Palladium-Catalyzed Aerobic Intramolecular Aminoacetoxylation of Alkenes Enabled by Catalytic Nitrate

Jiaming Li, Robert H. Grubbs* and Brian M. Stoltz*
The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125, United States

Table of Contents
Materials and Methods S1
Selected Optimization Experiments S2
General Experimental Procedures S3
Substrate Synthesis and Characterization Data S4
Product Characterization Data S9
Notes and References S13
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra S14

Materials and Methods

Commercial reagents and metal salts were obtained from Sigma-Aldrich, TCI, Combi-Blocks, Alfa Aesar and used without further purification. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian 500 MHz , Varian 400 MHz or a Varian 300 MHz spectrometer. High-resolution mass spectra were provided by the California Institute of Technology Mass Spectrometry Facility, using JEOL JMS-600H High Resolution Mass Spectrometer. Gas chromatography data was obtained using an Agilent 6850 FID gas chromatograph equipped with a HP-5 (5\%-phenyl)-methylpolysiloxane capillary column (Agilent). Response factors relative to the internal standard tridecane were collected for the substrate N -(pent-4-en-1-yl)acetamide (1a), and the product (1-acetylpyrrolidin-2-yl)methyl acetate (2a) following literature procedures. ${ }^{1}$

Selected Optimization Experiments

Table S1. Initial Control Experiment from Standard Diacetoxylation Conditions

Table S2. Catalysts Ratio Studies

${ }^{a}$ Yields are determined by GC analysis with tridecane as an internal standard in Table S1 and S2.

General Experimental Procedures

General procedure A for isolation scale ($\mathbf{0 . 5} \mathbf{~ m m o l}$) aminoacetoxylation of alkenes:

$\mathrm{PdCl}_{2}(\mathrm{PhCN})_{2}(0.025 \mathrm{mmol}, 9.6 \mathrm{mg}), \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(0.025 \mathrm{mmol}, 6.0 \mathrm{mg})$ and alkene substrate (0.5 mmol) were weighed into a 50 mL flame-dried round bottom flask ($14 / 20$ neck) with a stir bar. The flask was sparged with oxygen (1 atm) from an oxygen balloon, through a vacuum adapter $(14 / 20)$. $\mathrm{AcOH}(9.0 \mathrm{~mL})$ and $\mathrm{Ac}_{2} \mathrm{O}(1.5 \mathrm{~mL})$ were premixed in a separated vial and sparged with oxygen (through needle and oxygen balloon) for 2 minutes. The oxygenated solvent mixture was then transferred into the flask via syringe. The reaction was then allowed to stir at $23^{\circ} \mathrm{C}$ for 16 h under an atmosphere of oxygen (1 atm balloon). The solvent was removed under reduced pressure. Dichloromethane (20 mL) was then added and the resulting mixture was washed with saturated $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. The aqueous layer was extracted with dichloromethane $(2 \times 20 \mathrm{~mL})$ and the combined organic layer was dried over MgSO_{4}. The solvent was removed under reduced pressure and the crude mixture was purified by silica gel chromatography.

General procedure B for analytical scale (0.2 mmol) aminoacetoxylation of 1a:

$\mathrm{PdCl}_{2}(\mathrm{PhCN})_{2}(0.01 \mathrm{mmol}, 3.8 \mathrm{mg}), \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \bullet 3 \mathrm{H}_{2} \mathrm{O}(0.01 \mathrm{mmol}, 2.4 \mathrm{mg})$ and alkene substrate (0.5 mmol) were weighed into a 2-dram screw-cap vial charged with a stir bar. The vial was sparged with oxygen (1 atm balloon) for 45 seconds. $\mathrm{AcOH}(3.6 \mathrm{~mL}), \mathrm{Ac}_{2} \mathrm{O}(0.6 \mathrm{~mL})$ and tridecane ($0.00246 \mathrm{mmol}, 6 \mu \mathrm{~L}$) were subsequently added via syringe. The solution was saturated with oxygen by an additional 45 seconds of sparging. The reaction was then allowed to stir at $23{ }^{\circ} \mathrm{C}$ for 16 h under an atmosphere of oxygen (balloon). Next, an aliquot (ca. 0.2 mL) was injected into a 2 mL vial containing an estimated 1 mL of premixed EtOAc/pyridine solution (3:1) to quench the reaction. The resulting solution was subjected to GC analysis to determine yield.

Substrate Synthesis and Characterization Data

\mathbf{N}-(pent-4-en-1-yl)acetamide (1a): Prepared according to the literature procedure from 4pentenitrile ${ }^{2}$ as a colorless oil ($1.34 \mathrm{~g}, 52 \%$ yield over 2 steps). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $6.59(\mathrm{bs}, 1 \mathrm{H}), 5.73(\mathrm{ddt}, \mathrm{J}=16.9,10.1,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.10-4.82(\mathrm{~m}, 2 \mathrm{H}), 3.17(\mathrm{td}, \mathrm{J}=7.3,5.8$ $\mathrm{Hz}, 2 \mathrm{H}), 2.02(\mathrm{~m}, 2 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{ddd}, \mathrm{J}=14.7,7.9,6.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 170.4,137.7,115.0,39.1,31.0,28.6,23.1$; HRMS (FAB+) m / z calc'd for $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{NO}$ $[\mathrm{M}+\mathrm{H}]^{+}: 128.1075$, found: 128.1077 .

\mathbf{N}-(2,2-diphenylpent-4-enyl)acetamide (1b): Synthesized according to literature procedure ${ }^{3}$ as a white solid ($3.03 \mathrm{~g}, 54 \%$ yield over 3 steps). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33$ (dd, $\mathrm{J}=8.2$, $7.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.19(\mathrm{~m}, 4 \mathrm{H}), 5.45(\mathrm{ddt}, \mathrm{J}=16.7,10.4,7.1 \mathrm{~Hz}, 1 \mathrm{H})$, $5.06(\mathrm{bs}, 1 \mathrm{H}), 5.03-4.96(\mathrm{~m}, 2 \mathrm{H}), 3.99(\mathrm{~d}, \mathrm{~J}=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.87(\mathrm{dt}, \mathrm{J}=7.2,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.87$ $(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.9,145.2,133.6,128.3,128.0,126.6,118.7,50.2$, 46.0, 42.1, 23.4; HRMS (FAB+) m / z calc'd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 280.1701$, found 280.1702 .

\mathbf{N}-(2,2-dibenzylpent-4-en-1-yl)acetamide (1c): 2,2-dibenzyl-4-pentenenitrile could be prepared from allyl 2-cyanoacetate according to the literature procedure ${ }^{4}$ as a colorless liquid (1.13 g , 72% yield $)$. Then, $\mathrm{LiAlH}_{4}(0.9 \mathrm{~g}, 23 \mathrm{mmol})$ was weighed into a flame-dried flask, and the flask was exchanged with vacuum/argon 3 times. $100 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$ was added to flask through cannula
transfer. 2,2-dibenzyl-4-pentenenitrile ($1.13 \mathrm{~g}, 4.3 \mathrm{mmol}$) was dissolved into $10 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$ and added via syringe. The reaction was stirred overnight and quenched with water and 1 M NaOH solution. After the grey color of suspension turned white completely, the reaction mixture was filtered through celite. The filtrate was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo without purification. Then the crude 2,2-dibenzylpent-4-en-1-amine was dissolved into $50 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$ and acetic anhydride ($1.2 \mathrm{~mL}, 12.9 \mathrm{mmol}$) was added. After 3 h , the reaction mixture was washed with saturate NaHCO_{3} solution (20 mL), and then the aqueous layer was extracted with EtOAc (2 $\times 20 \mathrm{~mL}$). The combined organic layers was concentrated in vacuo and purified by silica gel chromatography ($50 \% \mathrm{EtOAc}$ in hexanes). Product 1c was obtained as a colorless oil (976 mg , 74% yield over last two steps). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.25$ (m, 2H), $7.23-7.20(\mathrm{~m}, 4 \mathrm{H}), 6.01(\mathrm{ddt}, \mathrm{J}=17.3,10.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.24-5.13(\mathrm{~m}, 2 \mathrm{H}), 5.02$ (bs, 1H), $3.27(\mathrm{~d}, \mathrm{~J}=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.76-2.66(\mathrm{~m}, 4 \mathrm{H}), 2.16(\mathrm{dt}, \mathrm{J}=7.2,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.74(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.8,137.8,134.5,130.6,128.3,126.6,118.8,45.7,43.4$, $41.4,39.4,23.3$ (one quaternary carbon signal unresolved); HRMS (FAB+) m / z calc'd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 308.2014$, found 308.2013.

General procedure C: synthesis of o-allylaniline derivatives 3a, 3b, 3d, 3e

N -allylanilines can be prepared from the literature procedure. ${ }^{5}$ In a 5 mL microwave tube, a solution of N -allylaniline ($665 \mathrm{mg}, 5 \mathrm{mmol}$) in 4 mL xylenes was added boron trifluoride etherate ($0.7 \mathrm{~mL}, 5,5 \mathrm{mmol}$) under an argon atmosphere. Then the microwave tubes was sealed and heated to $180^{\circ} \mathrm{C}$ in the microwave reactor for 2 h . After cooling down to room temperature, the reaction mixture was poured into 2 M NaOH solution (10 mL), and extracted with EtOAc (10 $\mathrm{mL} \times 2$). The combined organic layers were dried over MgSO_{4}, and concentrated in vacuo. The crude o-allylaniline was dissolved in $\mathrm{DCM}(30 \mathrm{~mL})$ and acetic anhydride $(1.4 \mathrm{~mL}, 15 \mathrm{mmol})$ was added dropwise. After reacting 2 h in room temperature, the reaction mixture was poured into saturated NaHCO_{3} and extracted with EtOAc $(2 \times 30 \mathrm{~mL})$. The combined organic layers was dried over MgSO_{4}. The solvent was removed by rotary evaporation, and the residue was purified by column chromatography ($30 \% \mathrm{EtOAc}$ in hexanes).

N-(2-allylphenyl)acetamide (3a): Prepared according to General Procedure C as a white solid $\left(257 \mathrm{mg}, 44 \%\right.$ yield over 2 steps). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86(\mathrm{dd}, \mathrm{J}=8.3,4.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.32-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.20(\mathrm{dd}, \mathrm{J}=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{ddt}, \mathrm{J}=16.6$, $11.4,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.25-5.08(\mathrm{~m}, 2 \mathrm{H}), 3.41(\mathrm{~d}, \mathrm{~J}=6.0,2 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 168.4,136.4,136.0,130.2,130.0,127.5,125.4,123.9,116.6,37.0,24.3$;
HRMS (FAB+) m / z calc'd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 176.1075$, found: 176.1083 .

N-(2-allyl-4-methylphenyl)acetamide (3b): Prepared according to General Procedure C from the corresponding N -allyl-4-methylaniline as a white solid ($342 \mathrm{mg}, 36 \%$ yield over 2 steps). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{bs}, 1 \mathrm{H}), 7.08(\mathrm{dd}, \mathrm{J}=8.2,2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.01(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{ddt}, \mathrm{J}=16.5,10.1,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.23-5.07(\mathrm{~m}, 2 \mathrm{H}), 3.36$ (dd, J = 6.2, 1.8 Hz, 2H), 2.33 (s, 3H), 2.16 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.3,136.5$, $135.2,133.3,130.8,130.3,128.0,124.2,116.3,36.9,24.2,20.9$; HRMS (FAB+) m / z calc'd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 190.1232$, found 190.1233 .

N -(2-allyl-4-fluorophenyl)acetamide (3d): Prepared according to General Procedure C from the corresponding N -allyl-4-fluoroaniline as a white solid ($425 \mathrm{mg}, 44 \%$ yield over 2 steps). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.72(\mathrm{dd}, \mathrm{J}=8.9,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{bs}, 1 \mathrm{H}), 6.97(\mathrm{td}, \mathrm{J}=8.4,3.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.93(\mathrm{dd}, \mathrm{J}=9.1,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{ddt}, \mathrm{J}=17.2,10.1,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.26-5.08(\mathrm{~m}$, 2H), 3.37 (dt, J = 6.1, $1.7 \mathrm{~Hz}, 2 \mathrm{H}$), $2.18(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.4,160.1(\mathrm{~d}$, $\mathrm{J}=244.7 \mathrm{~Hz}), 135.5,133.2(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}), 131.7(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}), 126.1(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}), 117.1$, $116.7(\mathrm{~d}, \mathrm{~J}=22.8 \mathrm{~Hz}), 114.0(\mathrm{~d}, \mathrm{~J}=22.1 \mathrm{~Hz}), 36.7$, 24.1; HRMS (FAB+$) m / z$ calc'd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NOF}[\mathrm{M}+\mathrm{H}]^{+}: 194.0981$, found 194.0977.

$3 e$
N-(2-allyl-4-chlorophenyl)acetamide (3e): Prepared according to General Procedure C from the corresponding N -allyl-4-chloroaniline as a white solid ($442 \mathrm{mg}, 42 \%$ yield over 2 steps).
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90-7.73(\mathrm{~m}, 1 \mathrm{H}), 7.28(\mathrm{bs}, 1 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.18(\mathrm{~m}$, $1 \mathrm{H}), 6.00-5.90(\mathrm{~m}, 1 \mathrm{H}), 5.26-5.09(\mathrm{~m}, 2 \mathrm{H}), 3.36(\mathrm{dt}, \mathrm{J}=6.4,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.3,135.4,134.6,131.7,130.3,130.0,127.4,125.0,117.2,36.6$, 24.3; HRMS (FAB+) m / z calc'd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NOCl}[\mathrm{M}+\mathrm{H}]^{+}: 210.0686$, found 210.0683.

General procedure D: synthesis of \boldsymbol{o}-allyl aniline derivatives ${ }^{6}$

4-Amino-3-bromobenzotrifluoride ($960 \mathrm{mg}, 4 \mathrm{mmol}$) dissolved in dry DMF $(10 \mathrm{~mL})$ was added allyltributyltin $(1.50 \mathrm{~mL}, 4.8 \mathrm{mmol})$ under argon at room temperature. $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(457 \mathrm{mg}, 0.39$ mmol) were then added and the reaction mixture was stirred at $85^{\circ} \mathrm{C}$ for 16 h . The reaction mixture was then cooled down to room temperature and diluted with water $(10 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated under reduced pressure. Purification by flash column chromatography gave 2-allyl-4-(trifluoromethyl)aniline ($685 \mathrm{mg}, 85 \%$ yield) as yellow oil. Then 2-allyl-4-(trifluoromethyl)aniline was dissolved in DCM (30 mL) and acetic anhydride (1.0 mL , 10.2 mmol) was added dropwise. After reacting 2 h in room temperature, the reaction mixture was poured into saturated NaHCO_{3} and extracted with EtOAc $(2 \times 30 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}. The solvent was removed by rotary evaporation, and the residue was purified by column chromatography ($30 \% \mathrm{EtOAc}$ in hexanes).

$3 c$
N-(2-allyl-5-methylphenyl)acetamide (3c): Prepared according to General Procedure D from the corresponding 2-bromo-5-methylaniline as a white solid ($605 \mathrm{mg}, 80 \%$ yield over 2 steps). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68(\mathrm{~m}, 1 \mathrm{H}), 7.23(\mathrm{bs}, 1 \mathrm{H}), 7.08(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.96-6.94$ $(\mathrm{m}, 1 \mathrm{H}), 5.98(\mathrm{ddt}, \mathrm{J}=16.5,10.1,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.21-5.07(\mathrm{~m}, 2 \mathrm{H}), 3.36(\mathrm{dt}, \mathrm{J}=6.3,1.7 \mathrm{~Hz}$, $2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.4,137.2,136.7,135.8,130.0$,
127.1, 126.2, 124.5, 116.3, 36.6, 24.3, 21.2; HRMS (FAB+) m / z calc'd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$: 190.1232, found 190.1237.

Methyl 4-acetamido-3-allylbenzoate (3f): Prepared according to General Procedure D from the corresponding methyl 4-amino-3-bromobenzoate as a white solid ($451 \mathrm{mg}, 48 \%$ yield over 2 steps). ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.15-8.09(\mathrm{~m}, 1 \mathrm{H}), 7.95-7.91(\mathrm{~m}, 1 \mathrm{H}), 7.87(\mathrm{bs}, 1 \mathrm{H})$, $7.57-7.50(\mathrm{~m}, 1 \mathrm{H}), 5.97(\mathrm{tdt}, \mathrm{J}=11.1,10.1,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.28-5.10(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.45$ $-3.43(\mathrm{~m}, 2 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.3,166.7,140.6,135.6,131.7$, 129.2, 128.1, 126.0, 121.9, 117.3, 52.1, 36.9, 24.6; HRMS (FAB+) m/z calc'd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NO}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+}: 234.1130$, found 234.1122 .

N-(2-allyl-4-(trifluoromethyl)phenyl)acetamide (3g): Prepared according to General Procedure D as a white solid ($583 \mathrm{mg}, 60 \%$ yield over 2 steps). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.10(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{dd}, \mathrm{J}=8.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{ddt}, \mathrm{J}=$ $17.3,10.1,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.29-5.12(\mathrm{~m}, 2 \mathrm{H}), 3.44(\mathrm{dt}, \mathrm{J}=6.1,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.5,139.3,135.2,129.4,127.1(\mathrm{q}, \mathrm{J}=4.2 \mathrm{~Hz}), 126.7(\mathrm{q}, \mathrm{J}=32.6$ Hz), $124.6(\mathrm{q}, \mathrm{J}=3.8 \mathrm{~Hz}), 124.0(\mathrm{q}, \mathrm{J}=272 \mathrm{~Hz}), 122.9,117.6,36.7,24.4$; HRMS (FAB+) m/z calc'd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NOF}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 244.0949$, found 244.0952.

3h

N-(2-allyl-4-nitrophenyl)acetamide (3h): Prepared according to General Procedure D from the corresponding 2-bromo-4-nitroaniline as a white solid ($183 \mathrm{mg}, 21 \%$ yield over 2 steps). ${ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl ${ }_{3}$) $\delta 8.35(\mathrm{~d}, \mathrm{~J}=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{dd}, \mathrm{J}=9.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~d}, \mathrm{~J}=$ $2.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.57 (bs, 1H), 6.00 (ddt, J = 16.5, 10.1, $6.1 \mathrm{~Hz}, 1 \mathrm{H}$), $5.42-5.08$ (m, 2H), 3.51 (dt, J $=6.1,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.3,143.6,142.3,134.5$, 128.4, 125.6, 123.5, 121.6, 118.3, 36.8, 24.8; HRMS (FAB+) m/z calc'd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+}: 221.0926$, found 221.0919 .

N-(2-allyl-4-cyanophenyl)acetamide (3i): Prepared according to General Procedure D from the corresponding 4-amino-3-bromobenzonitrile as a white solid ($460 \mathrm{mg}, 58 \%$ yield over 2 steps). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.23(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{dd}, \mathrm{J}=8.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{bs}$, $1 \mathrm{H}), 7.48(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{ddt}, \mathrm{J}=16.8,10.1,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.40-5.03(\mathrm{~m}, 2 \mathrm{H}), 3.43$ (dt, J = 6.1, $1.8 \mathrm{~Hz}, 2 \mathrm{H}$), $2.20(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.3,140.5,134.7,133.9$, $131.8,128.9,122.4,118.8,118.1,107.6,36.5,24.7$; HRMS (FAB+) m / z calc'd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}$ $[\mathrm{M}+\mathrm{H}]^{+}: 201.1028$, found 201.1022.

Product characterization

Mixture of rotamer may occur in most products. A representative VT-NMR experiment was conducted on the product $\mathbf{4 a}$. At $75^{\circ} \mathrm{C}$ in DMSO solvent, only one rotamer is predominantly appeared in ${ }^{1} \mathrm{H}$ NMR and the characterization data is shown below.

$4 a$
(1-acetylindolin-2-yl)methyl acetate (4a): Prepared according to the general procedure A to provide $\mathbf{4 a}$ ($102 \mathrm{mg}, 87 \%$ yield) as a colorless oil. When the reaction was conducted under air (Table 3, entry 2), an air balloon was used instead of oxygen balloon, which provide $\mathbf{4 a}(94 \mathrm{mg}$, 80% yield) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}, 75^{\circ} \mathrm{C}$) $\delta 7.77(\mathrm{bs}, 1 \mathrm{H}), 7.23(\mathrm{~d}, \mathrm{~J}=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.82-4.74(\mathrm{~m}, 1 \mathrm{H}), 4.08(\mathrm{~d}, \mathrm{~J}=$ $5.7 \mathrm{~Hz}, 2 \mathrm{H}$), 3.33 (dd, J = 16.3, $9.2 \mathrm{~Hz}, 1 \mathrm{H}$), $2.83(\mathrm{~d}, \mathrm{~J}=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 1.87$ ($\mathrm{s}, 3 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) mixture of rotamers, chemical shifts reported are from major rotamer $\delta 170.7,168.7,141.9,129.7,127.7,124.8,124.2,118.1,64.9,58.5,32.1,23.4,20.7 ;$ HRMS (FAB+) m / z calc'd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 234.1130$, found 234.1127.

For ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR characterization of the rest of compounds, chemical shifts of only the major rotamer are reported. In ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of products, only the major rotamer peaks are integrated.

(1-acetylpyrrolidin-2-yl)methyl acetate (2a): Prepared according to the general procedure A to provide $\mathbf{2 a}$ ($64 \mathrm{mg}, 69 \%$ yield) as a colorless liquid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ mixture of rotamers, chemical shifts reported are from the major rotamer $\delta 4.32(\mathrm{tt}, \mathrm{J}=7.4,3.7 \mathrm{~Hz}, 1 \mathrm{H})$, 4.15 (dd, J = 10.8, 3.9 Hz, 1H) 4.09 (dd, J = 10.8, $6.8 \mathrm{~Hz}, 1 \mathrm{H}$), $3.50-3.37$ (m, 2H), 2.03 ($\mathrm{s}, 3 \mathrm{H}$), $2.03(\mathrm{~s}, 3 \mathrm{H})$ (two overlapped singlets), $1.96-1.88(\mathrm{~m}, 3 \mathrm{H}) 1.86-1.81(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.8,169.7,63.8,55.2,47.9,27.5,24.0,21.9,20.9 ;$ HRMS (FAB+) m / z calc'd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 186.1130$, found 186.1134.

(1-acetyl-4,4-diphenylpyrrolidin-2-yl)methyl acetate (2b): Prepared according to the general procedure A to provide $\mathbf{2 b}$ ($126 \mathrm{mg}, 75 \%$ yield) as a white solid. ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO, $23^{\circ} \mathrm{C}$) mixture of rotamers, chemical shifts reported are from major rotamer $\delta 7.46-7.43(\mathrm{~m}$, 2H), $7.38-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.19$ (ddt, J $=9.0,7.9,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.68(\mathrm{dd}, \mathrm{J}=$ $11.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{dd}, \mathrm{J}=10.6,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{dd}, \mathrm{J}=10.6,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{dd}, \mathrm{J}=$ $10.0,6.7,1 H), 3.82(\mathrm{~d}, \mathrm{~J}=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{ddd}, \mathrm{J}=13.0,7.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{dd}, \mathrm{J}=13.0$, $9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.8,169.3,145.2$, 144.6, 128.8, 128.7, 126.8, 126.8, 126.6, 126.2, 64.1, 58.5, 55.0, 53.2, 40.1, 23.1, 20.9; HRMS $(\mathrm{FAB}+) \mathrm{m} / \mathrm{z}$ calc'd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 338.1756$, found 338.1757 .

(1-acetyl-4,4-dibenzylpyrrolidin-2-yl)methyl acetate (2c): Prepared according to the general procedure A to provide $\mathbf{2 c}(152 \mathrm{mg}, 83 \%$ yield $)$ as a white solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ mixture of rotamers, chemical shifts reported are from major rotamer $\delta 7.38-7.22(\mathrm{~m}, 6 \mathrm{H}), 7.19$ $-7.09(\mathrm{~m}, 4 \mathrm{H}), 4.33(\mathrm{dd}, \mathrm{J}=11.1,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.29-4.20(\mathrm{~m}, 1 \mathrm{H}), 4.17(\mathrm{dd}, \mathrm{J}=11.1,2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.31(\mathrm{dd}, \mathrm{J}=10.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{~d}, \mathrm{~J}=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{~s}, 2 \mathrm{H}), 2.69(\mathrm{~s}, 2 \mathrm{H}), 2.03(\mathrm{~s}$, $3 \mathrm{H}), 1.93-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.79(\mathrm{dd}, \mathrm{J}=13.1,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 170.8,169.3,137.5,137.1,130.8,130.3,128.4,128.3,126.9,126.6,63.6,55.0,54.6$, 45.7, 43.9, 41.8, 35.0, 23.2, 20.6; HRMS (FAB+) m / z calc'd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 366.2069$, found 366.2053 .

4b
(1-acetyl-5-methylindolin-2-yl)methyl acetate (4b): Prepared according to the general procedure A to provide $\mathbf{4 b}\left(110 \mathrm{mg}, 89 \%\right.$ yield) as a colorless oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ mixture of rotamers, chemical shifts reported are from major rotamer $\delta 7.98(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.01(\mathrm{~m}, 2 \mathrm{H}), 4.61(\mathrm{~m}, 1 \mathrm{H}), 4.25-4.08(\mathrm{~m}, 2 \mathrm{H}), 3.35(\mathrm{dd}, \mathrm{J}=16.1,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{~d}, \mathrm{~J}=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.7$, 168.4, 139.6, 133.8, 129.8, 128.1, 125.4, 117.8, 64.8, 58.6, 32.0, 23.3, 21.0, 20.8; HRMS $(\mathrm{FAB}+) \mathrm{m} / \mathrm{z}$ calc'd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 248.1287$, found 248.1280.

(1-acetyl-6-methylindolin-2-yl)methyl acetate (4c): Prepared according to the general procedure A to provide $\mathbf{4 c}\left(118 \mathrm{mg}, 95 \%\right.$ yield) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ mixture of rotamers, chemical shifts reported are from major rotamer $\delta 7.95(\mathrm{~s}, 1 \mathrm{H}), 7.06(\mathrm{~d}, \mathrm{~J}=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~m}, 1 \mathrm{H}), 4.19(\mathrm{dd}, \mathrm{J}=11.8,6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.31(\mathrm{dd}, \mathrm{J}=$ $16.1,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{~d}, \mathrm{~J}=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.7,168.6,142.0,137.6,126.8,124.9,124.4,118.8,64.8,58.8,31.7$, 23.4, 21.6, 20.7; HRMS (FAB+) m / z calc'd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 248.1287$, found 248.1280.

4d
(1-acetyl-5-fluoroindolin-2-yl)methyl acetate (4d). Prepared according to the general procedure A to provide $\mathbf{4 d}\left(110 \mathrm{mg}, 88 \%\right.$ yield) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ mixture of rotamers, chemical shifts reported are from major rotamer $\delta 8.05(\mathrm{dd}, \mathrm{J}=8.4,4.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.97-6.83(\mathrm{~m}, 2 \mathrm{H}), 4.63(\mathrm{~m}, 1 \mathrm{H}), 4.20(\mathrm{dd}, \mathrm{J}=11.2,5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.37(\mathrm{dd}, \mathrm{J}=16.4,8.9$ $\mathrm{Hz}, 1 \mathrm{H}), 2.86(\mathrm{~d}, \mathrm{~J}=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $170.6,168.4,159.5(\mathrm{~d}, \mathrm{~J}=243.0 \mathrm{~Hz}), 134.2(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}), 131.8(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}), 121.7(\mathrm{~d}, \mathrm{~J}=$ $7.8 \mathrm{~Hz}), 115.5(\mathrm{~d}, \mathrm{~J}=22.3 \mathrm{~Hz}), 112.0(\mathrm{~d}, \mathrm{~J}=24.8 \mathrm{~Hz}), 64.7,58.8,32.0,23.1,20.7$; HRMS $(\mathrm{FAB}+) \mathrm{m} / \mathrm{z}$ calc'd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{3} \mathrm{~F}[\mathrm{M}+\mathrm{H}]^{+}: 252.1036$, found 252.1037.

(1-acetyl-5-chloroindolin-2-yl)methyl acetate (4e). Prepared according to the general procedure A to provide $4 \mathbf{e}\left(107 \mathrm{mg}, 80 \%\right.$ yield) as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) mixture of rotamers, chemical shifts reported are from major rotamer $\delta 8.03(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.18-7.15(\mathrm{~m}, 2 \mathrm{H}), 4.63(\mathrm{~m}, 1 \mathrm{H}), 4.19(\mathrm{dd}, \mathrm{J}=11.4,5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.35(\mathrm{dd}, \mathrm{J}=16.4,8.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.86(\mathrm{~d}, \mathrm{~J}=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.6$, 168.7, 140.7, 131.7, 129.0, 127.6, 124.9, 118.9, 64.7, 58.7, 31.9, 23.2, 20.7; HRMS (FAB+) m/z calc'd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{3} \mathrm{Cl}[\mathrm{M}+\mathrm{H}]^{+}: 268.0740$, found 268.0738.

methyl 2-(acetoxymethyl)-1-acetylindoline-5-carboxylate (4f). Prepared according to the general procedure A to provide $\mathbf{4 f}\left(95 \mathrm{mg}, 65 \%\right.$ yield) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, CDCl_{3}) mixture of rotamers, chemical shifts reported are from major rotamer $\delta 8.13(\mathrm{~s}, 1 \mathrm{H}), 7.93$ $-7.90(\mathrm{~m}, 1 \mathrm{H}), 7.86(\mathrm{~s}, 1 \mathrm{H}), 4.67(\mathrm{~m}, 1 \mathrm{H}), 4.18(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{~m}, 1 \mathrm{H}), 2.92(\mathrm{~d}, \mathrm{~J}=$ $16.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.6,169.0,166.6$, $146.0,130.1,126.2,125.8,117.2,114.0,64.7,58.9,52.0,31.8,23.5,20.6$; HRMS (FAB+) m / z calc'd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 292.1185$, found 292.1183.

(1-acetyl-5-(trifluoromethyl)indolin-2-yl)methyl acetate (4g). Prepared according to the general procedure A to provide $\mathbf{4 g}\left(88 \mathrm{mg}, 58 \%\right.$ yield) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (500 MHz , CDCl_{3}) mixture of rotamers, chemical shifts reported are from major rotamer $\delta 8.21(\mathrm{~s}, 1 \mathrm{H}), 7.58$ $-7.39(\mathrm{~m}, 2 \mathrm{H}), 4.69(\mathrm{~m}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{~m}, 2 \mathrm{H}), 3.41(\mathrm{~m}, 1 \mathrm{H}), 2.96(\mathrm{~d}, \mathrm{~J}=16.3 \mathrm{~Hz}, 1 \mathrm{H})$, 2.41 (s, 3H), $2.04(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.6,169.0,144.8,130.5,125.4$, 123.1, 121.8, 117.7, 64.6, 58.8, 31.9, 23.4, $20.6(\mathrm{C}-\mathrm{F}$ coupling constants unresolved and one quaternary carbon signal unresolved); HRMS (FAB+) m/z calc'd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{3} \mathrm{~F}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 302.1004, found 302.1011.

4h
(1-acetyl-5-nitroindolin-2-yl)methyl acetate (4h). Prepared according to the general procedure A to provide $\mathbf{4 h}(41 \mathrm{mg}, 30 \%$ yield $)$ as a yellow oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ mixture of rotamers, chemical shifts reported are from major rotamer $\delta 8.24(\mathrm{~s}, 1 \mathrm{H}), 8.17$ (dd, $\mathrm{J}=8.8,2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 8.09(\mathrm{~m}, 1 \mathrm{H}), 4.78(\mathrm{~s}, 1 \mathrm{H}), 4.24(\mathrm{dd}, \mathrm{J}=11.8,5.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.46(\mathrm{dd}, \mathrm{J}=16.5,9.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.03(\mathrm{~d}, \mathrm{~J}=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.6$, $169.2,147.4,143.9,124.7,120.6,117.3,64.6,59.2,31.6,23.5,20.6$ (one quaternary carbon signal unresolved); HRMS (FAB+) m/z calc'd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 279.0981$, found 279.0975.

(1-acetyl-5-cyanoindolin-2-yl)methyl acetate (4i). Prepared according to the general procedure A to provide $\mathbf{4 i}(41 \mathrm{mg}, 32 \%$ yield $)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ mixture of rotamers, chemical shifts reported are from major rotamer $\delta 8.22(\mathrm{~s}, 1 \mathrm{H}), 7.59-7.52(\mathrm{~m}, 1 \mathrm{H})$, $7.48(\mathrm{~s}, 1 \mathrm{H}), 4.71(\mathrm{~m}, 1 \mathrm{H}), 4.22(\mathrm{~d}, \mathrm{~J}=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.42(\mathrm{~d}, \mathrm{~J}=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{~d}, \mathrm{~J}=16.4$ $\mathrm{Hz}, 1 \mathrm{H}$), $2.41(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.6,169.2,145.8,132.8$, $128.4,119.0,118.1,107.0,64.6,58.7,31.7,23.6,20.6$ (one quaternary carbon signal unresolved); HRMS (FAB+) m/z calc'd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 259.1083$, found 259.1089.

Notes \& References

(1) Ritter, T.; Heil, A.; Wenzel, A. G.; Funk, T. W.; Grubbs, R. H. Organometallics 2006, 25, 5740-5745.
(2) Bertrand, M. B.; Wolfe, J. P. Tetrahedron 2005, 61, 6447-6459.
(3) Liu, G.-Q.; Li, W.; Li, Y.-M. Adv. Synth. Catal. 2013, 355, 395-402.
(4) Recio, A., III; Tunge, J. A. Org. Lett. 2009, 11, 5630-5633.
(5) Yip, K.-T.; Yang, M.; Law, K.-L.; Zhu, N.-Y.; Yang, D. J. Am. Chem. Soc. 2006, 128, 31303131.
(6) Brucelle, F.; Renaud, P. Org. Lett. 2012, 14, 3048-3051.

S060でてー
8\＆ZO＇9か—
ع6ST오
†ちて8．69I－

209く・8II-
2085.92I
8E0ど8てI-
S \angle I90 0 L
してヤぐゅをし
$90 \varepsilon 8^{\circ} \angle \varepsilon \varepsilon^{-}$

L8ちS．9II－
8858．とてL
028 －sてI
SI8t난
6 666 ．6てI
ャ0020 0 E
＜910．9とI－
069と．9と
ع8ऽを．89โ－

L92を・89I-

$0 ャ 9 \varepsilon^{\prime} \varepsilon$
ع $29 \varepsilon^{\prime} \varepsilon$
L0L $\varepsilon^{\prime} \varepsilon$
29LE＇${ }^{\text {c }}$
S6LE＇${ }^{\prime}$
$0 \varepsilon 8 \varepsilon^{\prime} \varepsilon$
L860＇s
L20I＇s
SSOL＇S
L6ZI＇s
Lと\＆I＇S
S9ET＇S
00ヶT＇S
9として＇S
く9Iて＇S
86Iて＇S
6ててて＇S
8とをて＇S
$0<\varepsilon \chi^{\prime}$ S
L0ヶて＇S
8てヤて＇S
LともでS
L L Z6＇s
七6と6．
七くヤ6＇S
8LS6．
96S6．
9196＇s
6T $26{ }^{\circ} \mathrm{S}$
8عL6 ${ }^{\circ} \mathrm{S}$
LI86．S
L986 ${ }^{\text {S }}$
［ $\downarrow 66{ }^{\circ} \mathrm{S}$
と900＊9
6＜16＊9
8とて6．9
29と6．9
［てヤ6＊9］
てヤS6＊9
［096．9］
［［ $\angle 6{ }^{\prime} 9$
عLL6 ${ }^{\circ}$＝
0886＊${ }^{\text {－}}$
0ヶ66．9
681T＊
610 ${ }^{\circ} \mathrm{L}$
9てTL＇L
96TL゙L－
七0¢L＇L

9ャ60＇T9I
S6てち・89โ－

でくOOー
809I＇とs
8LTO．ss
＜tbs $8 \mathrm{~S}^{-}$
LZIT・もの一
てぃてで9てI
88ち9•9てI
569く․9ZI＝
てャと8－9てI
七\＆0L＇8てI
9ع8L•8てI
$9029^{\circ} \triangleright \downarrow \mathrm{I}$
S6IでらカI
\＆ャてと．691
ST8L＇0LI

066S．9ZI

S6てか・8てI
966で0とI
LLZ8＊0EI
20L0 $\angle E I$
とع8がしEI
SLSで69I～ を8ャ $\angle^{\circ} 0<\mathrm{I}$－

S0TL゙02～ SIOt＇\＆て－
99S0＇Z\＆－
208t•8S－
てโ98．ゅの一
S960．8II
066T・もてI
I $\angle 9$ C $^{\circ} \downarrow$ ZI
8T $\angle 99^{\circ} \angle$ ZI－
L\＆ZL＇6ZI
てI88＊โも
910 ${ }^{\circ} 89$ I
98 $\angle^{\circ} 0 \angle \mathrm{I}$－

$608 L^{\circ} \angle I$ I
992か・SてI－
9901．8てI－
SS8L．62I
08ち8．とをા
8S $\angle \mathrm{S}^{6} 6 \varepsilon$ โ－
66で・89I～
9 $299^{\circ} 0<$ I

L6と0・て－
てしゃどて

LOSと＇て

896 ι° Z
$\angle 828^{\circ} \mathrm{Z}^{\prime}$

L $\angle โ \varepsilon \varepsilon^{\prime} \varepsilon^{-} \varepsilon^{-}$
${ }^{6 S 06}$ ．ε－
$1026^{\circ} \cdot$
$6 \angle 2 \sigma^{\circ} \varepsilon$
8 8ヶも6．

$666 \tau^{\circ} \downarrow$－
ゅIてでゅ
$8185^{\circ} \sigma^{-}$
$0<6 s^{\circ} \nabla^{-}$
6［19＊\downarrow－
と929＊${ }^{\circ}$

8ZSL8IT～
808を゙ャてI

08 L＇$^{\prime} 92$ I
عャ95＊$\angle \mathrm{EL}$－
6686＇โカI—
LOS9．89T
2699＊0 ${ }^{\circ}$－

SEZ6•III
OLZI＇ZIT－
โILE＇SIT
88tS．SIT
てLZ9＊IてI
ع689＇してI
LS64＇IEI

L008．8S－
とโ0＜＇เの一
S695．8SI
ع\＆0s＇09I
6LEt•89I～
TIT9＊0くI

E6 29.02 э⿰七でとてー
5288＇土 $\varepsilon-$
$3589.85-$
เร99＇七9－
328.8 It
$306 \cdot \mathrm{tR}$
009 $\angle 2 \mathrm{ZI}$
986．82I－
32L＇ㄷ\＆I－
E990った
j99．89I
$509.0<\mathrm{I}-$


```
3T&9*OZ-
\bulletZ6s`\varepsilonz-
5T\angle9'IE-
9IZL`8S-
38<c`t9-
2ZO*LOI-
560.81T ~
3006[T
ES&8ZI-
&I8.Z&I-
[sL`stI-
E81*69]
395*0<I~
```

