Support Information

Facile Synthesis of Co₃O₄ with Different Morphologies via Oxidation Kinetic Control and its Application in Hydrogen Peroxide Decomposition

Huihui Chen^{a,b}, Mei Yang^{a,*}, Sha Tao^{a,b}, Mingyue Ren^{a,b}, Guangwen Chen^{a,*}

^aDalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China

Academy of Sciences, Danan 110025, China

^bGraduate University, Chinese Academy of Sciences, Beijing 100049, China

^{*} Corresponding author, Tel.: +86-411-8437-9031, Fax.: +86-411-8469-1570

E-mail address: yangmei@dicp.ac.cn (M. Yang), gwchen@dicp.ac.cn (G.W. Chen).

Figure S1. (A) XPS survey spectra (B) Co 2p spectra (C) O 1s spectra of the

as-prepared Co₃O₄.

Figure S2. The TEM images of (A) Co(OH)₂-NaOH (B) Co(OH)₂-NaOH-NaOH (C)

CoOOH-air-NaOH and (D) CoOOH-H2O2-NaOH.

Figure S3. The XRD patterns of (A) Co(OH)₂-NaOH (B) Co(OH)₂-NaOH-NaOH (C)

CoOOH-air-NaOH and (D) CoOOH-H₂O₂-NaOH.

Fig. S4. The TEM images of the samples prepared (A) 30 °C and (B) 70 °C.

Fig. S5. The XRD patterns of the samples prepared (A) 30 °C and (B) 70 °C.

Sample	Reaction condition	$\frac{S_{BET}}{m^2/g}$	$k \min^{-1}$	Reference
LaMnO ₃	m _{cat} =20 mg, V=50 mL, [H ₂ O ₂]=0.02 M, [NaOH]=4.9 M, T=20 °C	25.3	0.30	1
$La_{0.4}Ca_{0.6}MnO_3$	m _{cat} =20 mg, V=50 mL, [H ₂ O ₂]=0.02 M, [NaOH]=4.9 M, T=20 °C	39.2	0.62	1
$La_{0.9}Sr_{0.1}NiO_3$	m _{cat} =10 mg, V=50 mL, [H ₂ O ₂]=0.068 M, [KOH]=0.9 M, T=22 °C	-	0.41	2
La _{0.9} Sr _{0.1} Ni _{0.8} Cr _{0.2} O ₃	m _{cat} =10 mg, V=50 mL, [H ₂ O ₂]=0.068 M, [KOH]=0.9 M T=22 °C	-	0.29	2
Co_3O_4 prepared by combustion method	m _{cat} =50 mg, V=10 mL, [H ₂ O ₂]=0.7 M, T=35 °C	83.5	0.072	3
Co ₃ O ₄ hollow nanospheres	m _{cat} =20 mg, V=25 mL, [H ₂ O ₂]=0.2 M, T=25 °C	64.0	0.18	4

Table S1 Reaction rate constants for H₂O₂ decomposition over various catalysts.

(1) Soleymani, M.; Moheb, A.; Babakhani, D., Chem. Eng. Technol. 2011, 34, 49-55.

(2) Ariafard, A.; Aghabozorg, H. R.; Salehirad, F.; Catal. Commun. 2003, 4, 561-566.

- (3) Makhlouf, M.T.; Abu-Zied, B. M.; Mansoure, T. H., Appl. Surf. Sci. 2013, 274, 45-52.
- (4) Kang, N.; Park, J. H.; Jin, M.; Park, N.; Lee, S. M.; Kim, H. J.; Kim, J. M.; Son, S. U., *J. Am. Chem. Soc.* **2013**, 135, 19115-19118.