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DC Hysteresis Loop 
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Figure S1. DC hysteresis loops measured by VSM at room temperature for the 

magnetosomes embedded in agar. 

 

In Figure S1 we present the DC M-H loop as obtained by VSM for the magnetosomes 

embedded in agar. As can be observed, the coercive field is close to 9 kA/m. 
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AC Hysteresis Loops 
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Figure S2. AC hysteresis loops measured at different frequencies, between 75 and 532 

kHz 

In Figure S2 the AC hysteresis loops measured at different frequencies have been 

represented. As observed, the shape and area of the hysteresis loops doesn’t change 

remains nearly the same in all the cases, independently of the frequency of the AC field. 

This explains why the SAR/f vs H curves (Figure 4 in the main text) practically overlap. 

 

Dynamic hysteresis loops simulation 

The high energy barrier approach followed in this work is a Stoner-Wohlfarth based 

model (SWBM). In this model, magnetization is allowed to point only to discrete 

orientations by assuming that thermal energy, 𝑘𝑘𝐵𝐵𝑇𝑇, is much smaller than the energy 

barrier between minimum energy states (𝐾𝐾𝑒𝑒𝑒𝑒𝑒𝑒𝑣𝑣, being 𝐾𝐾𝑒𝑒𝑒𝑒𝑒𝑒 the anisotropy energy density 

and 𝑣𝑣, the particle volume). The dynamical problem is therefore reduced to the 
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calculation of the probabilities 𝑝𝑝𝑖𝑖(𝑡𝑡) of finding the magnetization in any of the minimum 

energy states i at a given time t, as determined from the energy landscape of the system, 

𝐸𝐸(𝜃𝜃,𝜑𝜑, 𝑡𝑡). This method was developed explicitly by Carrey et al1 for the case of uniaxial 

single domain magnetic particles, where magnetization depends only on the polar angle 

(a one dimensional problem). The approach can be generalized for more complex 2-

dimensional problems (magnetization depending on both polar and azimuthal angles), as 

those involving the cubic, mixed or multiaxial anisotropies2. 

The instantaneous magnetization of each particle is given by: 

𝑀𝑀𝐻𝐻(𝑡𝑡) = 𝑀𝑀�𝑝𝑝𝑖𝑖(𝑡𝑡)𝑢𝑢�𝑖𝑖(𝑡𝑡) ∙ 𝑢𝑢�𝐻𝐻(𝑡𝑡)
𝑖𝑖

                   (S⎯1) 

where the unit vectors 𝑢𝑢�𝑖𝑖(𝑡𝑡) define the directions of these minima that depend on the 

sinusoidal magnetic field given by 𝐻𝐻(𝑡𝑡) = 𝐻𝐻0𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡 𝑢𝑢�𝐻𝐻 where 𝑓𝑓 = 2𝜋𝜋/𝑠𝑠 is the frequency 

of AC field and unit vector 𝑢𝑢�𝐻𝐻 defines its direction. The time evolution of the 

probabilities 𝑝𝑝𝑖𝑖(𝑡𝑡) can be calculated by solving a set of ordinary differential equations 

as: 

𝜕𝜕𝑝𝑝𝑖𝑖
𝜕𝜕𝑡𝑡

= �𝑤𝑤𝑗𝑗𝑖𝑖𝑝𝑝𝑗𝑗 − ��𝑤𝑤𝑖𝑖𝑗𝑗
𝑗𝑗≠𝑖𝑖

�
𝑗𝑗≠𝑖𝑖

𝑝𝑝𝑖𝑖        (S⎯2) 

where index i runs through the total number of minima. This equation is a way of saying 

that the change of the population in minimum i is the result of all the incoming jumps 

(first term) from the available neighbor states minus those departing from i (second 

term), with the condition ∑𝑝𝑝𝑖𝑖 = 1, which states that magnetization M is constant. The 

coefficients 𝑤𝑤𝑖𝑖𝑗𝑗 denote the rate of jumps (in units of frequency) from state 𝑠𝑠 to state 𝑗𝑗, 

which depend on the instantaneous energy barrier 𝐸𝐸𝑖𝑖𝑗𝑗, as 𝑤𝑤𝑖𝑖𝑗𝑗(𝑡𝑡) = 𝑐𝑐𝑖𝑖𝑗𝑗exp (−𝑣𝑣𝐸𝐸𝑖𝑖𝑗𝑗/𝑘𝑘𝐵𝐵𝑇𝑇), 

being 𝑣𝑣 the volume of the single domain and pre-factor 𝑐𝑐𝑖𝑖𝑗𝑗 being the maximum jumps 

rate related to the natural precession frequency of the particle magnetization, which has 

been considered a constant equal to 10-10 s. 
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Biaxial anisotropy 

The dipolar interaction between two magnetic dipoles gives rise to an effective 

magnetic anisotropy directed along the line joining them, under the assumption that both 

dipoles rotate coherently. This interaction or extrinsic anisotropy is superimposed to that 

of each isolated particle, giving rise to a biaxial anisotropy single domain. This line of 

reasoning can be easily implemented in the high energy barrier approximation by taking 

an energy density landscape given by: 

𝐸𝐸(𝜃𝜃,𝜑𝜑, 𝑡𝑡) = 𝐾𝐾1[1 − (𝑢𝑢�1 ∙ 𝑢𝑢�𝑚𝑚)2] + 𝐾𝐾2[1 − (𝑢𝑢�2 ∙ 𝑢𝑢�𝑚𝑚)2] − 𝜇𝜇0𝑀𝑀𝐻𝐻0𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡(𝑢𝑢�𝐻𝐻 ∙ 𝑢𝑢�𝑚𝑚)             (S⎯3) 

where 𝜃𝜃 and 𝜑𝜑 are the polar and azimuthal angles, respectively, of the magnetization vector 𝐌𝐌 =

𝑀𝑀𝑢𝑢�𝑚𝑚. As shown in Figure S3 (b), unit vectors of equation (S-3) are defined as follows: 𝑢𝑢�1 ≡ �̂�𝑧, 

defines the uniaxial anisotropy of isolated particles (referred as intrinsic in the text), fixed along 

the z axis for convenience, 𝑢𝑢�2 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥� + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑦𝑦� + 𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠�̂�𝑧 determines the 

direction of extrinsic or interaction anisotropy, dependent on spherical angles (𝑠𝑠, 𝑠𝑠), and 

𝑢𝑢�𝐻𝐻 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥� + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑦𝑦� + 𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠�̂�𝑧, determines the orientation of the external 

magnetic field, given by spherical angles (𝑠𝑠, 𝑠𝑠). 

 
 

Figure S3. (a) Surface energy of the biaxial system at a given external magnetic field. In general, it 

has two easy axes above and below the plane z=0. (b) Angle definitions used in equation (S-3) for 

the three unit vectors defining the direction of the two uniaxial axes (u�1, u�2) and the external 

a) 
 

b) 
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magnetic field u�H. 

 

The energy surface shown in Figure S3 (a) corresponds to an arbitrary external magnetic field and 

has two minima located in the north (z > 0) and south (z < 0) hemispheres. Critical points of the 

surface (minima, maxima and saddle points) can be obtained by numerically finding the zeroes of 

the energy density gradient function ∇𝐸𝐸 = (𝜕𝜕𝐸𝐸 𝜕𝜕𝜃𝜃)𝑢𝑢�𝜃𝜃⁄ + 1 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃⁄ (𝜕𝜕𝐸𝐸 𝜕𝜕𝜑𝜑)𝑢𝑢�𝜑𝜑⁄ , and equation (S-2) 

reduces in this case to the two states problem, as: 

𝜕𝜕𝑝𝑝1(2)

𝜕𝜕𝑡𝑡
= 𝑤𝑤21(12)𝑝𝑝2(1) − 𝑤𝑤12(21)𝑝𝑝1(2)                                    (S⎯4) 

By making 𝐾𝐾2 = 0 in equation (S-3), the energy density is the corresponding one to the well-

known uniaxial problem: 

𝐸𝐸(𝜃𝜃, 𝑡𝑡) = 𝐾𝐾1𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃 − 𝜇𝜇0𝑀𝑀𝐻𝐻0𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑐𝑐𝑠𝑠𝑠𝑠(𝜃𝜃 − 𝑠𝑠)                  (S⎯5) 

When the easy axis is oriented at random respect to the external applied field, equation (S-4) leads 

to the Carrey´s approach for a set of isolated or non-interacting uniaxial particles. In the case of 

the biaxial case, magnetization is averaged over all the possible orientations between the two easy 

axes and the external magnetic field, as: 

𝑀𝑀𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑜𝑜𝑚𝑚 =
∫ ∫ 𝑀𝑀𝐻𝐻(𝑡𝑡)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝛽𝛽=𝜋𝜋/2

𝛽𝛽=0
𝛿𝛿=𝜋𝜋
𝛿𝛿=0

∬𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
                            (S⎯6) 

Figure S4 illustrates the hysteresis loops calculated in this way with increasing external field 

amplitude. Each loop, as shown in Figure S4, results from averaging around 1500 single 

simulations corresponding to given directions 𝑢𝑢�1. 𝑢𝑢�2 and 𝑢𝑢�𝐻𝐻. 
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Figure S4. Simulated hysteresis loops as calculated using equation (S-6) 

 

Cubic anisotropy 

For the more complex cubic or mixed (cubic plus uniaxial) anisotropy problems, the 

calculation of critical points and easy axes as a function of time becomes much more 

laborious. In the case of cubic anisotropy, the instantaneous energy density 𝐸𝐸(𝜃𝜃,𝜑𝜑, 𝑡𝑡) 

depends on both the polar (𝜃𝜃) and azimuthal (𝜑𝜑) angles of the particle magnetization as 

follows: 

𝐸𝐸(𝜃𝜃,φ, 𝑡𝑡) =
𝐾𝐾𝑐𝑐(𝑠𝑠𝑠𝑠𝑠𝑠4𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠22𝜑𝜑 + 𝑠𝑠𝑠𝑠𝑠𝑠22𝜃𝜃)

4

− 𝜇𝜇0𝑀𝑀𝐻𝐻0𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡[𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 cos(𝜑𝜑 − 𝑠𝑠) + 𝑐𝑐𝑠𝑠𝑠𝑠𝜃𝜃𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠]                 (S⎯7) 

where 𝑠𝑠 and 𝑠𝑠 are the polar and azimuthal angles which determine the orientation of the 

external field relative the principal axis 100, 010 and 001 of the cubic crystal. For the 
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case 𝐾𝐾𝑐𝑐 < 0 the problem consists in the calculation of eight energy minima as a function 

of time, 𝑢𝑢�𝑖𝑖(𝑡𝑡) and the 8×8 jumps matrix (𝑤𝑤𝑖𝑖𝑗𝑗(𝑡𝑡)) whose main diagonal entries are all 

zeroes. 

In this work, uniaxial and biaxial models have been directly used for discussion of the heating 

performance of magnetosomes, because they are able to explain to a greater or lesser degree the 

experimental findings. For the uniaxial models, we have also analyzed the effect of implementing 

a Gaussian size distribution (see Figure S5) and we have observed that a slight improvement is 

obtained, but still the results are not as good as those obtained with the biaxial model. In addition, 

in order to put these results into context we also used the cubic model for the sake of comparison. 

For this, we considered a first cubic anisotropy constant of 11 kJ/m3, equal to the 

magnetocrystalline anisotropy of magnetite. As seen in Figure S5, SAR becomes very small and 

saturates at low fields (for H > 10 kA/m). 
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Figure S5. Comparison of the experimental evolution of SAR vs field with the calculated 

Stoner-Wohlfarth model assuming uniaxial (with different standard deviations), biaxial, 
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and cubic anisotropy for the magnetosomes.  
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