-methyl-1-(triethylsilyl)allyl]benzamide (3aq)

The general procedure was applied to 2-fluoro-*N*-(2-methylallyl)benzamide (97 mg, 0.5 mmol), triethylchlorosilane (303 mg, 2.0 mmol), *tert*-butylmagnesium chloride (2.0 mL, 1.0 M in THF, 2.0 mmol) and dtbpy (15 mg, 0.02 mmol) at 50 °C for 12 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/50) to afford the title compound as a colorless oil (56 mg, 38% yield). ¹H NMR (400 MHz, CDCl₃): δ = 7.74 (d, *J* = 6.9 Hz, 2H), 7.50 (t, *J* = 7.3 Hz, 1H), 7.44 (t, *J* = 7.2 Hz, 2H), 6.28 (d, *J* = 8.6 Hz, 1H), 4.79 (s, 1H), 4.73 (s, 1H), 4.41 (d, *J* = 9.1 Hz, 1H), 1.82 (s, 3H), 1.02 (t, *J* = 7.9 Hz, 9H), 0.70 (q, *J* = 7.9 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ = 166.8, 145.0, 135.1, 131.3, 128.6, 126.7, 108.4, 45.5, 22.0, 7.5, 2.5. IR (neat): 3310, 1644, 1515, 1280, 1073, 710 cm⁻¹. HRMS (APCI⁺): calcd for C₁₇H₂₇NOSiCl [M+Cl]⁻ 324.1550, found 324.1551.

N-[(trimethylsilyl)methyl]benzamide (3ba)

The general procedure was applied to 2-fluoro-*N*-methylbenzamide (31 mg, 0.2 mmol), trimethylsilyl cyanide (80 mg, 0.8 mmol), *tert*-butylmagnesium chloride (0.8 mL, 1.0 M in THF, 0.8 mmol) and dtbpy (6 mg, 0.02 mmol) at 50 °C for 12 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/30) to afford the title compound as a white solid (26 mg, 62% yield). Melting point:

113-115 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.71 (d, *J* = 7.2 Hz, 2H), 7.44 (t, *J* = 7.3 Hz, 1H), 7.37 (t, *J* = 7.4 Hz, 2H), 6.29 (brs, 1H), 2.92 (d, *J* = 5.8 Hz, 2H), 0.10 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ = 167.7, 135.1, 131.0, 128.4, 126.7, 30.3, -2.6. IR (neat): 3300, 1625, 1548, 1325, 1247, 833, 694 cm⁻¹. HRMS (APCI⁺): calcd for C₁₁H₁₈NOSi [M+H]⁺ 208.1158, found 208.1151.

N-[phenyl(trimethylsilyl)methyl]benzamide (3ca)

The general procedure was applied to *N*-benzyl-2-fluorobenzamide (46 mg, 0.2 mmol), chlorotrimethylsilane (87 mg, 0.8 mmol), *tert*-butylmagnesium chloride (0.8 mL, 1.0 M in THF, 0.8 mmol) and dtbpy (6 mg, 0.02 mmol) at 50 °C for 12 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/30) to afford the title compound as a colorless oil (20 mg, 38% yield). ¹H NMR (400 MHz, CDCl₃): δ = 7.77 (d, *J* = 7.1 Hz, 2H), 7.50 (t, *J* = 7.3 Hz, 1H), 7.44 (t, *J* = 7.3 Hz, 2H), 7.31–7.26 (m, 2H), 7.16 (t, *J* = 7.3 Hz, 3H), 6.55 (d, *J* = 7.1 Hz, 1H), 4.83 (d, *J* = 8.7 Hz, 1H), 0.09 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ = 167.3, 141.3, 135.1, 131.4, 128.6, 128.4, 126.8, 125.9, 125.8, 46.9, –3.2. IR (neat): 3302, 1631, 1532, 1249, 842, 700 cm⁻¹. HRMS (APCI⁺): calcd for C₁₇H₂₂NOSi [M+H]⁺ 284.1471, found 284.1468.

N-[(triisopropylsilyl)methyl]benzamide (3da)

The general procedure was applied to 2-fluoro-*N*-methylbenzamide (31 mg, 0.2 mmol), triisopropylsilyl chloride (155 mg, 0.8 mmol), *tert*-butylmagnesium chloride

(0.8 mL, 1.0 M in THF, 0.8 mmol) and dtbpy (6 mg, 0.02 mmol) at 50 °C for 12 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/30) to afford the title compound as a white solid (16 mg, 27% yield). Melting point: 87–89 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.70 (d, *J* = 6.9 Hz, 2H), 7.48 (t, *J* = 7.3 Hz, 1H), 7.42 (t, *J* = 7.2 Hz, 2H), 5.92 (brs, 1H), 3.12 (d, *J* = 5.5 Hz, 2H), 1.18–1.09 (m, 21H); ¹³C NMR (100 MHz, CDCl₃): δ = 167.8, 135.2, 131.2, 128.6, 126.6, 23.8, 18.6, 10.5. IR (neat): 3286, 1646, 1541, 1320, 1074, 884, 714 cm⁻¹. HRMS (APCI⁺): calcd for C₁₇H₃₀NOSi [M+H]⁺ 292.2097, found 292.2095.

N-[(tert-butyldimethylsilyl)methyl]benzamide (3ea)

The general procedure was applied to 2-fluoro-*N*-methylbenzamide (31 mg, 0.2 mmol), *tert*-butyldimethylsilyl trifluoromethanesulfonate (212 mg, 0.8 mmol), *tert*-butylmagnesium chloride (0.8 mL, 1.0 M in THF, 0.8 mmol) and dtbpy (6 mg, 0.02 mmol) at 50 °C for 12 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/30) to afford the title compound as a white solid (15 mg, 30% yield). Melting point: 120–122 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.71 (d, *J* = 6.9 Hz, 2H), 7.48 (t, *J* = 6.6 Hz, 1H), 7.42 (t, *J* = 7.2 Hz, 2H), 5.91 (brs, 1H), 3.02 (d, *J* = 5.7 Hz, 2H), 0.95 (s, 9H), 0.08 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ = 167.8, 135.2, 131.2, 128.6, 126.7, 27.0, 26.5, 16.5, -6.9. IR (neat): 3234, 1626, 1553, 1397, 1229, 895, 702 cm⁻¹. HRMS (APCI⁺): calcd for C₁₄H₂₄NOSi [M+H]⁺ 250.1627, found 250.1619.

N-[(dimethyl(vinyl)silyl)methyl]benzamide (3fa)

The general procedure was applied to 2-fluoro-*N*-methylbenzamide (31 mg, 0.2 mmol), chlorodimethyl(vinyl)silane (97 mg, 0.8 mmol), *tert*-butylmagnesium chloride (0.8 mL, 1.0 M in THF, 0.8 mmol) and dtbpy (6 mg, 0.02 mmol) at 50 °C for 12 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/30) to afford the title compound as a colorless oil (6 mg, 13% yield). ¹H NMR (400 MHz, CDCl₃): δ = 7.71 (d, *J* = 7.0 Hz, 2H), 7.48 (t, *J* = 7.3 Hz, 1H), 7.42 (t, *J* = 7.3 Hz, 2H), 6.24–6.07 (m, 2H), 5.92 (brs, 1H), 5.82 (dd, *J* = 19.7, 4.3 Hz, 1H), 3.01 (d, *J* = 5.7 Hz, 2H), 0.21 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ = 167.8, 136.5, 135.1, 134.0, 131.2, 128.6, 126.7, 28.9, -4.4. IR (neat): 3303, 1633, 1544, 1312, 893, 838, 698 cm⁻¹. HRMS (APCI⁺): calcd for C₁₂H₁₈NOSi [M+H]⁺ 220.1158, found 220.1144.

N-[(dimethyl(phenyl)silyl)methyl]benzamide (3ga)

The general procedure was applied to 2-fluoro-*N*-methylbenzamide (78 mg, 0.5 mmol), chlorodimethyl(phenyl)silane (342 mg, 2.0 mmol), *tert*-butylmagnesium chloride (2.0 mL, 1.0 M in THF, 2.0 mmol) and dtbpy (6 mg, 0.02 mmol) at 50 °C for 12 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/30) to afford the title compound as a colorless oil (68 mg, 50% yield). ¹H NMR (400 MHz, CDCl₃): δ = 7.64–7.55 (m, 4H), 7.44–7.34 (m, 6H), 5.88 (brs, 1H), 3.17 (d, *J* = 5.7 Hz, 2H), 0.41 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ = 167.8, 136.4, 134.9, 133.7, 131.1, 129.7, 128.5, 128.2, 126.6, 29.3, –4.1. IR (neat): 3303, 1632, 1541, 1312, 1113, 836, 698 cm⁻¹. HRMS (APCI⁺): calcd for C₁₆H₂₀NOSi [M+H]⁺ 270.1314, found 270.1310.

5. Late-Stage Functionalization of α -Sila Benzamides

N-formylbenzamide (4)

Procedure modified from literature [9]:

In a dried Schlenk tube, *N*-[(triethylsilyl)methyl]benzamide (50 mg, 0.2 mmol), AgF (104 mg, 0.8 mmol), NBS (143 mg, 0.8 mmol) and THF (1 mL) was added under nitrogen atmosphere. After stirring at room temperature for 48 h, the reaction mixture was filtered through celite and removed the volatiles under vacuum. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/50) to afford the title compound as a white solid (12 mg, 40% yield). Melting point: 61–63 °C. ¹H NMR (400 MHz, CDCl₃): δ = 9.68 (s, 1H), 9.39 (d, *J* = 9.7 Hz, 1H), 7.96 (d, *J* = 7.2 Hz, 2H), 7.66 (t, *J* = 7.4 Hz, 1H), 7.55 (t, *J* = 7.7 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ = 166.5, 164.0, 133.9, 131.1, 129.1, 127.9. IR (neat): 3393, 3190, 1644, 1577, 1405, 701 cm⁻¹. HRMS (APCI⁻): calcd for C₈H₆NO₂ [M-H]⁻ 148.0399, found 148.0392. Spectroscopic data are in accordance with those described in the literature.⁸

N-(2-hydroxy-2-phenylethyl)benzamide (5)

Procedure modified from literature [11]:

In a dried Schlenk tube, *N*-[(triethylsilyl)methyl]benzamide (50 mg, 0.2 mmol), benzaldehyde (30 mg, 0.28 mmol), molecular sieves (4 Å, 100 mg) and THF (2.0 mL) were added under nitrogen atmosphere. Then, tetrabutylammonium fluoride (TBAF, 0.24 mL, 1 M solution in THF, 0.24 mmol) was added by syringe and the mixture was stirred at 60 °C for 20 h. After cooling to room temperature, 1 M HCl (3 mL) was

putted and the product was extracted with ethyl acetate. The organic layer was washed with brine (5 mL), dried over anhydrous Na₂SO₄, and concentrated in vacuum. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/30) to afford the title compound as a white solid (19 mg, 38% yield). Melting point: 164–166 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.80–7.70 (m, 2H), 7.54–7.48 (m, 1H), 7.48–7.34 (m, 6H), 7.33–7.28 (m, 1H), 6.62 (brs, 1H), 5.01–4.93 (m, 1H), 3.96–3.90 (m, 1H), 3.56–3.49 (m, 1H), 3.36 (d, *J* = 3.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ = 168.7, 141.8, 134.1, 131.7, 128.61,128.60, 128.0, 127.0, 125.8, 73.8, 47.8. IR (neat): 3296, 1633, 1544, 1056, 913, 690 cm⁻¹. HRMS (APCI⁺): calcd for C₁₅H₁₆NO₂ [M+H]⁺ 242.1181, found 242.1179. Spectroscopic data are in accordance with those described in the literature.¹⁰

N-{2-[(4-methoxyphenyl)amino]-2-phenylethyl}benzamide (6)

Procedure modified from literature [11]:

A solution of *N*-[(triethylsilyl)methyl]benzamide (50 mg, 0.2 mmol), (*E*)-*N*-benzylidene-4-methoxyaniline (55 mg, 0.26 mmol), and molecular sieves (4 Å, 100 mg) in THF (2 mL) was treated with TBAF (TBAF, 0.24 mL, 1 M solution in THF, 0.24 mmol) under nitrogen and the resulting solution was stirred at 60 °C for 24 h. The reaction was quenched with a saturated NaHCO₃ solution (4 mL) and the mixture was extracted with ethyl acetate. The organic layer was washed with brine, dried over anhydrous Na₂SO₄, and concentrated under vacuum. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/30) to afford the title compound as a white solid (30 mg, 43% yield). Melting point: 170–172 °C. ¹H NMR

(400 MHz, CDCl₃): $\delta = 7.71$ (d, J = 7.4 Hz, 2H), 7.49 (t, J = 7.3 Hz, 1H), 7.42–7.33 (m, 6H), 7.30–7.25 (m, 1H), 6.67 (d, J = 8.8 Hz, 2H), 6.50 (d, J = 8.8 Hz, 2H), 4.62 (s, 1H), 4.53 (dd, J = 7.6, 4.5 Hz, 1H), 3.87–3.72 (m, 2H), 3.67 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 168.6$, 152.1, 141.4, 141.2, 134.2, 131.7, 128.9, 128.6, 127.6, 126.9, 126.6, 114.8, 114.7, 60.0, 55.7, 46.6. IR (neat): 3384, 1628, 1518, 1247, 1034, 813, 699 cm⁻¹. HRMS (APCI⁺): calcd for C₂₂H₂₃N₂O₂ [M+H]⁺ 347.1760, found 347.1758.

(Z)-N-(prop-1-en-1-yl)benzamide (7)

Procedure modified from literature [7]:

A solution of *N*-[1-(triethylsilyl)allyl]benzamide (56 mg, 0.2 mmol) in anhydrous Toluene (2 mL) was stirred at 110 °C for 10 h. After cooling to room temperature, water (2 mL) was added and the product was extracted with ethyl acetate. The organic layer was washed with brine (5 mL), dried over anhydrous Na₂SO₄, and concentrated in vacuum. The crude product was purified by column chromatography on silica gel (EtOAc/PE =1/50) to afford the title compound as a pale yellow oil (26 mg, 80% yield). ¹H NMR (400 MHz, CDCl₃): δ = 7.75 (d, *J* = 7.5 Hz, 2H), 7.53 (s, 1H), 7.48 (t, *J* = 7.3 Hz, 1H), 7.40 (t, *J* = 7.5 Hz, 2H), 6.88 (t, *J* = 9.8 Hz, 1H), 4.93–4.82 (m, 1H), 1.64 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 164.3, 134.0, 131.9, 128.8, 127.0, 122.3, 106.1, 11.0. IR (neat): 3389, 1646, 1577, 1403, 1143, 694 cm⁻¹. HRMS (APCI⁺): calcd for C₁₀H₁₂NO [M+H]⁺ 162.0919, found 162.0910. Spectroscopic data are in accordance with those described in the literature.⁷

Methyl N-[phenyl(trimethylsilyl)methyl]benzimidate (9)

Procedure modified from literature [12]:

To a solution of *N*-[α -(trimethylsilyl)benzyl]benzamide (283 mg, 1 mmol) in dichloromethane (10 mL), methyl trifluorometanesulfonate (329 mg, 2 mmol) was added and stirred at room temperature for 96 h. The reaction mixture was then washed with 1 M NaOH (10 mL) followed by dried over anhydrous Mg₂SO₄. After filtration, the volatiles were removed under vacuum to afford the title compound as a yellow oil (297 mg, quantitative yield). ¹H NMR (400 MHz, CDCl₃): δ = 7.40–7.35 (m, 3H), 7.29–7.22 (m, 6H), 7.15–7.10 (m, 1H), 4.24 (s, 1H), 3.89 (s, 3H), –0.12 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ = 158.2, 143.7, 132.2, 129.2, 128.3, 128.0, 128.0, 125.9, 124.8, 57.9, 52.9, –3.7. IR (neat): 1659, 1492, 1246, 1117, 841, 700 cm⁻¹. HRMS (APCI⁺): calcd for C₁₈H₂₄NOSi [M+H]⁺ 298.1627, found 298.1623. Spectroscopic data are in accordance with those described in the literature.¹²

Dimethyl 2,5-diphenyl-1H-pyrrole-3,4-dicarboxylate (8)

Procedure modified from literature [12]:

To a solution of Methyl *N*-[phenyl(trimethylsilyl)methyl]benzimidate (**9**) (60 mg, 0.2 mmoi) in dichloromethane (10 mL), dimethyl maleate (35 mg, 0.24 mmol) and trifluoro(phenyl)silane (39 mg, 0.24 mmol) were added at room temperature. After stirring for 48 h, the volatiles were removed unvacuum. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/50) to afford the title compound (65 mg, 96% yield). ¹H NMR (400 MHz, CDCl₃): δ = 9.06 (s, 1H), 7.52–7.50 (m, 4H), 7.38–7.32 (m, 6H), 3.72 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ =

165.8, 134.6, 130.7, 128.4, 128.1, 113.9, 51.7. Spectroscopic data are in accordance with those described in the literature.¹³

6. The Measurement of [1,5]-D Transfer

The general procedure was applied to **1a**-*d*₃ (32 mg, 0.2 mmol), triethylchlorosilane (121 mg, 0.8 mmol), *tert*-butylmagnesium chloride (0.8 mL, 1.0 M in THF, 0.8 mmol) and dtbpy (6 mg, 0.02 mmol) at 50 °C for 12 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/30) to afford the title compound as a colorless oil (37 mg, 73% yield). ¹H NMR (400 MHz, CDCl₃): δ = 7.74–7.67 (m, 1H), 7.50–7.45 (m, 1H), 7.45–7.37 (m, 2H), 5.91 (brs, 1H), 1.00 (t, J = 7.9 Hz, 9H), 0.65 (q, J = 7.9 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ = 167.8, 135.1, 131.1, 128.6, 128.5, 126.6, 7.3, 2.6. IR (neat): 3299, 1627, 1532, 1315, 1017, 739 cm⁻¹. HRMS (APCI⁺): calcd for C₁₄H₂₁D₃NOSi [M+H]⁺253.1816, found 253.1812.

7. H/D crossover experiment

The general procedure was applied to $1a-d_3$ (32 mg, 0.2 mmol), 1c (35 mg, 0.2 mmol) triethylchlorosilane (121 mg, 0.8 mmol), *tert*-butylmagnesium chloride (0.8 mL, 1.0 M in THF, 0.8 mmol) and dtbpy (6 mg, 0.02 mmol) at 50 °C for 12 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/100) to afford the **3aa**- d_3 (43% yield) and **3ac** (56% yield).

8. Kinetic Isotope Effect on the Silylation of C(sp³)–H Bond

The general procedure was applied to **1a** (31 mg, 0.2 mmol) or **1a**- d_3 (32 mg, 0.2 mmol), triethylchlorosilane (121 mg, 0.8 mmol), *tert*-butylmagnesium chloride (0.8 mL, 1.0 M in THF, 0.8 mmol) and dtbpy (6 mg, 0.02 mmol) at 50 °C for designated time (30 min, 60 min, 90 min, 120 min, 150 min). Then the reaction mixture was cooled to room temperature and quenched with a solution of NH₄Cl. The yield was determined by GC analysis. A value of K_H/K_D=4.33 was obtained.

9. X-Ray Crystal Structure of 3ba

Product 3ba:

Table S6. Crystal data and structure refinement for 3ba.

Identification code	1	
Empirical formula	C ₁₁ H ₁₇ NOSi	
Formula weight	207.35	
Temperature	293(2) K	
Wavelength	0.71073 A	
Crystal system, space group	Monoclinic, Pc	
Unit cell dimensions	a = 10.178(4) A alpha = 90 deg.	
	b = 10.104(4) A beta = 108.216(6) deg.	
	c = 12.720(5) A gamma = 90 deg.	
Volume	1242.5(8) A^3	
Z, Calculated density	4, 1.108 Mg/m^3	
Absorption coefficient	0.161 mm^-1	
F(000)	448	
Crystal size	? x ? x ? mm	
Theta range for data collection	2.02 to 24.64 deg.	
Limiting indices	-11<=h<=11,-11<=k<=11,-13<=l<=14	
Reflections collected / unique	9597 / 3768 [R(int) = 0.0254]	

Completeness to theta $= 24.64$	99.7 %
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	3768 / 26 / 260
Goodness-of-fit on F^2	1.261
Final R indices [I>2sigma(I)]	R1 = 0.1330, wR2 = 0.3229
R indices (all data)	R1 = 0.1578, wR2 = 0.3530
Absolute structure parameter	0.4(5)
Largest diff. peak and hole	1.792 and -0.518 e.A^-3

Table S7. Atomic coordinates ($x \ 10^{4}$) and equivalent isotropic displacement parameters (A² $x \ 10^{3}$) for 3ba.

U(eq) is defined as one third of the trace of the orthogonalized

Uij tensor.

	X	у	Z	U(eq)
_				
Si(1)	12145(2)	9948(2)	7387(2)	41(1)
O(1)	8943(12)	11938(7)	7311(10)	98(3)
N(1)	9338(8)	9834(8)	7243(7)	50(2)
C(2)	13194(15)	9992(9)	6414(12)	71(3)
C(1)	12541(12)	11393(12)	8328(10)	74(3)
C(3)	12530(12)	8431(11)	8222(11)	77(4)
C(4)	10254(10)	9940(7)	6545(8)	42(2)
C(5)	8804(13)	10766(9)	7536(11)	74(4)
C(6)	7828(13)	10528(10)	8299(9)	62(3)
C(11)	7700(17)	11462(12)	8948(16)	102(5)
C(10)	6875(16)	11195(15)	9617(14)	97(4)
C(9)	6382(11)	10020(9)	9750(11)	59(3)
C(8)	6659(16)	8985(15)	9231(15)	99(4)
-------	-----------	----------	-----------	--------
C(7)	7399(14)	9295(12)	8353(10)	77(4)
Si(2)	5630(3)	4969(2)	5759(2)	42(1)
O(2)	8824(12)	6923(6)	7276(10)	98(3)
N(2)	8428(8)	4822(8)	7012(7)	50(2)
C(12)	5267(11)	6406(12)	6517(11)	70(3)
C(14)	5207(12)	3430(12)	6381(12)	80(4)
C(13)	4573(14)	5054(9)	4251(10)	66(3)
C(15)	7529(10)	4954(7)	5865(9)	44(2)
C(16)	8959(13)	5766(9)	7569(13)	77(4)
C(17)	9950(12)	5534(10)	8833(10)	62(3)
C(18)	10090(17)	6446(12)	9567(16)	104(5)
C(19)	10855(14)	6202(13)	10631(13)	89(4)
C(20)	11404(11)	5013(9)	11014(10)	58(3)
C(21)	11078(18)	3965(15)	10331(14)	111(5)
C(22)	10377(14)	4290(12)	9102(11)	77(3)

Table S8. Bond lengths [A] and angles [deg] for 3ba.

Si(1)-C(3)	1.836(10)
Si(1)-C(1)	1.850(10)
Si(1)-C(2)	1.872(11)
Si(1)-C(4)	1.887(10)
O(1)-C(5)	1.236(11)
N(1)-C(5)	1.203(14)
N(1)-C(4)	1.480(14)
N(1)-H(1)	0.8600

C(2)-H(2A)	0.9600
C(2)-H(2B)	0.9600
C(2)-H(2C)	0.9600
C(1)-H(1A)	0.9600
C(1)-H(1B)	0.9600
C(1)-H(1C)	0.9600
C(3)-H(3A)	0.9600
C(3)-H(3B)	0.9600
C(3)-H(3C)	0.9600
C(4)-H(4A)	0.9700
C(4)-H(4B)	0.9700
C(5)-C(6)	1.610(18)
C(6)-C(11)	1.287(18)
C(6)-C(7)	1.329(18)
C(11)-C(10)	1.40(2)
C(11)-H(11)	0.9300
C(10)-C(9)	1.321(17)
C(10)-H(10)	0.9300
C(9)-C(8)	1.313(18)
C(9)-H(9)	0.9300
C(8)-C(7)	1.56(2)
C(8)-H(8)	0.9300
C(7)-H(7)	0.9300
Si(2)-C(12)	1.844(10)
Si(2)-C(14)	1.855(10)
Si(2)-C(13)	1.885(12)
Si(2)-C(15)	1.894(10)

O(2)-C(16)	1.222(11)
N(2)-C(16)	1.210(15)
N(2)-C(15)	1.466(14)
N(2)-H(2)	0.8600
C(12)-H(12A)	0.9600
C(12)-H(12B)	0.9600
C(12)-H(12C)	0.9600
C(14)-H(14A)	0.9600
C(14)-H(14B)	0.9600
C(14)-H(14C)	0.9600
C(13)-H(13A)	0.9600
C(13)-H(13B)	0.9600
C(13)-H(13C)	0.9600
C(15)-H(15A)	0.9700
C(15)-H(15B)	0.9700
C(16)-C(17)	1.626(18)
C(17)-C(18)	1.287(19)
C(17)-C(22)	1.339(17)
C(18)-C(19)	1.36(2)
C(18)-H(18)	0.9300
C(19)-C(20)	1.350(16)
C(19)-H(19)	0.9300
C(20)-C(21)	1.344(18)
C(20)-H(20)	0.9300
C(21)-C(22)	1.54(2)
C(21)-H(21)	0.9300
C(22)-H(22)	0.9300

C(3)-Si(1)-C(1)	108.7(7)
C(3)-Si(1)-C(2)	109.9(5)
C(1)-Si(1)-C(2)	110.8(6)
C(3)-Si(1)-C(4)	108.7(5)
C(1)-Si(1)-C(4)	110.4(4)
C(2)-Si(1)-C(4)	108.4(6)
C(5)-N(1)-C(4)	124.0(10)
C(5)-N(1)-H(1)	118.0
C(4)-N(1)-H(1)	118.0
Si(1)-C(2)-H(2A)	109.5
Si(1)-C(2)-H(2B)	109.5
H(2A)-C(2)-H(2B)	109.5
Si(1)-C(2)-H(2C)	109.5
H(2A)-C(2)-H(2C)	109.5
H(2B)-C(2)-H(2C)	109.5
Si(1)-C(1)-H(1A)	109.5
Si(1)-C(1)-H(1B)	109.5
H(1A)-C(1)-H(1B)	109.5
Si(1)-C(1)-H(1C)	109.5
H(1A)-C(1)-H(1C)	109.5
H(1B)-C(1)-H(1C)	109.5
Si(1)-C(3)-H(3A)	109.5
Si(1)-C(3)-H(3B)	109.5
H(3A)-C(3)-H(3B)	109.5
Si(1)-C(3)-H(3C)	109.5
H(3A)-C(3)-H(3C)	109.5
H(3B)-C(3)-H(3C)	109.5

N(1)-C(4)-Si(1)	112.4(7)
N(1)-C(4)-H(4A)	109.1
Si(1)-C(4)-H(4A)	109.1
N(1)-C(4)-H(4B)	109.1
Si(1)-C(4)-H(4B)	109.1
H(4A)-C(4)-H(4B)	107.9
N(1)-C(5)-O(1)	125.7(14)
N(1)-C(5)-C(6)	119.6(9)
O(1)-C(5)-C(6)	114.8(11)
C(11)-C(6)-C(7)	123.6(12)
C(11)-C(6)-C(5)	118.8(10)
C(7)-C(6)-C(5)	116.5(10)
C(6)-C(11)-C(10)	116.8(13)
C(6)-C(11)-H(11)	121.6
C(10)-C(11)-H(11)	121.6
C(9)-C(10)-C(11)	125.2(14)
C(9)-C(10)-H(10)	117.4
C(11)-C(10)-H(10)	117.4
C(8)-C(9)-C(10)	120.1(13)
C(8)-C(9)-H(9)	119.9
C(10)-C(9)-H(9)	119.9
C(9)-C(8)-C(7)	115.3(12)
C(9)-C(8)-H(8)	122.3
C(7)-C(8)-H(8)	122.3
C(6)-C(7)-C(8)	117.7(10)
C(6)-C(7)-H(7)	121.2
C(8)-C(7)-H(7)	121.2

C(12)-Si(2)-C(14)	109.0(7)
C(12)-Si(2)-C(13)	110.6(5)
C(14)-Si(2)-C(13)	109.7(6)
C(12)-Si(2)-C(15)	109.6(4)
C(14)-Si(2)-C(15)	109.3(4)
C(13)-Si(2)-C(15)	108.6(6)
C(16)-N(2)-C(15)	122.5(10)
C(16)-N(2)-H(2)	118.8
C(15)-N(2)-H(2)	118.8
Si(2)-C(12)-H(12A)	109.5
Si(2)-C(12)-H(12B)	109.5
H(12A)-C(12)-H(12B)	109.5
Si(2)-C(12)-H(12C)	109.5
H(12A)-C(12)-H(12C)	109.5
H(12B)-C(12)-H(12C)	109.5
Si(2)-C(14)-H(14A)	109.5
Si(2)-C(14)-H(14B)	109.5
H(14A)-C(14)-H(14B)	109.5
Si(2)-C(14)-H(14C)	109.5
H(14A)-C(14)-H(14C)	109.5
H(14B)-C(14)-H(14C)	109.5
Si(2)-C(13)-H(13A)	109.5
Si(2)-C(13)-H(13B)	109.5
H(13A)-C(13)-H(13B)	109.5
Si(2)-C(13)-H(13C)	109.5
H(13A)-C(13)-H(13C)	109.5
H(13B)-C(13)-H(13C)	109.5

N(2)-C(15)-Si(2)	112.1(7)
N(2)-C(15)-H(15A)	109.2
Si(2)-C(15)-H(15A)	109.2
N(2)-C(15)-H(15B)	109.2
Si(2)-C(15)-H(15B)	109.2
H(15A)-C(15)-H(15B)	107.9
N(2)-C(16)-O(2)	126.1(15)
N(2)-C(16)-C(17)	119.4(9)
O(2)-C(16)-C(17)	114.5(12)
C(18)-C(17)-C(22)	122.2(12)
C(18)-C(17)-C(16)	120.5(11)
C(22)-C(17)-C(16)	116.1(9)
C(17)-C(18)-C(19)	119.5(14)
C(17)-C(18)-H(18)	120.3
C(19)-C(18)-H(18)	120.3
C(20)-C(19)-C(18)	124.4(13)
C(20)-C(19)-H(19)	117.8
C(18)-C(19)-H(19)	117.8
C(21)-C(20)-C(19)	118.5(13)
C(21)-C(20)-H(20)	120.7
C(19)-C(20)-H(20)	120.7
C(20)-C(21)-C(22)	115.5(12)
C(20)-C(21)-H(21)	122.2
C(22)-C(21)-H(21)	122.2
C(17)-C(22)-C(21)	118.1(10)
C(17)-C(22)-H(22)	121.0

Symmetry transformations used to generate equivalent atoms:

Table S9. Anisotropic displacement parameters (A^2 x 10^3) for 3ba.

The anisotropic displacement factor exponent takes the form:

—							
		U11	U22	U33	U23	U13	U12
	Si(1)	44(1)	38(1)	40(2)	-1(1)	13(1)	0(1)
	O(1)	102(6)	51(4)	142(8)	9(5)	42(6)	-3(4)
	N(1)	47(5)	60(5)	38(5)	-9(3)	6(4)	15(4)
	C(2)	87(9)	76(8)	67(9)	1(5)	48(7)	1(5)
	C(1)	70(7)	72(7)	64(8)	-26(6)	1(6)	12(5)
	C(3)	67(7)	66(7)	95(10)	36(6)	21(7)	1(5)
	C(4)	43(5)	47(5)	32(5)	1(3)	4(4)	0(3)
	C(5)	70(7)	38(5)	88(9)	23(6)	-13(6)	-8(5)
	C(6)	86(8)	44(5)	46(6)	-11(4)	5(5)	-17(5)
	C(11)	105(10)	53(7)	155(14	4) 16(8	5) 52(1	0) 18(6)
	C(10)	94(7)	94(7)	117(9)	10(6)	53(7)	18(6)
	C(9)	44(5)	70(7)	69(8)	0(5)	25(5)	2(4)
	C(8)	94(7)	83(7)	133(9)	-23(6)	54(7)	-24(6)
	C(7)	110(9)	55(7)	61(7)	-19(5)	21(7)	18(6)
	Si(2)	45(1)	38(1)	42(2)	-1(1)	14(1)	1(1)
	O(2)	106(6)	46(4)	137(8)	15(5)	32(6)	3(4)
	N(2)	47(5)	58(5)	48(5)	-19(4)	21(4)	-17(4)
	C(12)	56(6)	84(8)	80(8)	-32(6)	34(6)	0(5)

C(14)	70(7)	78(8)	95(10)	39(7)	30(7)	-3(6)	
C(13)	79(8)	71(7)	39(7)	-3(4)	5(6)	0(5)	
C(15)	47(5)	44(5)	45(6)	-6(4)	19(4)	3(3)	
C(16)	73(7)	48(6)	132(12)	42(7)	65(8)	14(5)	
C(17)	92(8)	38(5)	73(8)	1(5)	49(7)	18(5)	
C(18)	107(10)	56(7)	143(15)	2(8)	31(10) -28(7)	
C(18) C(19)	107(10) 90(7)	56(7) 73(6)	143(15) 85(8)	2(8) -2(6)	31(10 -1(6)) -28(7) -15(6)	
C(18) C(19) C(20)	107(10) 90(7) 44(5)	56(7) 73(6) 65(7)	143(15) 85(8) 51(7)	2(8) -2(6) -1(4)	31(10 -1(6) -3(5)) -28(7) -15(6) 1(4)	
C(18) C(19) C(20) C(21)	107(10) 90(7) 44(5) 121(9)	56(7) 73(6) 65(7) 76(7)	143(15) 85(8) 51(7) 115(9)	2(8) -2(6) -1(4) -9(6)	31(10 -1(6) -3(5) 7(7)) -28(7) -15(6) 1(4) 48(6)	
C(18) C(19) C(20) C(21) C(22)	107(10) 90(7) 44(5) 121(9) 99(9)	56(7) 73(6) 65(7) 76(7) 66(7)	143(15) 85(8) 51(7) 115(9) 72(9)	2(8) -2(6) -1(4) -9(6) -29(6)	31(10 -1(6) -3(5) 7(7) 34(7)) -28(7) -15(6) 1(4) 48(6) -16(6)	

Table S10. Hydrogen coordinates ($x \ 10^{4}$) and isotropic displacement parameters (A² x 10³) for 3ba.

	X	У	Z	U(eq)
H(1)	9177	9058	7453	60
H(2A)	14160	10022	6830	107
H(2B)	12953	10764	5953	107
H(2C)	13008	9213	5959	107
H(1A)	12013	11338	8834	110
H(1B)	12305	12192	7902	110
H(1C)	13509	11398	8736	110
H(3A)	12080	8466	8782	115
H(3B)	13511	8356	8567	115
H(3C)	12200	7678	7754	115
H(4A)	10039	10748	6113	51

H(4B)	10077	9201	6033	51
H(11)	8136	12275	8971	122
H(10)	6654	11902	10000	116
H(9)	5838	9924	10212	71
H(8)	6431	8128	9377	119
H(7)	7535	8639	7885	92
H(2)	8583	4045	7300	60
H(12A)	5938	6444	7240	106
H(12B)	4358	6321	6586	106
H(12C)	5315	7203	6119	106
H(14A)	5833	3330	7118	120
H(14B)	5293	2684	5940	120
H(14C)	4276	3481	6407	120
H(13A)	3608	4993	4182	99
H(13B)	4824	4334	3860	99
H(13C)	4748	5878	3945	99
H(15A)	7702	4223	5432	53
H(15B)	7753	5768	5555	53
H(18)	9670	7265	9369	124
H(19)	11011	6901	11130	107
H(20)	11995	4921	11734	69
H(21)	11263	3100	10585	133
H(22)	10253	3642	8560	93

Table S11. Torsion angles [deg] for 3ba.

C(5)-N(1)-C(4)-Si(1) 96.4(10)

C(3)-Si(1)-C(4)-N(1)	57.6(7)
C(1)-Si(1)-C(4)-N(1)	-61.5(7)
C(2)-Si(1)-C(4)-N(1)	177.0(5)
C(4)-N(1)-C(5)-O(1)	-0.6(17)
C(4)-N(1)-C(5)-C(6)	-179.9(8)
N(1)-C(5)-C(6)-C(11)	153.3(12)
O(1)-C(5)-C(6)-C(11)	-26.1(17)
N(1)-C(5)-C(6)-C(7)	-15.4(15)
O(1)-C(5)-C(6)-C(7)	165.3(10)
C(7)-C(6)-C(11)-C(10)	-10(2)
C(5)-C(6)-C(11)-C(10)	-178.2(11)
C(6)-C(11)-C(10)-C(9)	10(2)
C(11)-C(10)-C(9)-C(8)	0(3)
C(10)-C(9)-C(8)-C(7)	-8(2)
C(11)-C(6)-C(7)-C(8)	2.0(19)
C(5)-C(6)-C(7)-C(8)	170.1(11)
C(9)-C(8)-C(7)-C(6)	8(2)
C(16)-N(2)-C(15)-Si(2)	-96.8(9)
C(12)-Si(2)-C(15)-N(2)	61.9(7)
C(14)-Si(2)-C(15)-N(2)	-57.5(8)
C(13)-Si(2)-C(15)-N(2)	-177.2(6)
C(15)-N(2)-C(16)-O(2)	0.7(17)
C(15)-N(2)-C(16)-C(17)	-179.7(8)
N(2)-C(16)-C(17)-C(18)	-152.7(12)
O(2)-C(16)-C(17)-C(18)	27.0(16)
N(2)-C(16)-C(17)-C(22)	15.0(14)
O(2)-C(16)-C(17)-C(22)	-165.3(10)

C(22)-C(17)-C(18)-C(19)	9(2)
C(16)-C(17)-C(18)-C(19)	176.0(11)
C(17)-C(18)-C(19)-C(20)	-6(2)
C(18)-C(19)-C(20)-C(21)	-6(2)
C(19)-C(20)-C(21)-C(22)	13(2)
C(18)-C(17)-C(22)-C(21)	-1(2)
C(16)-C(17)-C(22)-C(21)	-168.6(12)
C(20)-C(21)-C(22)-C(17)	-10(2)

Symmetry transformations used to generate equivalent atoms:

Supplementary References

- 1. Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923–2925.
- Galan, J. F.; Brown, J.; Wildin, J. L.; Liu, Z.; Liu, D.; Moyna, G.; Pophristic, V. J. Phys. Chem. B. 2009, 113, 12809–12815.
- 3. Du, Y.; Hyster, T. K.; Rovis, T. Chem. Commun. 2011, 47, 12074–12076.
- Yu, D.-G.; Gensch. T.; Azambuja, F. D.; Vásquez-Céspedes, S.; Glorius, F. J. Am. Chem. Soc. 2014, 136, 17722–17725.
- Reddy, K. R.; Maheswari, C. U.; Venkateshwar, M.; Kantam, M. L. Eur. J. Org. Chem. 2008, 3619–3622.
- 6. Yedage, S. L.; D'silva, D. S.; Bhanage, B. M. *RSC Adv*, **2015**, *5*, 80441–80449.
- Lin, S.; Yang, Z.-Q.; Kwok, B. H. B.; Koldobskiy, M.; Crews, C. M.; Danishefsky, S. J. Am. Chem. Soc. 2004, 126, 6347–6355.
- Niu, Z.; Lin, S.; Dong, Z.; Sun, H.; Liang, F.; Zhang, J. Org. Biomol. Chem. 2013, 11, 2460–2465.

- Chernyak, N.; Dudnik, A. S.; Huang, C.; Gevorgyan, V. J. Am. Chem. Soc. 2010, 132, 8270–8272.
- 10. Cardus, G. J.; Carnell, A. J.; Trauthwein, H.; Riermeir, T.; *Tetrahedron:* Asymmetry **2004**, 15, 239–243.
- Leiendecker, M.; Hsiao, C.-C.; Guo, L.; Alandini, N.; Rueping, M. Angew. Chem., Int. Ed. 2014, 53, 12912–12915.
- 12. Washizuka, K. I.; Minakata, S.; Ryu, I.; Komatsu, M. Tetrahedron. 1999, 55, 12969–12976.
- Xuan, J.; Xia, X.-D.; Zeng, T.-T.; Feng, Z.-J.; Chen, J.-R.; Lu, L.-Q.; Xiao, W.-J.
 Angew. Chem., Int. Ed. 2014, 53, 5653–5656.

¹H and ¹³C NMR spectra in CDCl₃ for compound 1a

¹⁹F NMR spectrum in CDCl₃ for compound 1a

¹H and ¹³C NMR spectra in CDCl₃ for compound 1b

¹⁹F NMR spectrum in CDCl₃ for compound 1b

¹H and ¹³C NMR spectra in CDCl₃ for compound 1c

¹⁹F NMR spectrum in CDCl₃ for compound 1c

¹H and ¹³C NMR spectra in CDCl₃ for compound 1d

¹⁹F NMR spectrum in CDCl₃ for compound 1d

¹H and ¹³C NMR spectra in CDCl₃ for compound 1e

¹⁹F NMR spectrum in CDCl₃ for compound 1e

¹H and ¹³C NMR spectra in CDCl₃ for compound 1f

¹⁹F NMR spectrum in CDCl₃ for compound 1f

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra in CDCl_3 for compound 1g

¹⁹F NMR spectrum in CDCl₃ for compound 1g

-7.200 -7.306 -7.306 -7.200 -6.490 -6.490 -6.206 -4.111

¹H and ¹³C NMR spectra in CDCl₃ for compound 1h

¹⁹F NMR spectrum in CDCl₃ for compound 1h

¹H and ¹³C NMR spectra in CDCl₃ for compound 1i

¹⁹F NMR spectrum in CDCl₃ for compound 1i

¹H and ¹³C NMR spectra in DMSO-*d*₆ for compound 1j

¹⁹F NMR spectrum in DMSO-*d*₆ for compound 1j

¹H and ¹³C NMR spectra in CDCl₃ for compound 1k

¹⁹F NMR spectrum in CDCl₃ for compound 1k

¹H and ¹³C NMR spectra in CDCl₃ for compound 11

¹⁹F NMR spectrum in CDCl₃ for compound 11

¹H and ¹³C NMR spectra in CDCl₃ for compound 1m

¹⁹F NMR spectrum in CDCl₃ for compound 1m

¹H and ¹³C NMR spectra in CDCl₃ for compound 1n

¹⁹F NMR spectrum in CDCl₃ for compound 1n

¹H and ¹³C NMR spectra in CDCl₃ for compound 10

¹⁹F NMR spectrum in CDCl₃ for compound 10

8 8 039 8 8 039 8 000 7 1 3000 7 1 3000 7 1 3000 7 1 3000 7 1 3000 7 1 3000 7 1 3000 7 1 30000

¹H and ¹³C NMR spectra in CDCl₃ for compound 1p

¹⁹F NMR spectrum in CDCl₃ for compound 1p

¹H and ¹³C NMR spectra in CDCl₃ for compound 1q

¹⁹F NMR spectrum in CDCl₃ for compound 1aq

8.123 8.119 8.009 8.009 8.009 8.009 8.009 8.009 8.009 7.1450 7.1157 7.1157 7.1157 7.1157 7.1157 7.1157 7.1157

¹H and ¹³C NMR spectra in CDCl₃ for compound 1a-*d*₃

¹⁹F NMR spectrum in CDCl₃ for compound 1a-*d*₃

¹H and ¹³C NMR spectra in CDCl₃ for compound 3aa

¹H and ¹³C NMR spectra in CDCl₃ for compound 3ab

¹⁹F NMR spectrum in CDCl₃ for compound 3ab

--62.79

¹H and ¹³C NMR spectra in CDCl₃ for compound 3ac

¹⁹F NMR spectrum in CDCl₃ for compound 3ac

¹H and ¹³C NMR spectra in CDCl₃ for compound 3ad

¹H and ¹³C NMR spectra in CDCl₃ for compound 3ae

¹H and ¹³C NMR spectra in CDCl₃ for compound 3af

¹H and ¹³C NMR spectra in CDCl₃ for compound 3ag

¹H and ¹³C NMR spectra in CDCl₃ for compound 3ah

¹H and ¹³C NMR spectra in CDCl₃ for compound 3ai

¹H and ¹³C NMR spectra in CDCl₃ for compound 3aj

¹H and ¹³C NMR spectra in CDCl₃ for compound 3ak

¹H and ¹³C NMR spectra in CDCl₃ for compound 3al

¹H and ¹³C NMR spectra in CDCl₃ for compound 3an

¹H and ¹³C NMR spectra in CDCl₃ for compound 3ao

¹H and ¹³C NMR spectra in CDCl₃ for compound 3ap

¹H and ¹³C NMR spectra in CDCl₃ for compound 3aq

¹H and ¹³C NMR spectra in CDCl₃ for compound 3ba

¹H and ¹³C NMR spectra in CDCl₃ for compound 3ca

¹H and ¹³C NMR spectra in CDCl₃ for compound 3da

¹H and ¹³C NMR spectra in CDCl₃ for compound 3ea

¹H and ¹³C NMR spectra in CDCl₃ for compound 3fa

 $\zeta^{3.180}_{3.165}$

-0.408

¹H and ¹³C NMR spectra in CDCl₃ for compound 3ga

¹H and ¹³C NMR spectra in CDCl₃ for compound 3aa-d₃

¹H and ¹³C NMR spectra in CDCl₃ for compound 4

¹H and ¹³C NMR spectra in CDCl₃ for compound 5

7.7.71 7.7.471 7.7.732 7.7.471 7.7.732 7.7.742 7.7.742 7.7.742 7.7.742 7.7.742 7.7.742 7.7.742 7.7.742 7.7.742 7.7.742 7.7.742 7.7.742 7.7.742 7.7.742 7.7.742 7.7.744

¹H and ¹³C NMR spectra in CDCl₃ for compound 6

¹H and ¹³C NMR spectra in CDCl₃ for compound 7

---0.120

7,238 7,239 7,239 7,239 7,239 7,239 7,2317

¹H and ¹³C NMR spectra (in CDCl₃) for intermediate 9 in the synthesis of pyrrole 8

-9.058 7.23 7.1519 7.15

-3.723

¹H and ¹³C NMR spectra in CDCl₃ for compound 8