Supporting Information

Porous Hafnium Phosphonate: Novel Heterogeneous Catalyst for Conversion of Levulinic Acid and Esters into γ -Valerolactone

Chao Xie,^{†,‡} Jinliang Song,*[†] Baowen Zhou,^{†,‡} Jiayin Hu,^{†,‡} Zhanrong Zhang,[†] Pei Zhang,[†] Zhiwei Jiang,[†] and Buxing Han^{*,†,‡}

E-mail: songjl@iccas.ac.cn; hanbx@iccas.ac.cn

Table of Contents

1.	Table S1	S2
2.	Figure S1	S2
3.	Scheme S1	S2
4.	Fgure S2	S3
5.	Figure S3	S3
6.	Figure S4	S4
7.	Figure S5.	S4

[†]Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun North First Street, Haidian District, Beijing 100190, P.R.China

[‡]University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, P.R.China

Table S1. Physical properties of different catalysts.

Sample ^a	BET surface area (m ² g ⁻¹) ^b	Pore volume (cm ³ g ⁻¹) ^c	Pore diameter (nm) ^d
Hf-ATMP	222.6	0.25	16.7
HfO_2	6.74	0.07	
Hf-EDPA	206.8	0.39	13.9
Cr-ATMP	4.81	0.03	15.8
Zn-ATMP	31.71	0.13	47.3
Al-ATMP	62.54	0.36	41.4
Cu-ATMP	129.86	0.14	3.6

^aThe samples were degassed at 120 °C for 24 h. ^bSurface area based on multipoint BET method. ^cPore volume based on BJH method. ^dPore diameter based on BJH method.

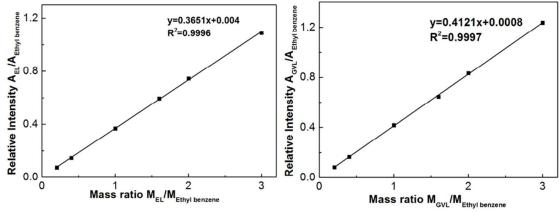


Figure S1. The calibration curves for GC using 0.05g ethylbenzene as the internal standard. (A=Peak area, M=Weight)

$$R = * - N \xrightarrow{CH_2 - PO_3} CH_2 - PO_3$$

$$R = * - N \xrightarrow{CH_2 - PO_3} CH_2 - PO_3$$

Scheme S1. The most plausible connectivity pattern between ATMP and Hf⁴⁺.

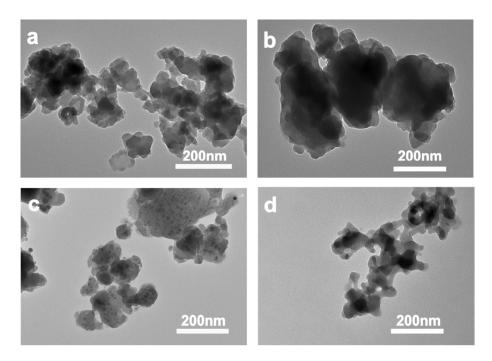
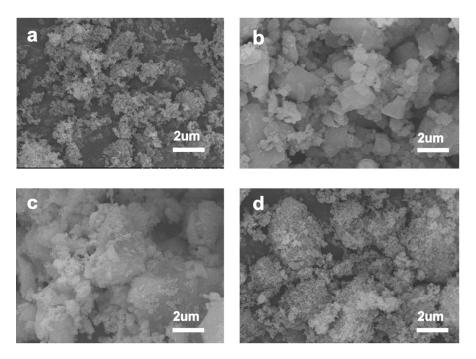



Figure S2. The TEM images of Al-ATMP (a), Cr-ATMP (b), Cu-ATMP (c), and Zn-ATMP (d).

 $\textbf{Figure S3.} \ \text{The SEM images of Al-ATMP (a), Cr-ATMP (b), Cu-ATMP (c), and Zn-ATMP (d).}$

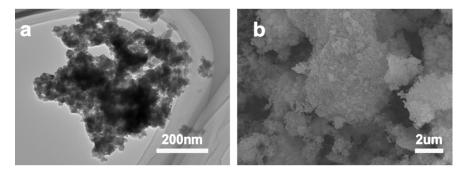
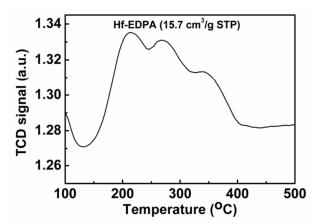



Figure S4. The TEM (a) and SEM (b) images of Hf-EDPA.

Figure S5. CO₂-TPD examination for Hf-EDPA.