Supporting information:

Post Gold King Mine spill investigation of metal stability in water and sediments of the Animas River

watershed

Lucia Rodriguez-Freire¹, Sumant Avasarala¹, Abdul-Mehdi S. Ali², Diane Agnew³, Joseph H. Hoover⁴, Kateryna Artyushkova⁵, Drew E. Latta⁶, Eric J. Peterson⁵; Johnnye Lewis⁴; Laura J. Crossev²: Adrian J. Brearlev²: José M. Cerrato^{1*}

*Corresponding email address: jcerrato@unm.edu

Telephone: (001) (505) 277-0870

Fax: (001) (505) 277-1988

¹ Department of Civil Engineering, MSC01 1070, University of New Mexico, Albuquerque, New Mexico 87131, United States

² Department of Earth and Planetary Sciences, MSC03 2040, University of New Mexico, Albuquerque, New Mexico 87131, United States

³ New Mexico Environment Department, 121 Tijeras Avenue NE, Albuquerque, New Mexico 87102, United States

⁴ Community Environmental Health Program, MSC09 5360, University of New Mexico, Albuquerque, NM 87131, United States

⁵ Department of Chemical and Biological Engineering, MSC01 1120, University of New Mexico, Albuquerque, New Mexico 87131, United States

⁶ Department of Civil and Environmental Engineering, The University of Iowa, 4105 Seamans Center, Iowa City, Iowa 52242, United States

Journal: Environmental Science & Technology

Date: September 3, 2016

27 pages (including cover page)

8 Tables

7 Figures

Table of Contents

Iron speciation using Mössbauer spectra	S4
Animas River Sample C1	S4
Animas River Samples L1 and L4	S5
Materials and methods	S 7
Jarosite synthesis	S7
Anlytical techniques	S 8
References.	S11
Tables	S12
Table S1 Dissolved, total and suspended metal concentrations in the water samples	S12
Table S2 Summary of data collected from the Animas River.	S14
Table S3 Elemental composition of the Animas River sediment using X-Ray	
Fluorescence (XRF)	S15
Table S4 Total metal concentrations in the sediment samples presented as the average of	
three aqua regia digestions and the standard deviation.	S16
Table \$5 Metal speciation in the sediments using X-ray photoelectron spectroscopy	
(XPS)	S17
Table S6 Summary of the mineral weight distribution in samples L1 and L4 obtained by	
XRD, and the refinement statistics of the method used.	S18
Table S7 Mössbauer spectral parameters derived from fitting Animas River samples C1,	
L1 and L4	S19
Table S8 Mössbauer spectral parameters derived from fitting the synthetic K-jarosite	S20
Figures	S21
Figure S1 Arsenic and Pb concentrations (suspended metal) in surface water from	
August 5 to October 14, 2015	S21
Figure S2 Selected metal concentrations in water samples	S22
Figure S3 Concentrations of the ions in the water sample at the different sampling	
locations	S23
Figure S4 X-ray photoelectron spectra (XPS) of sulfur (S) and phosphorous (P) for the	
sediment samples sediment samples C1, L1, L4, and L7.	S24
Figure S5 X-ray photoelectron spectra (XPS) of nitrogen (N) for the sediment samples	
sediment samples C1, L1, L4, and L7.	S25
Figure S6 Scanning transmission electron microscope (STEM) and STEM X-ray map	
data of Pb-bearing jarosite crystals in sediment sample from Baker's Bridge near	
Hermosa, L4.	S26
Figure S7 Mössbauer spectra of synthetic K-jarosite collected at 295 K, 77 K and 19 K	
and Mössbauer spectra collected at a temperature of 270 K for samples L1 and L4	S27

Iron speciation using Mössbauer spectra

Animas River Sample C1. The Mössbauer spectra of the Animas River Sediment C1 were collected and fit at temperatures of 77 K and 17.5 K (Figure 5A). At 77 K and 17.5 K the spectra can be modeled with 5 components (Table S7). The main component in the spectrum at both temperatures is a sextet with relative areas of 41.6% and 51.1%, at 77 K and 17.5 K, respectively, with Mössbauer parameters of center shift (CS) = 0.49 mm/s, quadrupole shift (QS) = -0.20 mm/s, and an average hyperfine field of 45.1 T at 17.5K (yellow sextet in Figure 5A). These Mössbauer parameters are consistent with those of nano-crystalline goethite.¹⁻³ In addition, at both temperatures a second sextet (red sextet in Figure 5A) is present (11.4% of the relative area at 17.5 K) with a lower QS of -0.14 mm/s and a higher average hyperfine field of 53.4 T consistent with the presence of weakly-ferromagnetic hematite that has not undergone the magnetic Morin transition even at 17.5 K.^{1, 2} A lack of a Morin-transition in a natural hematite is not unexpected, and could be the result of small particle size and/or the presence of common impurities such as Al or Ti in the structure.^{2,4}

Paragmagnetic Fe(III) is also present (Fe³⁺ doublet 1 in Table S7, green doublet in Figure 5A) within the sample at both 77 K and 17.5, with parameters of CS = 0.49 mm/s and quadrupole splitting (QS) = 0.62-0.64 mm/s, which are consistent with any number of Fe(III) containing minerals, including primary silicates and clay minerals.^{2, 5} The decrease in area of this component between 77 K and 17.5 K likely represents magnetic ordering of Fe(III) present as nano-crystalline goethite.¹ A second paramagnetic Fe(III) doublet (Fe³⁺ doublet 2 in Table S7, purple doublet in Figure 5A) is also present, but the exact nature of this doublet with its Fe(III)-like CS (0.55 mm/s), and wide QS (1.83 mm/s) is unknown; however, some primary silicates

containing Fe(III) have large QS values at room temperature that are likely to be higher at 17.5 K.⁵

Finally, the spectrum also has a third doublet comprising 22.2 % of the relative area with a large CS and QS value (1.27, 2.83 mm/s) which can be assigned to paramagnetic octahedral Fe(II) in clay minerals, primary silicates, phosphates, and sulfates.⁵ The Mössbauer parameters for the Fe(II) doublet are consistent with the XRD identification of chlorite and illite/mica type clay minerals.

Animas River Samples L1 and L4. As with sample C1, the Mössbauer spectra of the Animas River Sample L1 and L4 were collected and fitted at 77 K (Figure 5B and 5C). The Mössbauer hyperfine parameters derived from fitting are shown in Table S7. We have fit samples L1 and L4 with two doublets corresponding to Fe(II) and Fe(III), as well as several sextets. Fitting of a high CS and high QS component consistent with octahedral Fe(II) (CS = 1.26 mm/s, QS = 2.8 mm/s) shows that sample L4 has about 2-times as much Fe(II) (13.5% relative area compared to 6.6%). As noted above for the control sample, these hyperfine parameters are consistent with Fe(II) hyperfine parameters of multiple minerals and is not diagnostic of a single phase. Both samples have similar paramagnetic Fe(III) doublets at 77 K, with 35% and 40% of the total area, and similar hyperfine parameters of CS = 0.46-0.49 mm/s and QS = 0.83-0.88 mm/s. Between 77 K and 17.5 K the Fe(III) doublet (CS = 0.43 and 0.47 mm/s, respectively) decreases in area for both the samples, due to the magnetic ordering of Fe(III) within the samples to form sextets. At 17.5 K the Fe(III) doublets makes up 6.2 and 9.0 % of the area in samples L1 and L4, respectively, and have hyperfine parameters (CS = 0.43 and 0.47 mm/s, QS = 0.76 and 0.84 mm/s) consistent with octahedral Fe(III) in clay minerals, primary silicates, and phosphates.^{5,6}

At 77K for samples L1 and L4 the major feature (59% and 45% for samples L1 and L4, respectively) is a sextet 77 K with hyperfine parameters consistent with those of nano-crystalline goethite (CS ≈ 0.48 mm/s, QS = -0.24 mm/s, and average hyperfine field (H) = 36 and 34 T, respectively).¹⁻³ The large standard deviation of the hyperfine field ($\sigma(H)$, Tables S7), and the shoulder feature in the sextet suggest a large distribution in goethite particle sizes with a significant fraction present as nano-crystals.¹ In addition to the goethite sextet, sample L4 contains a smaller sextet (~2 %) consistent with weakly ferromagnetic hematite that has not undergone the Morin transition. The hyperfine parameters and magnetic behavior are consistent with those of the hematite in the control sample (discussed above).^{1,2} At 17.5 K the spectral interpretation of the sextets in sample L1 and L4 are complicated by the appearance of a second major sextet with a lower average hyperfine field (orange fitting feature in Figure 5). Fitting of this feature reveals that it comprises the major proportion of the spectral area (70% in both samples). The Mössbauer parameters are similar to those of goethite (CS \approx 0.48 mm/s, QS \approx -0.2 mm/s), however both the hyperfine average hyperfine field (38 - 41 T) and quadrupole shift (QS $= 2\varepsilon = -0.2$ mm/s) are low compared to published values for nano-crystalline goethite¹ and that of the goethite at 77 K (QS = -0.24-0.26 mm/s). Based on XRD and TEM data suggesting the presence of jarosite, we can tentatively assign part of this sextet to jarosite.

Relatively little and conflicting information exists about the low temperature Mössbauer parameters of jarosite-group Fe-minerals, with conflicting reports of QS parameters of +0.25 to +0.55 mm/s⁷ to -0.19 mm/s³. In order to resolve this discrepancy we synthesized the potassium form of jarosite,⁸ confirmed its identity with XRD, and collected the Mössbauer spectrum at ~19 K (Figure S7A). The hyperfine parameters of this K-jarosite are CS = 0.49 mm/s, QS = $2\varepsilon = -$ 0.16 mm/s, and H = 42.3 T. The synthetic jarosite parameters are consistent with those of the lower QS and H sextet in samples L1 and L4. Furthermore, the high QS (0.83-0.88 mm/s) of the Fe(III) doublets of S2 and S5 would be consistent with a mixture of goethite (paramagnetic QS \approx 0.55 mm/s² and higher QS jarosite with QS \approx 1.13 mm/s (Figure S7A)). It is also likely that this sextet accounts for a significant fraction of the nanocrystalline goethite present, given the tendancy for lower average hyperfine fields and QS parameters in nano-goethite.^{1,2}

Finally, to estimate the amount of jarosite present, we have fit the Mössbauer spectra collected at 270 K (Figure S7B, Table S7). At this temperature both samples L1 and L4 are primarily composed of (super-)paramagnetic Fe(III) and paramagnetic Fe(II) doublets, along with a collapsed sextet likely due to the presence of goethite and a sextet from hematite in L4. Two Fe(III) doublets are necessary to produce the best fits of the Mössbauer spectra of sample L1 and L4 at 270 K. One Fe(III) doublet has parameters (CS \approx 0.4 mm/s, QS \approx 0.5-0.6 mm/s) consistent with the parameters of super-paramagnetic goethite,² and the other has a higher QS value of ~1.0 to 1.1 mm/s, more consistent with that of jarosite near room temperature (Table S8).⁹ Given the other evidence for jarosite, we suggest this doublet represents the jarosite present in the two samples. The fitting results suggest that 20-35% of the Fe present in the two samples is present as jarosite. Given the large error in the determined amounts (5-10 % of the total Fe), it not possible to assign a definitive difference between the two samples.

Materials and methods

Jarosite synthesis. K-jarosite was used here due to the mild conditions required for synthesis compared to the hydrothermal conditions required for facile laboratory synthesis of hydronium-jarosite.⁸ The jarosite here was synthesized according to the procedures in Dutrizac and Kaiman.⁸ Briefly, 30 g/L of KNO₃ and 8 g/L of ferric sulfate (0.143 mole/L Fe(III)) were added to 250 mL of 0.01 M H₂SO₄ and heated for 1.5 h at 95 °C. The yellow precipitate was washed 3 times with

DI water by centrifugation and dried in an oven at 70 °C for 3 d. The powder X-ray diffraction pattern was consistent with that of the potassium form of jarosite.

Anlytical techniques. The total suspended metal concentration in water was measured after acidification of 30 ml of the unfiltered water samples using 3 ml hydrochloric acid, HCl, and 1 ml HNO₃. Sediment samples were dried overnight at 70 °C in a controlled–temperature oven, crushed, and homogenized prior to the analysis. Two grams of the pulverized sediment was digested with 6 ml HCl, and 2 ml HNO₃ and then heated in a Digi prep MS SCP Science block digester at 90 °C for 2 h. Sediment samples were then centrifuged for 10 min at 2,000 rpm to remove the residual undigested material, the supernatant was collect and the pellets were discarded. The sediment supernatant and the digested water samples were filtered through 0.45 μ m filters (25 mm PTFE Membrane syringe filter) prior to any analyses. Sediment samples were additionally filtered using a 0.22 μ m filters (10 mm PTFE Membrane syringe filter).

- A ThermoFisher Dionex Ion Chromatogram (IC) (ICS-1100) was used to analyze water samples for anion concentration
- Elemental composition of all samples was measured using Inductively Coupled Plasma ionization (ICP), coupled with either an Optical Emission Spectrometer (OES) or a Mass Spectrometer (MS):
 - \circ OES: PerkinElmer Optima 5300DV Inductively Coupled Plasma-Optical Emission Spectrometer (ICP-OES) with a detection limit of < 0.01 mg l⁻¹.
 - MS: A PerkinElmer NexION 300D (Dynamic Reaction Cell) Inductively Coupled Plasma-Mass Spectrometer (ICP-MS), with a detection limit of $< 0.5 \ \mu g \ l^{-1}$ was used for trace element analysis

- Bulk sediment analysis was done by X-Ray Fluorescence with a Rigaku ZSX Primus II.
 For the XRF analysis, 9 g of the crushed sediments were combined with 1 g of
 SpectroBlend binder and compacted into a pellet.
- Sediments were analyzed using powder X-ray Diffraction (XRD) with a Rigaku SmartLab diffractometer. The samples were ground in a boron nitride mortar/pestle and loaded into 20 mm x 20 mm glass holders. A Cu Kα X-ray source with 1D silicon strip detector (D/teXTM) and Ni filter Bragg Brentano geometry with 2/3 degree incident slit). Mineral fractions were estimated from Rietveld refinements performed using the JadeTM (MDI) software package. Because of the beam divergence resulting from the 2/3 degree incident slit, beam spillover during data collection occurred at angles below 20° 2θ, causing clay fractions to be most likely underestimated.
- X-ray Photoelectron Spectrometer (XPS) (Kratos AXIS-UltraDLD) was used to acquire the near surface (5-10 nm) elemental composition and oxidation states. Monochromatic Al K α source operating at 225W was used. Survey spectra were acquired at 80 eV and high resolution at 20 eV pass energy. The data obtained are the average of 3 different areas per sample. Charge compensation was accomplished using low energy electrons at standard operating conditions of -3.1 V bias voltage, 1.0 V filament voltage and filament current of 2.1 A. Gold powder was deposited on each sample, and Au 4f spectra were acquired for calibration purposes. All spectra processing was done in CasaXPS. Atomic percentage content was calculated using sensitivity factors provided by the manufacturer. All the spectra were charge referenced to Au 4f at 84 eV. A 70% Gaussian/ 30% Lorentzian (GL (30)) line shape was used for the curve-fits.

- Scanning Transmission Electron Microscopy (STEM) was used to characterize the finegrained mineralogy of sediment and suspended sediment samples. STEM analysis was performed using a JEOL 2010F FEGTEM/STEM operating at 200 kV. Samples of sediment and suspended sediment in water were dropped using a pipette onto standard holey carbon film-covered Cu TEM grids. The water was allowed to evaporate in air and then the dry samples were studied in the TEM. High-angle annular dark-field (HAADF) images of the samples were obtained and then representative areas of the sample were studied using STEM X-ray mapping. An Oxford Instruments Aztec Energy Dispersive Spectroscopy (EDS) analysis system coupled to an XMax^N 80 mm² EDS detector was used to obtained full spectral X-ray maps of the sample. After collection of the maps, EDS X-ray spectra for individual mineral phases were extracted from the data cube by drawing regions of interest around distinct mineral grains based on the HAADF images. This approach allows integration of X-ray counts from multiple pixels to be obtained enabling concentrations of minor elements to be detected much more effectively.
- The samples for Mössbauer spectroscopy was prepared by sealing the bulk sediment between two pieces of polyimide tape, taking care that the total sample absorption was similar to that of a 7 μ m Fe(0) foil. The ⁵⁷Fe Mössbauer spectra were collected in transmission mode with a constant acceleration drive system (SEE Co., Inc) and a ⁵⁷Co(Rh) source. Samples were mounted in a Janis gas-exchange closed cycle cryostat capable of maintaining a sample temperature of 17.5K. The Mössbauer source was at room temperature. Data were calibrated with an α -Fe foil at room temperature. Spectral fitting was done with the Recoil software package¹⁰ using Voigt lineshapes with a Lorentzian line width fixed to that of the instrumentally-determined width of the inner

lines of the Fe foil (0.13 mm/s). Unless otherwise noted spectra are fitted with all

parameters allowed to float during the fitting routine. Quadrupole shift parameters are

reported as 2 ϵ , which is twice the parameter epsilon_0 in Recoil.

References

- (1) van der Zee, C.; Roberts, D. R.; Rancourt, D. G.; Slomp, C. P., Nanogoethite is the dominant reactive oxyhydroxide phase in lake and marine sediments. *Geology* **2003**, *31*, 993-996.
- (2) Yoshida, Y.; Langouche, G., Mössbauer Spectroscopy. *Mössbauer Spectroscopy: Tutorial Book, ISBN 978-3-642-32219-8. Springer-Verlag Berlin Heidelberg, 2013* 2013, 1.
- (3) Murad, E.; Cashion, J., *Mössbauer Spectroscopy of Environmental Materials and their Industrial Utilization*. Kluwer Academic Publishers: 2004.
- (4) Ericsson, T.; Krisnhamurthy, A.; Srivastava, B. K., Morin-Transition in Ti-Substituted Hematite: A Mössbauer Study. *Physica Scripta* **1986**, *33*, (1), 88.
- (5) Dyar, M. D.; Agresti, D. G.; Schaefer, M. W.; Grant, C. A.; Sklute, E. C., Mossbauer Spectroscopy of Earth and Planetary Elements. *Annual Review of Earth and Planetary Sciences* 2006, *34*, 83-125.
- (6) Dyar, M. D.; Schaefer, M. W.; Sklute, E. C.; Bishop, J. L., Mossbauer spectroscopy of phyllosilicates: effects of fitting models on recoil-free fractions and redox ratios. *Clay Minerals* **2008**, *43*, (1), 3-33.
- (7) Afanasev, A.; Gorobchenko, V.; Kulgawczuk, D.; Lukashevich, I., Nuclear γ-resonance in iron sulphates of the jarosite group. *Physica status solidi (a)* **1974**, *26*, (2), 697-701.
- (8) Dutrizac, J.; Kaiman, S., Synthesis and properties of jarosite-type compounds. *The Canadian Mineralogist* **1976**, *14*, (2), 151-158.
- (9) Leclerc, A., Room temperature Mössbauer analysis of jarosite-type compounds. *Physics and Chemistry of Minerals* **1980**, *6*, (4), 327-334.
- (10) Lagarec, K.; Rancourt, D. G., Recoil-Mössbauer spectral analysis software for Windows, University of Ottawa, Ottawa, ON.. **1998**.

Sample		Al (mg l	¹)		As (µg ľ	-1)		B (mg l	1)]	Ba (mg l	⁻¹)
location	Dissolved	Total	Suspended	Dissolved	Total	Suspended	Dissolved	Total	Suspended	Dissolved	Total	Suspended
L1	7.50	7.50	0.00	0.19	0.91	0.72	0.01	0.02	0.02			
L2	0.07	0.10	0.03		0.06	0.06				0.00	0.01	0.00
L3	0.06	2.20	2.14		0.40	0.40		0.01	0.01	0.00	0.01	0.01
L4	0.07	0.54	0.47		0.04	0.04		0.00	0.00	0.01	0.02	0.00
L5	0.04	0.40	0.36	0.08	0.16	0.08	0.04	0.04	0.00	0.06	0.07	0.01
L6	0.04	0.46	0.43	0.17	0.07		0.05	0.05		0.08	0.09	0.01
L7	0.04			0.06			0.11			0.05		
Sample		Ca (mg l	·1)	Cd (µg l ⁻¹)			Co (µg l	⁻¹)		Cr (µg l	-1)	
location	Dissolved	Total	Suspended	Dissolved	Total	Suspended	Dissolved	Total	Suspended	Dissolved	Total	Suspended
L1	157.99	146.84		1.03	1.03		3.03	3.29	0.26	0.02	0.34	0.32
L2	42.63	39.47		0.11	0.14	0.03	0.10	0.11	0.01	0.00	0.18	0.18
L3	59.75	56.24		0.21	0.21	0.00	0.62	0.70	0.09	0.00	0.14	0.14
L4	44.01	40.93		0.07	0.07	0.00	0.22	0.22		0.04	0.07	0.03
L5	60.72	58.31		0.01	0.03	0.02	0.10	0.14	0.03	0.15	0.10	
L6	77.21	72.66		0.02	0.02		0.17	0.19	0.02	0.06	0.12	0.06
L7	73.96			0.01			0.16			0.02		
Sample		Cu (µg l	1)]	Fe (mg l	-1)		K (mg l	1)	Ι	Mg (mg	I ⁻¹)
location	Dissolved	Total	Suspended	Dissolved	Total	Suspended	Dissolved	Total	Suspended	Dissolved	Total	Suspended
L1	51.19	54.92	3.73	7.50	13.41	5.91	1.59	1.63	0.04	9.93	9.29	
L2	0.57	1.89	1.32	0.02	0.08	0.06	0.53	0.55	0.02	2.86	2.57	
L3	2.14	10.98	8.84	0.85	5.61	4.76	0.68	0.83	0.14	4.53	4.28	
L4	0.59	2.18	1.59		0.87	0.87	0.90	0.91	0.01	7.54	6.85	
L5	0.72	1.19	0.47		0.61	0.61	2.68	2.72	0.04	9.71	9.18	
L6	0.64	1.61	0.96		0.54	0.54	2.79	2.82	0.03	11.74	10.99	
L7	0.88			0.02			6.22			11.78		

Table S1. Dissolved, total and suspended metal concentrations in the water samples.

Sample	I	Mn (mg l	-1)	I	Mo (µg l	-1)		Na (mg l	-1)	Pb (μg l ⁻¹)		
location	Dissolved	Total	Suspended	Dissolved	Total	Suspended	Dissolved	Total	Suspended	Dissolved	Total	Suspended
L1	5.79	5.38		0.03	0.17	0.15	6.03	6.18	0.16	1.67	3.33	1.67
L2	0.84	0.77		0.22	0.23	0.01	1.85	2.02	0.16	0.08	0.41	0.33
L3	1.22	1.15		0.08	0.18	0.11	2.74	2.88	0.14	0.03	4.14	4.10
L4	0.40	0.30		0.07	0.09	0.02	2.79	2.88	0.08	0.05	0.58	0.53
L5		0.05	0.05	0.16	0.17	0.02	18.19	17.99		0.13	0.56	0.43
L6		0.03	0.03	0.25	0.21		30.85	30.01		2.21	0.39	
L7	0.00			0.23			52.57			0.15		
Sample		U (µg l ⁻¹)	Si (mg l ⁻¹)			Sr (µg l ⁻¹)			V (μg l ⁻¹)		
location	Dissolved	Total	Suspended	Dissolved	Total	Suspended	Dissolved	Total	Suspended	Dissolved	Total	Suspended
L1	0.16	0.11		13.61	12.24		213.39	220.48	7.09	0.02	0.80	0.79
L2	0.04	0.15	0.11	3.21	2.80		41.77	40.93		0.00	0.13	0.13
L3	0.01	0.13	0.12	5.30	5.25		70.71	75.29	4.58	0.00	0.34	0.34
L4	0.05	0.10	0.05	3.60	3.40		38.42	37.55		0.01	0.11	0.10
L5	0.14	0.15	0.01	2.92	3.07	0.15	77.32	80.02	2.70	0.06	0.17	0.12
L6	0.21	0.25	0.04	2.11	2.54	0.43	123.14	128.51	5.37	0.07	0.22	0.15
L7	0.17			3.18			115.82			0.10		
Sampla		Zn (mg l'	-1									

Table S1 Cont. Dissolved, total and suspended metal concentrations in the water samples.

Sample	,	⁻¹)		
location	Dissolved	Total	Suspended	
L1	3.55	2.94		
L2	0.26	0.21		
L3	0.60	0.54		
L4	0.09	0.13	0.04	
L5				
L6				
L7				

Table S2. Summary	of data collected	from the Animas River.
-------------------	-------------------	------------------------

Sample	Site description	Elevation	T^1	DO ²	SC ³	nЦ	ORP ⁴	ALK ⁵
ĪD	Site description	(ft)	(°C)	$(mg l^{-1})$	$(\mu S \text{ cm}^{-1})$	pН	(mV)	$(mg l^{-1})$
L1, C1	Cement Creek 14th Street Bridge (37.8126 N, 107.6593 W)	9315	7.2	10.3	1000	3.32	465.2	0
L2	Silverton EPA A68 Animas River Upstream of Confluence with Cement Creek (37.8110 N, 107.6589 W)	9290	8.8	6.0	266.5	6.18	90.8	54.7
L3	Silverton EPA A72 Animas River Downstream of Confluence with Cement Creek (37.7952 N, 107.6689 W)	9232	10.6	5.0	377.9	6.04	110.2	11.8
L4	Animas River at Baker's Bridge (37.4575 N, 107.8002 W)	6958	14.0	5.0	268.3	7.36	154.4	55.2
L5	Animas River at Cedar Hill (36.9333 N, 107.9090 W)	5820	22.4	6.7	461.8	8.25	126.4	141.3
L6, C6	Animas River at Farmington (36.7137 N, 108.2172 W)	5244	23.8	3.3	608.0	8.14	89.0	161.0
L7	San Juan River Downstream of Confluence with Animas River (36.7176 N, 108.2219 W)	5224	23.3	5.5	446.9	7.95	90.8	135.3

¹T: Temperature; ²DO: Dissolved Oxygen concentration; ³SC: specific conductivity; ⁴ORP: Oxidation-Reduction Potential; ⁵ALK: Bicarbonate alkalinity

(XRF).								
Element		Sa	ampling l	ocations (from Nor	th to Sou	th)	
(mg kg ⁻¹)	C1	L1	L3	L4	L5	L6	L7	C6
Fluorine	811	1010	460	644	$N.D.^{1}$	N.D.	N.D.	N.D.
Sodium	11142	1861	3132	7251	4493	7325	7277	6742
Magnesium	7648	6000	7891	6881	5686	1766	2413	3897
Aluminum	70836	86920	91025	75846	75092	46460	47169	60803
Silicon	314467	281971	265697	297395	294865	345439	337928	324284
Phosphorus	1622	3125	2350	2050	1350	600	562	984
Sulfur	1296	13750	5237	3530	1856	491	664	1029
Chlorine	603	N.D.	125	113	637	126	175	N.D.
Potassium	41714	48482	41041	40686	33191	44231	42539	37649
Calcium	22775	7991	9214	18884	35084	10002	12863	22067
Titanium	6483	10588	7658	5910	6953	3183	5587	5695
Chromium	N.D.	141	N.D.	119	N.D.	235	157	162
Manganese	2444	2502	15938	4833	2520	1097	1021	2390
Iron	61820	108232	132450	91624	71769	24230	28481	52575
Copper	139	686	590	319	211	N.D.	N.D.	113
Zinc	638	1485	3260	1873	1188	252	72	1009
Gallium	N.D.	45	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Rubidium	257	455	317	269	253	227	209	221
Strontium	915	761	654	589	5250	335	345	459
Yttrium	N.D.	N.D.	192	120	N.D.	102	99	148
Zirconium	419	424	459	304	1393	384	3751	1324
Barium	1422	1017	1197	1197	1403	1442	1939	3144
Tungsten	167	N.D.	N.D.	N.D.	N.D.	163	N.D.	N.D.
Lead	417	2620	1552	968	531	72	N.D.	316
Niobium	32	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.

Table S3. Elemental composition of the Animas River sediment using X-Ray Fluorescence (XRF).

¹ N.D. Element was not detected

с I.		mg kg ⁻¹													
Sampling location	Alum	inum	Ars	enic	Bo	ron	Bar	ium	Calc	cium					
location	Average	St. Dev.	Average	St. Dev.	Average	St. Dev.	Average	St. Dev.	Average	St. Dev					
C1	11682.4	273.2	0.54	0.05	46.1	1.2	1110.0	28.7	8371.7	219.1					
L1	9121.2	83.8	4.25	0.25	108.9	0.8	54.8	1.8	2401.2	30.9					
L3	16291.5	210.0	4.25	0.11	135.0	1.5	112.7	89.8	2811.6	138.1					
L4	12343.9	151.7	2.21	0.10	85.8	0.8	176.3	1.6	4310.3	24.4					
L5	11816.2	281.0	0.68	0.04	45.7	0.8	563.6	15.9	10612.7	125.1					
L6	5642.7	31.3	0.28	0.03	21.2	0.3	426.3	4.0	3250.5	22.7					
L7	5426.0	52.9	0.22	0.00	24.9	0.4	598.7	6.7	3797.6	46.7					
C6	12245.2	241.7	0.75	0.05	65.8	0.8	188.0	5.3	6682.2	178.4					
					mg	kg ⁻¹									
Sampling location	Cadmium		Cadmium Cobalt			Chromium C			Ir	ron					
location	Average	St. Dev.	Average	St. Dev.	Average	St. Dev.	Average	St. Dev.	Average	St. Dev					
C1	0.10	0.01	0.94	0.04	2.72	0.16	8.1	0.4	21988.6	602.8					
L1	0.30	0.01	0.54	0.01	1.86	0.06	32.4	0.5	51314.6	295.4					
L3	0.66	0.01	3.20	0.08	1.34	0.08	27.0	0.5	62385.3	509.2					
L4	0.30	0.01	1.54	0.05	3.37	0.74	20.6	0.7	41091.3	453.6					
L5	0.11	0.00	0.75	0.02	1.65	0.04	5.6	0.2	22220.5	322.8					
L6	0.04	0.00	0.83	0.02	2.08	0.05	2.8	0.0	10365.9	64.2					
L7	0.04	0.00	0.85	0.05	2.49	0.15	5.3	0.4	11243.2	98.3					
C6	0.13	0.00	1.00	0.04	2.15	0.04	19.6	0.2	29085.1	568.6					
					mg	kg ⁻¹									
Sampling location	Potas	sium	Lith	ium	Magn	esium	Mang	anese	Molyb	denum					
location	Average	St. Dev.	Average	St. Dev.	Average	St. Dev.	Average	St. Dev.	Average	St. Dev					
C1	2756.6	58.7	6.1	0.2	2881.2	77.7	843.8	21.8	0.17	0.01					
L1	3385.7	19.8	13.2	0.7	3184.6	22.6	598.8	4.4	1.12	0.03					
L3	3152.2	522.1	18.3	3.9	5122.8	42.3	6555.5	53.8	1.00	0.02					
L4	3261.8	31.6	15.4	4.1	4840.6	48.6	2383.9	25.6	0.63	0.09					
L5	2083.0	59.8	21.0	0.2	3194.4	49.3	883.8	11.2	0.18	0.00					
L6	1689.9	4.7	9.3	0.5	1310.9	7.0	443.8	3.0	0.09	0.00					
L7	1508.9	15.5	8.7	0.1	1232.2	12.5	257.9	2.6	0.09	0.00					
C6	3278.3	74.9	25.1	0.2	6213.8	119.1	1028.3	22.5	0.23	0.00					

Table S4. Total metal concentrations in the sediment samples presented as the average of three aqua regia digestions and the standard deviation.

	mg kg ⁻¹											
Sampling location	Sodium		Nickel		Le	Lead		Silicon		Strontium		
	Average	St. Dev.	Average	St. Dev.	Average	St. Dev.	Average	St. Dev.	Average	St. Dev.		
C1	444.9	11.3	5.1	0.2	10.0	0.4	41.5	13.3	5.4	0.2		
L1	147.3	1.2			108.4	1.8	32.8	1.2	20.8	0.7		
L3	192.0	14.7	4.7	1.5	59.5	1.3	17.2	3.4	5.4	0.2		
L4	392.1	2.7	6.7	0.6	40.8	1.4	27.7	12.6	6.1	0.2		
L5	456.8	4.0	4.5	2.2	9.2	0.3	45.5	11.6	6.9	1.0		
L6	410.0	1.9	2.7	0.2	2.2	0.1	26.6	3.1	3.1	0.1		
L7	545.5	6.4	3.5	0.1	0.8	0.0	26.4	5.6	2.9	0.1		
C6	732.4	17.3	3.3	0.1	14.9	1.3	27.4	8.9	5.3	0.2		

Table S4 *Cont.* Total metal concentrations in the sediment samples presented as the average of three aqua regia digestions and the standard deviation.

a 1				μg kg ⁻¹				
Sampling location	Urar	nium	Vana	dium	Zi	nc	Mercury	
	Average	St. Dev.	Average	St. Dev.	Average	St. Dev.	Average	St. Dev.
C1	0.14	0.00	3.3	0.1	431.6	11.2	23.6	1.5
L1	0.10	0.00	3.6	0.1	729.6	5.7	86.7	3.0
L3	0.22	0.01	4.3	0.1	1385.6	16.3	73.6	0.9
L4	0.28	0.04	4.7	0.2	807.0	7.6	44.6	0.3
L5	0.13	0.00	2.8	0.1	382.8	2.6	27.9	0.7
L6	0.07	0.00	1.3	0.0	96.2	0.2	5.3	0.0
L7	0.15	0.01	1.6	0.1	16.7	1.7	14.2	1.3
C6	0.12	0.00	4.6	0.1	287.8	7.7	15.7	0.7

Table S5. Metal speciation in the sediments using X-ray photoelectron spectroscopy (XPS).

Sampling locations C 1s O 1s Si 2p Na 2s Mg 2p Fe 3p Mn 2p Pb 4f Zn 2p P 2p S 2p C1 22.7 56.1 16.3 0.5 2.0 1.3 0.11 0.03 0.10 L1 23.6 57.4 13.9 0.1 0.8 2.3 0.05 0.04 0.01 0.25 0.65 L4 29.7 52.3 13.3 0.4 1.1 2.0 0.19 0.02 0.08 0.00 0.17 L7 23.1 54.9 17.5 1.0 0.8 1.5 0.15 0.00	0.8
C1 22.7 56.1 16.3 0.5 2.0 1.3 0.11 0.03 0.10 L1 23.6 57.4 13.9 0.1 0.8 2.3 0.05 0.04 0.01 0.25 0.65 L4 29.7 52.3 13.3 0.4 1.1 2.0 0.19 0.02 0.08 0.00 0.17	0.8
L1 23.6 57.4 13.9 0.1 0.8 2.3 0.05 0.04 0.01 0.25 0.65 L4 29.7 52.3 13.3 0.4 1.1 2.0 0.19 0.02 0.08 0.00 0.17	
L4 29.7 52.3 13.3 0.4 1.1 2.0 0.19 0.02 0.08 0.00 0.17	0.0
	0.8
L7 231 549 175 10 08 15 015 000	0.7
E 7 25.1 54.5 17.5 1.0 0.0 1.5 0.15 0.00	1.3
Sampling % Content	
locations Fe ²⁺ Fe ³⁺ Pb PbO SO ₄ ²⁻ PO ₄ ³⁻ Amide NH ₃ N-O ₂ N-O ₃	
C1 64.0 36.0 100.0 70.2 29.8	
L1 75.9 24.1 0.0 100.0 100.0 100.0 76.6 23.4	
L4 76.3 23.7 17.8 82.2 100.0 0.0 45.6 10.3	
L7 12.0 88.0 100.0 95.0 5.0 9.8 34.3	

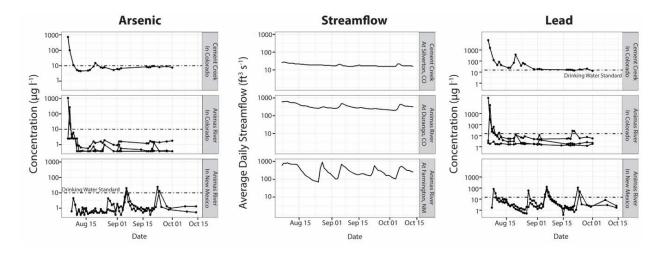
DI .	L1	L4
Phase	Weight % (ESD) ^a	Weight % (ESD)
Quartz	37.1 (3.1)	36.8 (3.0)
Illiite	29.9 (3.3)	12.1 (5.3)
Albite	7.3 (0.8)	17.6 (1.7)
Chlorite	17.6 (2.0)	10.7 (1.6
Clinoptolite		5.6 (0.9)
Microcline		14.7 (2.3)
Zeolite		2.6 (0.3)
Hydronium Jarosite	7.4 (1.7)	
Refinement statistics	L1	L4
R^{b}	13.57%	12.51%
E^{c}	11.08%	11.10%
R/E	1.22	1.13

Table S6 Summary of the mineral weight distribution in samples L1 and L4 obtained by XRD, and the refinement statistics of the method used.

^aESD: Estimated standard deviations. ^bR: R-factor = square root of the quantity minimized, scaled by the weighted intensities

^cE: "best posible" or "expected" R-factor

	57. Mossbauer spe	•	Center	Quadrupole	-	Hyperfine	h are	
Т (К)	Component	Relative area (%) ^a	shift, CS (mm/s)	splitting, QS or 2ε ^b (mm/s)	$\sigma(\Delta)^{c}$ (mm/s)	field, H (Tesla)	σ(H) ^d (Tesla)	χ ²
			Sa	mple C1				
77	Fe ³⁺ doublet 1	13.4 (1.0)	0.49 (0.01)	0.62	0.27	-	-	0.99
	Fe ³⁺ doublet 2	6.7 (1.2)	0.50 (0.02)	1.76	0.38	-	-	
	Fe ²⁺ doublet	22.4 (0.6)	1.27 (0.00)	2.85	0.19	-	-	
	goethite	41.6 (1.0)	0.50 (0.01)	-0.22	-	41.2	15.0	
	hematite	16.0 (1.2)	0.48 (0.01)	-0.15	-	53.2	0.7	
	Fe ³⁺ doublet 1	9.8 (1.0)	0.49 (0.02)	0.64	0.30	-	-	0.95
	Fe ³⁺ doublet 2	5.6 (0.9)	0.55 (0.02)	1.83	0.28	-	-	
17.5	Fe ²⁺ doublet	22.2 (1.2)	1.27 (0.00)	2.83	0.18	-	-	
	goethite	51.1 (2.6)	0.49 (0.01)	-0.20	-	53.4	0.52	
	hematite	11.4 (2.8)	0.51 (0.01)	-0.14	-	45.1	14.0	
			Sa	mple L1				
270	Fe ³⁺ doublet 1	40.7 (5.2)	0.37 (0.01)	0.59	0.15	-	-	0.59
	Fe ³⁺ doublet 2	21.3 (5.3)	0.38 (0.17)	1.13	0.18	-	-	
	Fe ²⁺ doublet	6.7 (1.2)	1.14 (0.55)	2.64	0.19	-	-	
	collapsed sextet	31.2 (3.7)	0.42 (0.20)	-0.24^{e}	-	25.0	13.3	
	Fe ³⁺ doublet	35.7 (0.8)	0.46 (0.01)	0.88	0.38	-	-	1.27
77	Fe ²⁺ doublet	5.6 (0.5)	1.24 (0.01)	2.88	0.13	-	-	
	goethite	58.7 (0.9)	0.47 (0.01)	-0.24	-	36.1	16.8	
_	Fe ³⁺ doublet	6.2 (0.7)	0.43 (0.02)	0.76	0.37	-	-	1.26
	Fe ²⁺ doublet	6.6 (0.5)	1.26 (0.01)	2.84	0.22	-	-	
17.5	goethite	17.2 (2.4)	0.50 (0.01)	-0.22	-	49.7	0.85	
	nano-goethite + jarosite	69.9 (2.3)	0.48 (0.01)	-0.19	-	40.9	11.6	
	-		Sa	mple L4				
	Fe ³⁺ doublet 1	25 (11)	0.40 (0.01)	0.54	0.11	-	-	0.69
	Fe ³⁺ doublet 2	35 (10)	0.35 (0.01)	1.01	0.30	-	-	
270	Fe ²⁺ doublet	15.6 (3.1)	1.21 (0.03)	2.54	0.18	-	-	
	hematite	6.3 (1.9)	0.39 (0.05)	-0.23	-	51.1	1.3	
	collapsed sextet	18.7 (4.5)	0.42 ^e	-0.24^{e}	-	20.7	14.3	
77	Fe ³⁺ doublet	39.7 (1.1)	0.49 (0.00)	0.83	0.35	-	-	0.95
	Fe ²⁺ doublet	13.2 (0.6)	1.24 (0.01)	2.88	0.21	-	-	
	goethite	44.9 (1.3)	0.49 (0.02)	-0.24	-	34.1	17.1	
	hematite	2.2 (0.9)	0.52 (0.04)	-0.15	-	53.0	0.003	
	Fe ³⁺ doublet	9.1 (1.7)	0.47 (0.02)	0.84	0.39	-	-	1.03
	Fe ²⁺ doublet	13.6 (0.5)	1.26 (0.01)	2.82	0.22	-	-	
175	goethite	5.8 (1.6)	0.51 (0.1)	-0.26	-	49.5	0.58	
17.5	nano-goethite + jarosite	69.8 (1.5)	0.47	-0.20	-	38.4	13.8	
	hematite	1.7 (0.7)	0.53 (0.04)	-0.12	-	53.3	0.33	


Table S7. Mössbauer spectral parameters derived from fitting Animas River samples C1, L1 and L4.

^a value in parenthesis reflects the error (1σ) in determination of the relative area for each component ^b $2\varepsilon =$ quadrupole shift parameter in sextet ^c $\sigma(\Delta) =$ standard deviation of quadrupole splitting component ^d $\sigma(H) =$ standard deviation of hyperfine field component ^e = parameter held constant during fitting

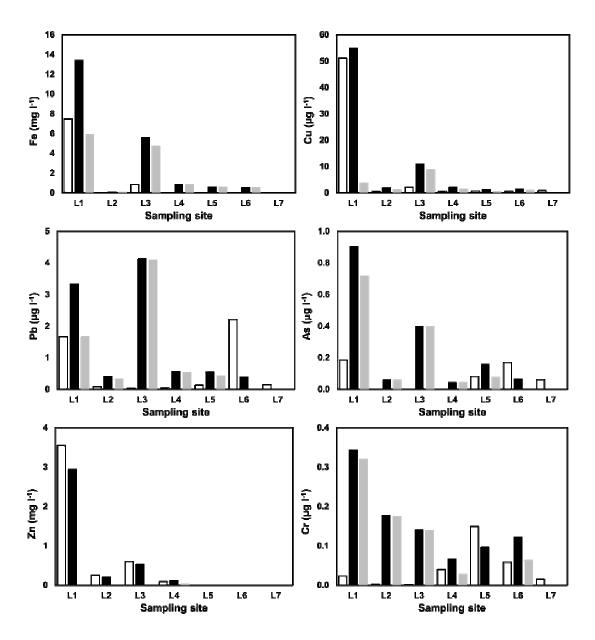
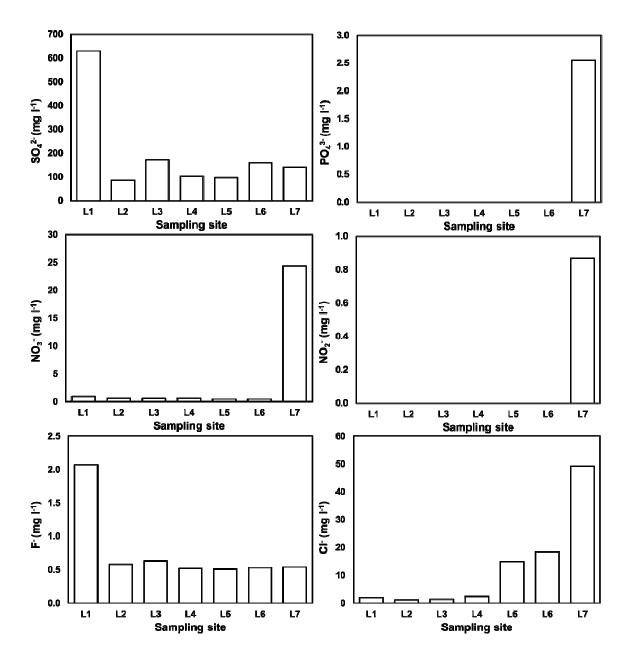
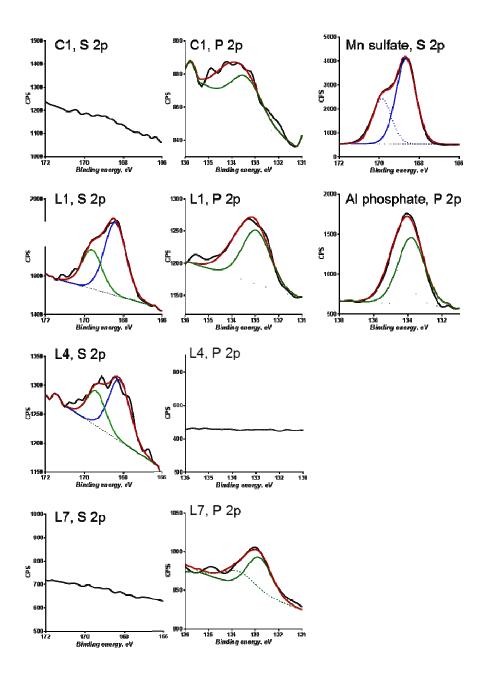
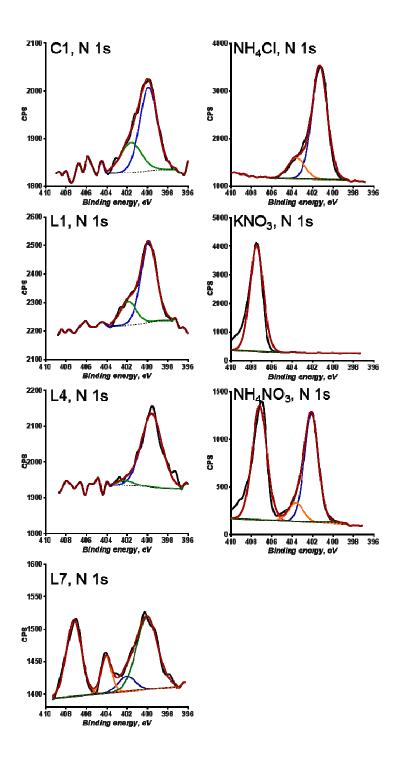

Temp. (K)	Component	Relative area (%)	Center shift, CS (mm/s)	Quadrupol e splitting, QS or 2e ^b (mm/s)	σ(Δ) ^c (mm/s)	Hyperfin e field, H (Tesla)	σ(H) ^d (Tesla)	χ _ν ²
295	doublet	100	0.38 (0.00)	1.11	0.39	-	-	0.70
77	doublet	100	0.49 (0.00)	1.14	0.27	-	-	1.42
19	sextet	100	0.49 (0.01)	-0.158	-	42.4	9.1	1.28

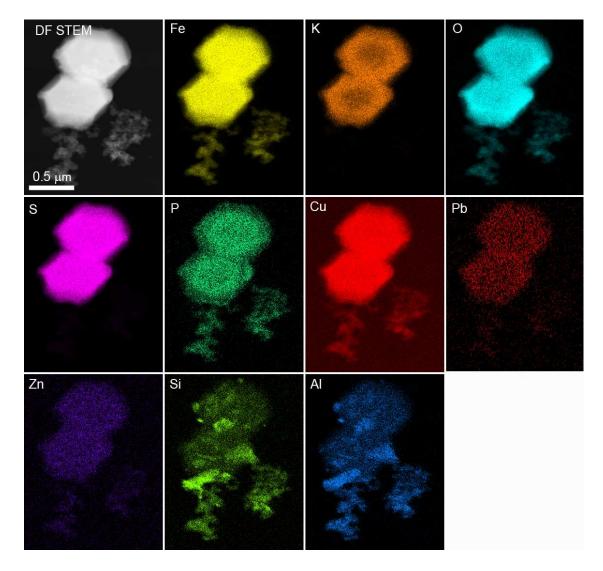
Table S8. Mössbauer spectral parameters derived from fitting the synthetic K-jarosite.

^a value in parenthesis reflects the error (1σ) in determination of the relative area for each component ^b $2\varepsilon =$ quadrupole shift parameter in sextet ^c $\sigma(\Delta) =$ standard deviation of quadrupole splitting component ^d $\sigma(H) =$ standard deviation of hyperfine field component

Figure S1. Arsenic and Pb concentrations (suspended metal) in surface water from August 5 to October 14, 2015, in Colorado and New Mexico. Peaks in total metal concentrations occurred following high-flow events, as shown in the streamflow hydrograph. Total metal concentrations were obtained from the EPA website²¹ and streamflow data were downloaded from the US Geological Survey National Water Information System website.²²

Figure S2. Selected metal concentrations in water samples. The graphs differentiate between the dissolved metal concentration (empty bar), total metal concentration (black bar), and the suspended metal concentration (grey bar).


Figure S3. Concentrations of the ions in the water sample at the different sampling locations.

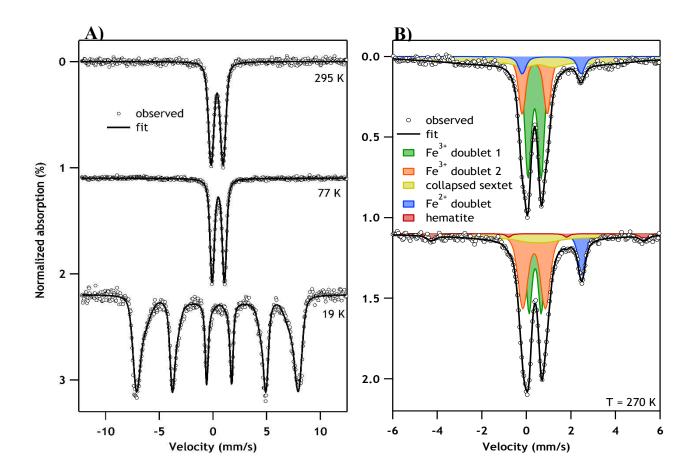

Figure S4. X-ray photoelectron spectra (XPS) of sulfur (S) and phosphorous (P) for the sediment samples C1, L1, L4 and L7. The figure includes the XPS of $MnSO_4$ and Al_3PO_4 (Ref.) for comparison with the sediment samples.

Figure S5. X-ray photoelectron spectra (XPS) of nitrogen (N) for the sediment samples C1, L1, L4 and L7. The figure includes the XPS of NH_4Cl , KNO_3 and NH_4NO_3 (Ref.) for comparison with the sediment samples.

Figure S6. Scanning transmission electron microscope (STEM) and STEM X-ray map data of Pb-bearing jarosite crystals in sediment sample from Baker's Bridge near Hermosa, L4. Upper left image is a dark-field STEM image showing two submicron, euhedral crystals of jarosite (bright in the image), associated with fine-grained, clay-rich material and Fe-oxyhydroxides (lower part of the image). Additional images show STEM X-ray maps for Fe, K, O, S, P, Cu, Pb, Zn, Si and Al. The intensity of the color is correlated with the concentration of the element in the sample. The data show that in addition to the major elements, Fe, K, Cu, O, and S, the jarosite grains also contain detectable concentrations of P, Pb and Zn. The variations in X-ray intensity for K and P suggest that there may be some compositional zoning in the jarosite grains. The Si and Al X-ray maps show that silicate material is present adhering to the jarosite.

Figure S7. Mössbauer spectra: Panel A: ⁵⁷Fe-Mössbauer spectra of synthetic K-jarosite collected at 295 K, 77 K and 19 K, shown with spectral fits (Table S7). Panel B: Mössbauer spectra collected at a temperature of 270 K for samples L1 (top) and L4 (bottom), with spectral fits shown. Mössbauer hyperfine parameters are reported in Table S6.