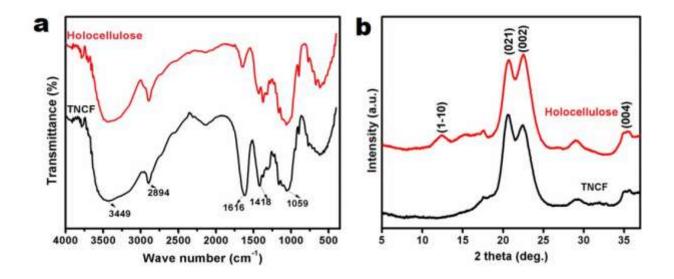

TEMPO-Oxidized Nanocellulose Fiber-Directed Stable Aqueous Suspension of Plasmonic Flowerlike Silver Nanoconstructs for Ultra-Trace Detection of Analytes


Kallayi Nabeela,^{†,‡} Reny Thankam Thomas,[†] Jyothi B. Nair,^{‡,§} Kaustabh Kumar Maiti,^{‡,§} Krishna Gopa Kumar Warrier,[†] and Saju Pillai^{*,†,‡}

Corresponding author email: pillai saju@niist.res.in

[†] Functional Materials, Materials Science and Technology Division, and § Organic Chemistry, Chemical Science and Technology Division, Council of Scientific & Industrial Research (CSIR), National Institute for
Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala 695 019, India
[‡] Academy of Scientific and Innovative Research (AcSIR), New Delhi-110 001, India

Figure S1. Photographs of banana fibers (left top) and T-NCF extracted from banana fibers (left bottom). (a) SEM, (b) TEM, (c) AFM height image, and (d) corresponding higher magnification phase image of T-NCF.

Figure S2. (a) FTIR spectra of holocellulose and TEMPO-oxidized nanocellulose, (b) WAXS pattern of holocellulose, and TEMPO-oxidized nanocellulose fibers.

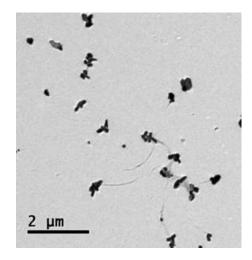


Figure S3. TEM image of AgNF over large area,

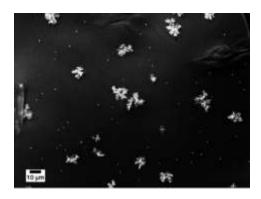


Figure S4. SEM micrograph of highly branched Ag morphology over large area at 0.5 mM Ag^+

ion concentration.

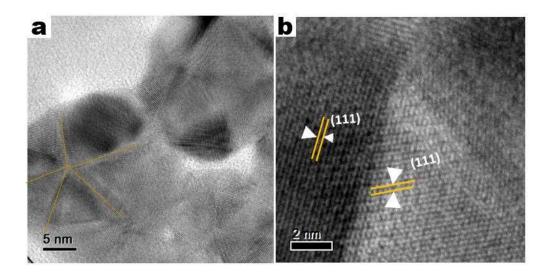
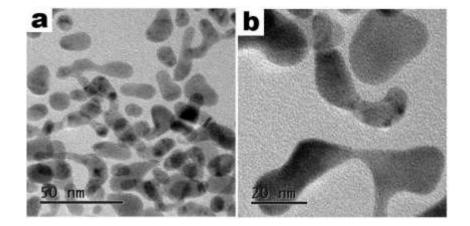



Figure S5. HR-TEM images (a), and (b) of multi-twinned Ag nanostructures formed for sample

NC-0.06 at different magnifications

Figure S6. (a) TEM image of the formation of worm-like Ag nanostructure in the preliminary

stage of AgNF formation, and b) corresponding higher magnification TEM image.

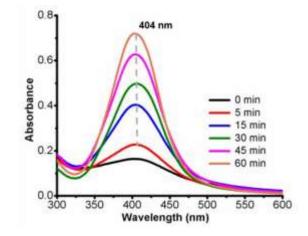
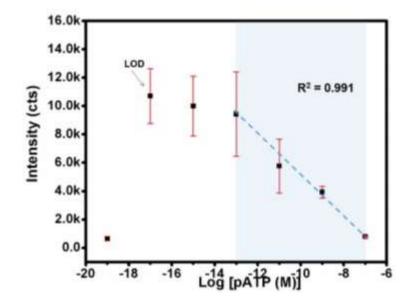



Figure S7. UV-vis spectra taken during the AgNF structure evolution study

Figure S8. Concentration of pATP *vs* SERS intensity at 1071 cm⁻¹ plot. The linear regression plot with regression coefficient, $R^2 = 0.991$ is shown for quantification region marked as blue area. The error bars calculated for spectra taken from 6 random spots in AgNFs substrate.

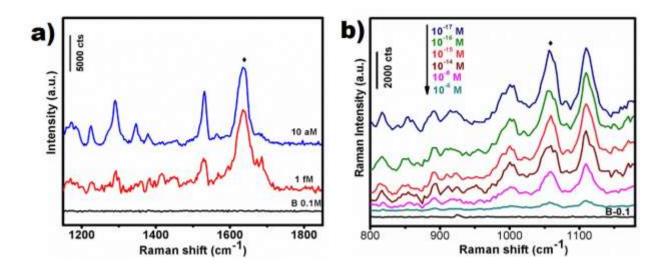


Figure S9. (a) Solid state SERS spectra of MB at different dilutions, and (b) liquid state SERS spectra of pATP

Table S1. An overview of reports on Ag nanostructures as SERS substrate with their lowest

 detection limit for pATP molecule.

SERS substrate	Detection limit (M)	Ref
Ag/TiO2/rGO nanocomposite	10 ⁻¹⁴	1
Ag nanopolyhedra on tapered fiber probe	10 ⁻⁹	2
Ag nanotriangle loaded film	10 ⁻⁸	3
Assembled spherical AgNPs	10-10	4
Ag/Au microtubes with sharp-edge nanosheets	6.0 X 10 ⁻¹⁰	5
Ag film	10 ⁻¹¹	6
Ag on TiO ₂ nanograss	10-12	7
AgNF/TNCF	<10 ⁻¹⁷	Present work

References

1. Hsu, K.-C.; Chen, D.-H. Highly Sensitive, Uniform, and Reusable Surface-Enhanced Raman Scattering Substrate with TiO₂ Interlayer between Ag Nanoparticles and Reduced Graphene Oxide. *ACS Appl. Mater. Interfaces* **2015**, *7*, 27571-27579.

2. Cao, J.; Wang, J. Development of Ag Nanopolyhedra Based Fiber-Optic Probes for High Performance SERS Detection. *New J. Chem.* **2015**, *39*, 2421-2424.

3. Wang, C.; Liu, B.; Dou, X. Silver Nanotriangles-Loaded Filter Paper for Ultrasensitive SERS Detection Application Benefited by Interspacing of Sharp Edges. *Sens. Actuators, B* **2016**, *231*, 357-364.

4. Liu, Y.; Zhang, Y.; Ding, H.; Xu, S.; Li, M.; Kong, F.; Luo, Y.; Li, G. Self-Assembly of Noble Metallic Spherical Aggregates from Monodisperse Nanoparticles: their Synthesis and Pronounced SERS and Catalytic Properties. *J. Mater. Chem. A* **2013**, *1*, 3362-3371.

5. Wang, T.; Hu, X.; Dong, S. A Renewable SERS Substrate Prepared by Cyclic Depositing and Stripping of Silver Shells on Gold Nanoparticle Microtubes. *Small* **2008**, *4*, 781-786.

6. Wang, Z.; Li, M.; Wang, W.; Fang, M.; Sun, Q.; Liu, C. Floating Silver Film: a Flexible Surface-Enhanced Raman Spectroscopy Substrate for Direct Liquid Phase Detection at Gas–Liquid Interfaces. *Nano Res.* **2016**, *9*, 1148-1158.

 Xu, S.; Zhang, Y.; Luo, Y.; Wang, S.; Ding, H.; Xu, J.; Li, G. Ag-Decorated TiO 2 Nanograss for 3D SERS-Active Substrate with Visible Light Self-Cleaning and Reactivation. *Analyst* 2013, *138*, 4519-4525.