Supporting Information

For

Nickel-Catalyzed Monofluoroalkylation of Arylsilanes via Hiyama Cross-

Coupling

Yun Wu, Hao-Ran Zhang, Yi-Xuan Cao, Quan Lan, and Xi-Sheng Wang*

Table of Contents

General information	S2
Optimization of reaction conditions	S3
Table S1. Ligand screening	S3
Table S2. Ni-source screening	S3
Table S3. Base and solvent screening	S4
Table S4. Optimization of reaction conditions	S4
Preparation of arylsilanes 1	S5
Synthesis route toward 1w	S5
Synthesis route toward 1aa	S5
Synthesis route towards ezetimibe derivative 5	S6
General Procedure for Nickel-Catalyzed Monofluoroalkylation of Arylsilan	nes <i>via</i> Hiyama
Cross-Coupling	S8
Procedure of Monofluoroalkylation of Ezetimibe Derivative 5	S16
Mechanistic studies	S17
1. Radical Trapping Experiment with TEMPO	S17
2. Procedure of Monofluoroalkylation of β -pinene	S18
References	S19
NMR spectra of new compounds (¹ H NMR, ¹³ C NMR, ¹⁹ F NMR)	S21

General information

NMR spectra were recorded on Bruker-400 MHz NMR spectrometer (400 MHz for ¹H; 101 MHz for ¹³C and 376 MHz for ¹⁹F). ¹H NMR chemical shifts were determined relative to internal (CH₃)₄Si (TMS) at δ 0.0 or to the signal of a residual protonated solvent: CDCl₃ & 7.26. ¹³C NMR chemical shifts were determined relative to CDCl₃ δ 77.16. ¹⁹F NMR chemical shifts were determined relative to external CFCl₃ at δ 0.0 or internal PhCF₃ at δ 63.0. High resolution mass spectra were recorded on P-SIMS-Gly of Bruker Daltonics Inc. using ESI-TOF (electrospray ionization-time of flight). 1,4-Dioxane was distilled from sodium immediately before use. Ni(dme)Cl₂ was obtained from Strem Chemicals. Inc (J&K purchased). 4,4'-DitBu-bpy was obtained from Macklin and used as received. CsF was obtained from J&K. BrCHFCO2Et was obtained from Fluorochem Ltd (UK) (J&K purchased) and used as received. dppp = 1,3-bis(diphenylphosphino)propane, TMEDA = N,N,N',N'-DMF tetramethylethylenediamine, *N*,*N*-dimethylformamide, = DCM = dichloromethane, THF = tetrahydrofuran.

Optimization of reaction conditions

 Table S1. Ligand screening^a

Si(OEt) ₃ + BrCF 1a 2	Q Q	ol %)
		B, Q = OMe H, Q = tBu L5
	Bn N N L7	
Entry	ligand	Yield (%) ^b
1	-	0
2	L1	22
3	L2	26
4	L3	37
5	L4	45
6	L5	22
7	TMEDA	30
8	L6	0
9	L7	0
10	PPh ₃	0
11	dppp	0

^{*a*}The reaction conditions were as follows: **1a** (0.3 mmol, 1.5 equiv), **2** (0.2 mmol, 1.0 equiv), Ni(dme)Cl₂ (0.02 mmol, 10 mol %), ligand (0.024 mmol, 12 mol %), CsF (0.4 mmol, 2.0 equiv), 1,4-dioxane (2.0 mL), 80 °C, 24 h, N₂. ^{*b*}Yields determined by ¹⁹F NMR using CF₃Ph as an internal standard.

Table S2.	Ni-source	screening ^a
-----------	-----------	------------------------

Sin 1a	(OEt) ₃ + BrCFF 2	_	[Ni] (10 mol L4 (12 mol CsF (2 equ lioxane (2 ml	%) · · · · · · · · · · · · · · · · · · ·	F CO ₂ Et
Entry	[Ni]	Yield (%) ^b	Entry	[Ni]	Yield (%) ^b
1	-	0	8	NiCl ₂ (dppe)	41
2	NiBr ₂	41	9	NiCl ₂ (dppf)	41
3	Nil ₂	37	10	Ni(OTf) ₂	<5
4	NiCl ₂	41	11	Ni(NO ₃) ₂ •6H ₂ 0	O 30
5	Ni(acac) ₂	11	12	NiCl ₂ (dme)	45
6	NiCl ₂ (PPh ₃) ₂	37	13	Ni(OAc) ₂	41
7	NiCl ₂ (dppp)	41		–	

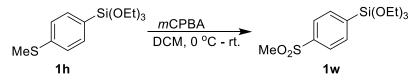
^{*a*}The reaction conditions were as follows: **1a** (0.3 mmol, 1.5 equiv), **2** (0.2 mmol, 1.0 equiv), [Ni] (0.02 mmol, 10 mol %), **L4** (0.024 mmol, 12 mol %), CsF (0.4 mmol, 2.0 equiv), 1,4-dioxane (2.0 mL), 80 °C, 24 h, N₂. ^{*b*}Yields determined by ¹⁹F NMR using CF₃Ph as an internal standard.

$Si(OEt)_{3} + BrCFHCO_{2}Et $							
entry	base	solvent	yield (%) ^b	entry	base	solvent	yield (%) ^b
1	-	dioxane	0	9	CsF	dioxane	45
2	KOAc	dioxane	0	10	TBAF	dioxane	0
3	<i>t</i> BuOK	dioxane	0	11	CsF	THF	41
4	KF	dioxane	0	12	CsF	DMF	30
5	K ₃ PO ₄	dioxane	0	13	CsF	DCM	37
6	Cs_2CO_3	dioxane	0	14	CsF	CH₃CN	22
7	K ₂ CO ₃	dioxane	0	15	CsF	toluene	18
8	NaOH	dioxane	0				

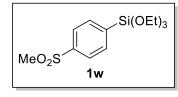
Table S3.	Base	and solvent	screening ^a

^{*a*}The reaction conditions were as follows: **1a** (0.3 mmol, 1.5 equiv), **2** (0.2 mmol, 1.0 equiv), Ni(dme)Cl₂ (0.02 mmol, 10 mol %), **L4** (0.024 mmol, 12 mol %), base (2 equiv), solvent (2 mL), 80 °C, 24 h, N₂. ^{*b*}Yields determined by ¹⁹F NMR using CF₃Ph as an internal standard.

	Si(OEt	:) ₃ + BrCFH		ne)Cl ₂ (10 r _4 (12 mol ^c			F CO ₂ Et	
1a	J	2	CsF (x equiv) 1,4-dioxane (y mL), 80 °C				3a	
Entry	х	У	Yield (%) ^b	Entry	х	У	Yield (%) ^b	
1	2.0	2.0	45	6	5.0	1.0	86	
2	3.0	2.0	64	7	5.0	1.5	93	
3	4.0	2.0	87	8	5.0	2.5	96(93) ^c	
4	5.0	2.0	90	9	5.0	3.0	96	
5	6.0	2.0	90	10 ^d	5.0	2.5	96(93) ^c	

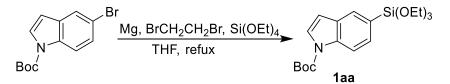

Table S4. Optimization of reaction conditions^a

^{*a*}Unless otherwise noted, the reaction conditions were as follows: **1a** (0.3 mmol, 1.5 equiv), **2** (0.2 mmol, 1.0 equiv), Ni(dme)Cl₂ (0.02 mmol, 10 mol %), **L4** (0.024 mmol, 12 mol %), CsF (x equiv), 1,4-dioxane (y mL), 80 °C, 24 h, N₂. ^{*b*}Yields determined by ¹⁹F NMR using CF₃Ph as an internal standard. ^{*c*}Isolated yield. ^{*d*}**1a** (1.2 equiv).

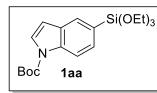

Preparation of arylsilanes 1.

The arylsilane **1a** was purchased and used directly from commercial sources, and substrates $1b-1m^1$, $1o-1r^1$, $1y-1z^1$, $1n^2$, $1s^3$, $1t^4$, $1u-1v^5$, $1x^6$, $1ab^6$ and $1ac^7$ were prepared in accordance with methods described in the literature.

Synthesis route toward 1w

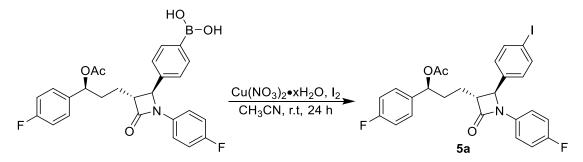

To a solution of **1h** (265 mg, 0.92 mmol) in DCM (5 mL) was added *m*CPBA (498 mg, 2.3 mmol) at 0 °C. The reaction mixture was stirred for 2 h at room temperature. The solution was added saturated sodium hyposulfite (10 mL), and extracted with DCM (3 x 10 mL). The combined organic layers were washed with saturated sodium chloride (40 mL), dried over Na₂SO₄, filtered and concentrated in vacuo. The residue was then purified by flash column chromatography (PE/EA = 5:1) to give **1w** as a colorless oil (234 mg, 80%).

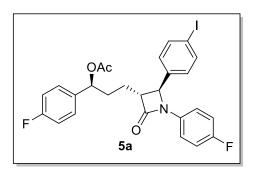
¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 8.3 Hz, 2H), 7.86 (d, *J* = 8.3 Hz, 2H), 3.87 (q, *J* = 7.0 Hz, 6H), 3.03 (s, 6H), 1.24 (t, *J* = 7.0 Hz, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 142.1, 138.8, 135.7, 126.3, 59.1, 44.4, 18.2. HRMS (ESI)


calcd. for C₁₃H₂₂O₅SSiNa [M+Na]⁺ 341.0855, found: 341.0851.

Synthesis route toward 1aa

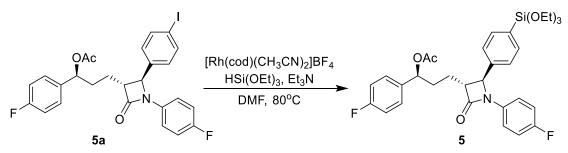
A 250 mL three-neck flask was fitted with an addition funnel, a reflux condenser, a rubber septum, and a stir bar. The flask was charged with magnesium turnings (0.68 g, 28.3 mmol), flame-dried under vacuum, and back-filled with argon. Freshly dried THF (20 mL) and tetraethyl silicate (8.3 mL, 37.8 mmol) were added into the flask via syringe, and the addition funnel was charged with *N*-Boc-5-bromoindole (2.80 g, 9.45


mmol) and 1, 2-dibromoethane (0.90 g, 4.73 mmol) dissolved in THF (15 mL). Then, the aryl bromide was added at such a rate that THF maintained a moderate reflux. After the reaction mixture was stirred at reflux overnight, it was cooled to room temperature. The saturated NH₄Cl solution was added carefully, and the solution was extracted with EtOAc (3 x 30 mL) for three times. The organic phase was dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude product was purified by silica gel column chromatograph (PE/EtOAc = 40/1) to give **1aa** as a colorless oil (1.62 g, 45%).

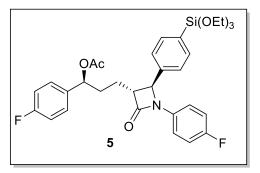

¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, *J* = 8.3 Hz, 1H), 7.92 (s, 1H), 7.62-7.60 (m, 2H), 6.59 (d, *J* = 3.7 Hz, 1H), 3.88 (q, *J* = 7.0 Hz, 6H), 1.67 (s, 9H), 1.25 (t, *J* = 7.0 Hz, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 149.8, 136.7, 130.4, 128.4,

126.0, 124.2, 114.9, 107.5, 83.9, 77.4, 77.1, 76.8, 58.8, 28.2, 18.3. HRMS (ESI) calcd. for C₁₉H₂₉NO₅SiNa [M+Na]⁺ 402.1713, found: 402.1716.

Synthesis route towards ezetimibe derivative 5



To a 50 mL of round-bottom flask were added $Cu(NO_3)_2 \cdot xH_2O$ (167 mg, 0.69 mmol), , iodine (588 mg, 2.31 mmol), acetylated ezetimibe boronic acid⁸ (1.11 g, 2.31 mmol) and dry acetonitrile (15 mL). The reaction mixture was stirred for 24 h at room temperature under an argon atmosphere. After the addition of water (60 mL), the reaction was extracted with DCM (3 x 40 mL). The combined organic layers were washed with saturated sodium hyposulfite (40 mL), dried over Na₂SO₄, filtered and concentrated in vacuo. The residue was then purified by flash column chromatography (PE/EA = 3:1) to give **5a** as a colorless solid (900 mg, 69%).

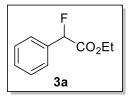


¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 8.4 Hz, 2H), 7.28-7.25 (m, 2H), 7.21-7.16 (m, 2H), 7.07-7.05 (d, *J* = 8.3 Hz, 2H), 7.02 (t, *J* = 8.7 Hz, 2H), 6.93 (t, *J* = 8.7 Hz, 2H), 5.69 (t, *J* = 6.7 Hz, 1H), 4.54 (d, *J* = 2.3 Hz, 1H), 3.04 (td, *J* = 7.7, 2.3 Hz, 1H), 2.05-1.99 (m, 5H), 1.93-1.81 (m,

2H). ¹³C NMR (101 MHz, CDCl₃) δ 170.3, 166.6, 162.6 (d, J = 247 Hz), 159.2 (d, J = 244 Hz), 138.6, 137.3, 135.7 (d, J = 3.2 Hz), 133.7 (d, J = 2.7 Hz), 128.3 (d, J = 8.2 Hz), 127.8, 118.4 (d, J = 7.9 Hz), 116.0 (d, J = 22.7 Hz), 115.6 (d, J = 21.5 Hz), 94.3, 74.9, 60.8, 60.2, 33.7, 25.0, 21.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -113.6, -117.5. HRMS (ESI) calcd. for C₂₆H₂₂F₂INO₃Na [M+Na]⁺ 584.0510, found: 584.0509.

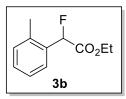
To a solution of $[Rh(cod)(MeCN)_2]BF_4$ (10 mg, 0.03 mmol) in dry DMF (3 ml) was added ezetimibe derivative **5a** (500 mg, 0.89 mmol), Et₃N (0.37 mL, 2.67 mmol), and triethoxysilane (0.32 mL, 1.78 mmol). After being stirred for 2.5 h at 80 °C, then the solution was cooled to r.t. The mixture was diluted with EtOAc (100 mL) and washed three times with water, dried over Na₂SO₄, filtrated and concentrated under vacuum. The residue was purified by flash column chromatography (PE/EA = 3:1) to give **5** as a colorless oil (455 mg, 75%).

¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, J = 8.0 Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H), 7.28-7.25 (m, 2H), 7.23-7.19 (m, 2H), 7.02 (t, J = 8.7 Hz, 2H), 6.92 (t, J = 8.7 Hz, 2H), 5.70 (t, J = 6.7 Hz, 1H), 4.59 (d, J = 2.2 Hz, 1H), 3.88 (q, J = 7.0 Hz, 6H), 3.07 (td, J = 7.7, 2.2 Hz, 1H),


2.09-2.00 (m, 5H), 1.92-1.83 (m, 2H), 1.25 (t, J = 7.0 Hz, 9H). ¹³C NMR (101 MHz,

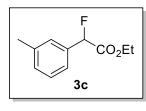
CDCl₃) δ 170.3, 166.9, 162.5 (d, *J* = 246.7 Hz), 159.1 (d, *J* = 243.5 Hz), 139.6, 135.8, 135.8, 133.9 (d, *J* = 2.7 Hz), 132.1, 128.3 (d, *J* = 8.3 Hz), 125.3, 118.4(d, *J* = 7.9 Hz), 116.0 (d, *J* = 22.7 Hz), 115.6 (d, *J* = 21.7 Hz), 74.9, 61.3, 60.1, 58.9, 33.7, 25.0, 21.3, 18.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -113.7, -117.9. HRMS (ESI) calcd. for C₃₂H₃₇F₂NO₆SiNa [M+Na]⁺ 620.2256, found: 620.2258.

General Procedure for Nickel-Catalyzed Monofluoroalkylation of

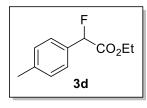

Arylsilanes via Hiyama Cross-Coupling

To a 25 mL of Schlenk tube were added Ni(dme)Cl₂ (10 mol %, 0.02 mmol, 4.4 mg), L4 (12 mol %, 0.024 mmol, 6.5 mg) and CsF (5.0 equiv, 1 mmol, 152 mg) under air. The vessel was evacuated and backfilled with N₂ (3 times) and 1,4-dioxane (2.5 mL) was added via syringe. The mixture was stirred for 15 min, and then the arylsilane (1.2 or 2.0 equiv, 0.24 or 0.4 mmol) was added. After stirring for an additional 10 min, the BrCFHCO₂Et (1.0 equiv, 0.2 mmol, 24 μ L) was added, and the reaction mixture was heated in a preheated oil bath at 80 or 100 °C for 24 h. The reaction mixture was cooled to room temperature, diluted with EtOAc and filtered through a pad of celite. The filtrate was concentrated under vacuum and purified by flash column chromatography to give desired fluoroalkylated product **3**.

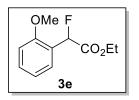
The product $3a^8$ was purified with silica gel chromatography (PE/EA = 30:1) as a colorless oil (33.9 mg, 93% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.48-7.46 (m, 2H), 7.42-7.40 (m, 3H), 5.77 (d, *J* = 47.8 Hz, 1H), 4.32-4.17 (m, 2H), 1.26 (t, *J* = 7.1 Hz, 3H).


¹³C NMR (101 MHz, CDCl₃) δ 168.6 (d, J = 27.6 Hz), 134.4 (d, J = 20.4 Hz), 129.7 (d, J = 2.22 Hz), 128.8, 126.7 (d, J = 6.16 Hz), 89.5 (d, J = 186.1 Hz), 61.9, 14.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -179.8.

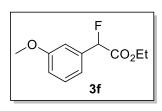
The product $3b^8$ was purified with silica gel chromatography (PE/EA = 30:1) as a colorless oil (31 mg, 79% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.40 (d, J = 7.5 Hz, 1H), 7.32-7.20 (m, 3H), 5.97 (d, J = 47.3 Hz, 1H), 4.33-4.17 (m, 2H), 2.44 (s, 3H), 1.26 (t,


J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.0 (d, J = 27.9 Hz), 136.7 (d, J =

3.7 Hz), 132.9 (d, J = 19.2 Hz), 131.0, 129.7 (d, J = 2.6 Hz), 127.4 (d, J = 6.7 Hz), 126.4, 87.3 (d, J = 183.3 Hz), 61.9, 19.2, 14.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -179.3.

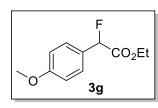

The product $3c^8$ was purified with silica gel chromatography (PE/EA = 30:1) as a colorless oil (32.2 mg, 82% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.31-7.24 (m, 3H), 7.22-7.20 (m, 1H), 5.73 (d, J = 47.9 Hz, 1H), 4.32-4.16 (m, 2H), 2.37 (s, 3H),

1.26 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.8 (d, J = 27.6 Hz), 138.7, 134.3 (d, J = 20.2 Hz), 130.5 (d, J = 2.3 Hz), 128.7, 127.4 (d, J = 5.9 Hz), 123.9 (d, J = 6.0 Hz), 89.5 (d, J = 185.2 Hz), 61.9, 21.4, 14.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -179.0

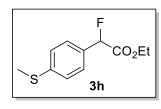

The product $3d^8$ was purified with silica gel chromatography (PE/EA = 30:1) as a colorless oil (35.7 mg, 91% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.35 (d, J = 8.0 Hz, 2H), 7.21 (d, J= 8.0 Hz, 2H), 5.73 (d, J = 47.9 Hz, 1H), 4.31-4.16 (m, 2H),

2.37 (s, 3H), 1.26 (t, J = 7.1 Hz). ¹³C NMR (101 MHz, CDCl₃) δ 168.8 (d, J = 27.9 Hz), 139.8 (d, J = 2.5 Hz), 131.4 (d, J = 20.5 Hz), 129.5, 126.9 (d, J = 5.7 Hz), 89.4 (d, J =184.7 Hz), 61.8, 21.4, 14.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -177.6.

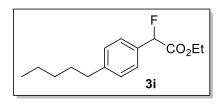
The product $3e^9$ was purified with silica gel chromatography (PE/EA = 30:1) as a colorless oil (31.4 mg, 74% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.41-7.36 (m, 2H), 6.99 (tt, *J* = 7.5, 0.9 Hz, 1H), 6.93 (d, *J* = 8.6 Hz, 1H), 6.09 (d, *J* = 47.5 Hz, 1H), 4.32-


4.20 (m, 2H), 3.86 (s, 3H), 1.26 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.2 (d, J = 27.7 Hz), 157.4 (d, J = 3.5 Hz), 131.4 (d, J = 3.1 Hz), 129.3 (d, J = 5.1 Hz), 123.0 (d, J = 19.3 Hz), 120.8 (d, J = 1.7 Hz), 111.2 (d, J = 1.4 Hz), 85.0 (d, J = 182.1 Hz), 61.6, 55.7, 14.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -177.9 (d, J = 47.4 Hz).

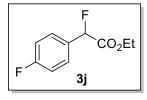
The product **3f**⁸ was purified with silica gel chromatography (PE/EA = 30:1) as a colorless oil (39.8 mg, 94% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.31 (t, *J* = 7.9 Hz, 1H), 7.04 (d, *J* = 7.7 Hz, 1H), 7.01 (s, 1H), 6.93 (d, *J* = 8.3 Hz, 1H), 5.74


(d, J = 47.8 Hz, 1H), 4.31-4.17 (m, 2H), 3.81 (s, 3H), 1.26 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.5 (d, J = 27.5 Hz), 159.9, 135.7 (d, J = 20.4 Hz), 129.9, 118.9

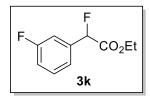
(d, J = 6.2 Hz), 115.4 (d, J = 2.0 Hz), 111.8 (d, J = 6.5 Hz), 89.3 (d, J = 185.8 Hz), 61.9, 55.3, 14.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -180.2.


The product $3g^8$ was purified with silica gel chromatography (PE/EA = 20:1) as a colorless oil (38.6 mg, 91% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.39 (dd, J = 8.5, 1.5 Hz, 1H), 6.92 (d, J = 8.3 Hz, 2H), 5.71 (d, J = 47.9 Hz, 1H), 4.32-4.17

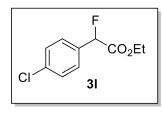
(m, 2H), 3.82 (s, 3H), 1.26 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.9 (d, J = 28.5 Hz), 160.7 (d, J = 2.3 Hz), 128.6 (d, J = 5.3 Hz), 126.5 (d, J = 21.1 Hz), 114.3, 89.2 (d, J = 184.4 Hz), 61.8, 55.4, 14.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -174.5.


The product **3h**⁸ was purified with silica gel chromatography (PE/EA = 30:1) as a colorless oil (42.9 mg, 94% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.37 (dd, *J* = 8.3, 1.3 Hz, 2H), 7.26 (d, *J* = 7.9 Hz, 2H), 5.72 (d, *J* = 47.7 Hz, 1H), 4.31-4.16 (m,

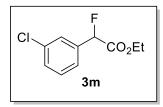
2H), 2.49 (s, 3H), 1.26 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.6 (d, J = 27.9 Hz), 140.9 (d, J = 2.6 Hz), 130.8 (d, J = 20.8 Hz), 127.3 (d, J = 5.8 Hz), 126.3, 89.1 (d, J = 185.3 Hz), 61.9, 15.4, 14.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -178.3.


The product **3i** was purified with silica gel chromatography (PE/EA = 30:1) as a colorless oil (46.9 mg, 93% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.36 (dd, J = 8.0, 1.3 Hz, 2H), 7.21 (d, J = 7.9 Hz,

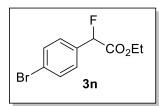
2H), 5.74 (d, J = 47.9 Hz, 1H), 4.32-4.17 (m, 2H), 2.61 (t, J = 7.6 Hz, 2H), 1.65-1.57 (m, 2H), 1.36-1.29 (m, 4H), 1.26 (t, J = 7.1 Hz, 3H), 0.89 (t, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.9 (d, J = 27.8 Hz), 144.8 (d, J = 2.5 Hz), 131.6 (d, J = 20.6 Hz), 128.9, 126.9 (d, J = 5.7 Hz), 89.5 (d, J = 184.8 Hz), 61.8, 35.8, 31.6, 31.1, 22.6, 14.2, 14.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -177.6. HRMS (ESI) calcd. for C₁₅H₂₁FO₂Na [M+Na]⁺ 275.1423, found: 275.1420.


The product $3j^8$ was purified with silica gel chromatography (PE/EA = 30:1) as a colorless oil (36.4 mg, 91% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.48-7.44 (m, 2H), 7.12-7.08 (m, 2H), 5.75 (d, *J* = 47.5 Hz, 1H), 4.32-4.18 (m, 2H), 1.26 (t, *J* =

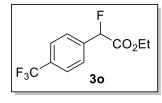
7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.5 (d, J = 27.7 Hz), 163.5 (dd, J = 248.9, 2.4 Hz), 130.3 (dd, J = 21.0, 3.3 Hz), 128.8 (dd, J = 8.5, 6.0 Hz), 115.9 (d, J = 21.9 Hz), 88.8 (d, J = 185.8 Hz), 62.0, 14.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -111.3 (d, J = 3.8 Hz), -178.4 (d, J = 3.8 Hz).


The product $3k^8$ was purified with silica gel chromatography (PE/EA = 30:1) as a colorless oil (36 mg, 90% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.41-7.36 (m, 1H), 7.25 (d, J = 6.4 Hz, 1H), 7.20 (d, J = 9.2 Hz, 1H), 7.12-7.07 (m, 1H), 5.77 (d, J =

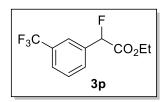
47.5 Hz, 1H), 4.33-4.19 (m, 2H), 1.27 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.1 (d, J = 27.1 Hz), 162.8 (d, J = 247.4 Hz), 136.6 (dd, J = 21.0, 7.5 Hz), 130.5 (d, J = 8.1 Hz), 122.2 (dd, J = 6.5, 3.1 Hz), 116.6 (dd, J = 21.1, 1.8 Hz), 113.6 (dd, J = 23.1, 6.9 Hz), 88.6 (dd, J = 187.0, 1.9 Hz), 62.2, 14.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -111.8, -182.0.


The product **31**⁸ was purified with silica gel chromatography (PE/EA = 30:1) as a colorless oil (38.5 mg, 91% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.42-7.37 (m, 4H), 5.74 (d, *J* = 47.5 Hz, 1H), 4.31-4.17 (m, 2H), 1.25 (t, *J* = 7.1 Hz, 3H). ¹³C

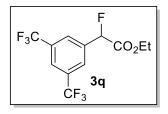
NMR (101 MHz, CDCl₃) δ 168.2 (d, J = 27.4 Hz), 135.7 (d, J = 2.5 Hz), 132.8 (d, J = 20.9 Hz), 129.1, 128.0 (d, J = 6.2 Hz), 88.7 (d, J = 186.3 Hz), 62.1, 14.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -180.8.


The product **3m** was purified with silica gel chromatography (PE/EA = 30:1) as a colorless oil (39.8 mg, 92% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.48 (s, 1H), 7.40-7.32 (m, 3H), 5.75 (d, *J* = 47.5 Hz, 1H), 4.33-4.19 (m, 2H),

1.27 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.0 (d, J = 27.1 Hz), 136.2 (d, J = 20.9 Hz), 134.8, 130.1, 129.8 (d, J = 1.8 Hz), 126.7 (d, J = 6.9 Hz), 124.7 (d, J = 6.4 Hz), 88.6 (d, J = 187.2 Hz), 62.2, 14.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -182.1. HRMS (ESI) calcd. for C₁₀H₁₀ClFO₂ [M+H]⁺ 239.0251, found: 239.0248.

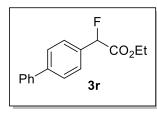

The product $3n^8$ was purified with silica gel chromatography (PE/EA = 20:1) as a colorless oil (43.8 mg, 84% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, *J* = 8.3 Hz, 2H), 7.35 (d, *J* = 8.2 Hz, 2H), 5.73 (d, *J* = 47.5 Hz, 1H), 4.31-4.17 (m, 2H),

1.26 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.1 (d, J = 27.3 Hz), 133.4 (d, J = 20.9 Hz), 132.0, 128.2 (d, J = 6.2 Hz), 123.9 (d, J = 2.6 Hz), 88.7 (d, J = 186.6 Hz), 62.1, 14.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -181.3.

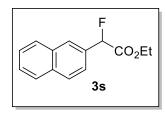

The product 30^8 was purified with silica gel chromatography (PE/EA = 30:1) as a colorless oil (45 mg, 90% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, J = 8.4 Hz, 2H), 7.61 (d, J = 8.2 Hz, 2H), 5.85 (d, J = 47.5 Hz, 1H), 4.33-4.19 (m, 2H),

1.27 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.9 (d, J = 26.7 Hz), 138.2 (d, J = 20.9 Hz), 131.7 (q, J = 34.3 Hz), 126.8 (d, J = 6.8 Hz), 125.8 (q, J = 3.8 Hz), 123.9 (q, J = 270.7 Hz), 88.6 (d, J = 187.5 Hz), 62.3, 14.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.8, -184.2.

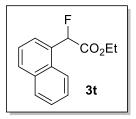
The product $3p^8$ was purified with silica gel chromatography (PE/EA = 30:1) as a colorless oil (46.5 mg, 93% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.75 (s, 1H), 7.69-7.66 (m, 2H), 7.55 (t, *J* = 7.8 Hz, 1H), 5.84 (d, *J* = 47.4 Hz,


1H), 4.33-4.16 (m, 2H), 1.27 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.9 (d, J = 26.9 Hz), 135.4 (d, J = 21.1 Hz), 131.4 (q, J = 32.7 Hz), 129.8 (dd, J = 6.4, 1.0 Hz), 129.4, 126.5-126.4 (m, 1C), 123.8 (q, J = 270.9 Hz), 123.5-123.3 (m, 1C), 88.6 (d, J = 187.4 Hz), 62.3, 14.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.8, -183.2.

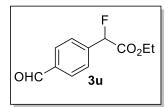
The product $3q^9$ was purified with silica gel chromatography (PE/EA = 30:1) as a colorless oil (55.4 mg, 87% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.96 (s, 2H), 7.92 (s, 1H), 5.92 (d, *J* = 47.0 Hz, 1H), 4.35-4.23 (m, 2H), 1.29 (t,


J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, C DCl₃) δ 167.1 (d, J = 26.3 Hz), 136.9 (d, J = 21.7 Hz), 132.4 (q, J = 33.9 Hz), 126.5-126.4 (m, 1C), 123.6-123.3 (m, 1C), 123.1 (q, J = 272.8 Hz), 87.92 (d, J = 189.8 Hz), 62.7, 14.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.1,

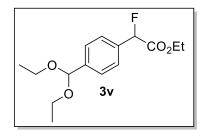
-186.3 (d, J = 47.0 Hz).


The product $3r^8$ was purified with silica gel chromatography (PE/EA = 30:1) as a colorless oil (47 mg, 91% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.65-7.54 (m, 6H), 7.47-7.44 (m, 2H), 7.37 (tt, *J* = 7.2, 2.0 Hz, 1H), 5.83 (d, *J* =

47.7 Hz, 1H), 4.35-4.20 (m, 2H), 1.29 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.7 (d, J = 27.6 Hz), 142.6 (d, J = 2.3 Hz), 140.3, 133.3 (d, J = 20.5 Hz), 128.9, 127.8, 127.6, 127.3, 127.2, 89.3 (d, J = 185.4 Hz), 62.0, 14.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -179.4.

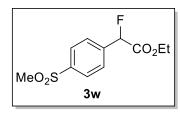

The product $3s^8$ was purified with silica gel chromatography (PE/EA = 20:1) as a colorless solid (41.8 mg, 90% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.97 (s, 1H), 7.91-7.85 (m, 3H), 7.58 (dd, J = 8.5, 1.5 Hz, 1H), 7.56-7.51 (m, 2H), 5.96 (d, J

= 47.7 Hz, 1H), 4.34-4.19 (m, 2H), 1.26 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.6 (d, J = 27.7 Hz), 133.7 (d, J = 1.4 Hz), 133.0, 131.7 (d, J = 20.3 Hz), 128.8, 128.4, 127.9, 127.0, 126.7, 126.7 (d, J = 5.8 Hz), 123.6 (d, J = 5.0 Hz), 89.6 (d, J = 185.5 Hz), 62.0, 14.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -179.2.

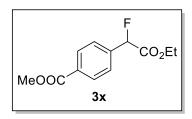


The product **3t** was purified with silica gel chromatography (PE/EA = 30:1) as a colorless oil (34.8 mg, 75% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.21 (d, *J* = 8.4 Hz, 1H), 7.91 (t, *J* = 7.5 Hz, 2H), 7.63-7.48 (m, 4H), 6.37 (d, *J* = 47.1 Hz, 1H), 4.34-4.15 (m,

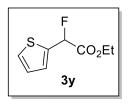
2H), 1.21 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.0 (d, J = 27.6 Hz), 133.9, 130.7 (d, J = 1.6 Hz), 130.6 (d, J = 2.4 Hz), 130.3 (d, J = 18.7 Hz), 128.9, 127.1, 126.9 (d, J = 8.0 Hz), 126.3, 125.2, 123.8 (d, J = 1.3 Hz), 88.7 (d, J = 185.2 Hz), 62.1, 14.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -177.6. HRMS (ESI) calcd. for C₁₄H₁₃FO₂Na [M+Na]⁺ 255.0797, found: 255.0798.



The product $3u^8$ was purified with silica gel chromatography (PE/EA = 30:1) as a colorless solid (33.6 mg, 80% yield). ¹H NMR (400 MHz, CDCl₃) δ 10.0 (s, 1H), 7.92 (d, *J* = 7.9 Hz, 2H), 7.64 (d, *J* = 7.9 Hz, 2H), 5.86 (d, *J* = 47.5 Hz, 1H), 4.31-4.17 (m, 2H), 1.25 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 191.7, 167.8 (d, J = 26.7 Hz), 140.5 (d, J = 20.4 Hz), 137.0, 130.1, 126.9 (d, J = 6.9 Hz), 88.8 (d, J = 187.7 Hz), 62.3, 14.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -184.7.

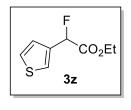

The product **3v** was purified with silica gel chromatography (PE/EA = 30:1) as a colorless oil (48.3 mg, 85% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, J = 8.2 Hz, 2H), 7.46 (d, J = 8.2 Hz, 2H), 5.77 (d, J =47.8 Hz, 1H), 5.50 (s, 1H), 4.30-4.15 (m, 2H), 3.67-3.49

(m, 4H), 1.27-1.21 (m, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 168.6 (d, J = 27.6 Hz), 140.7 (d, J = 2.1 Hz), 134.3 (d, J = 20.5 Hz), 127.2, 126.6 (d, J = 6.1 Hz), 101.2, 89.2 (d, J = 185.4 Hz), 61.9, 61.3, 15.3, 14.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -180.0. HRMS (ESI): calcd. for C₁₅H₂₁FO₄Na [M+Na]⁺ 307.1322, found: 307.1324.

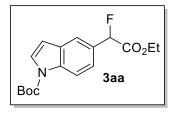

The product **3w** was purified with silica gel chromatography (PE/EA = 10:1) as a colorless solid (46.8 mg, 90% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, *J* = 8.1 Hz, 2H), 7.69 (d, *J* = 8.1 Hz, 2H), 5.87 (d, *J* = 47.4

Hz, 1H), 4.32-4.18 (m, 2H), 3.06 (s, 3H), 1.26 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.5 (d, J = 26.5 Hz), 141.6 (d, J = 1.5 Hz), 140.1 (d, J = 20.8 Hz), 127.9, 127.2 (d, J = 7.0 Hz), 88.4 (d, J = 188.5 Hz), 62.5, 44.5, 14.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -185.5. HRMS (ESI) calcd. for C₁₁H₁₄FO₄S [M+H]⁺ 261.0597, found: 261.0596.

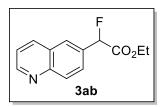
The product **3x** was purified with silica gel chromatography (PE/EA = 30:1) as a colorless oil (41.3 mg, 86% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, J = 8.1 Hz, 2H), 7.55 (d, J = 8.1 Hz, 2H), 5.83 (d, J =


47.6 Hz, 1H), 4.30-4.17 (m, 2H), 3.92 (s, 3H), 1.25 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.0 (d, J = 26.8 Hz), 166.5, 138.9 (d, J = 20.5 Hz), 131.2 (d, J = 1.7 Hz), 130.1, 126.4 (d, J = 6.7 Hz), 88.9 (d, J = 187.2 Hz), 62.2, 52.4, 14.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -183.9. HRMS (ESI) calcd. for C₁₂H₁₄FO₄ [M+H]⁺ 241.0876, found: 241.0877.

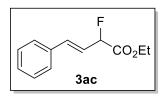
The product **3y** was purified with silica gel chromatography (PE/EA = 30:1) as a yellow oil (24.8 mg, 66% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.42 (dt, *J* = 5.1, 1.4 Hz, 1H), 7.24-7.22 (m,


1H),7.05-7.03 (m, 1H), 5.99 (d, J = 48.5 Hz, 1H), 4.37-4.24 (m,

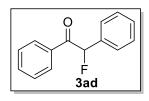
2H), 1.31 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.7 (d, J = 28.2 Hz), 135.6 (d, J = 23.0 Hz), 128.7 (d, J = 5.4 Hz), 128.3 (d, J = 3.2 Hz), 127.2 (d, J = 2.1 Hz), 84.9 (d, J = 185.8 Hz), 62.3, 14.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -164.4. HRMS (ESI) calcd. for C₈H₉FO₂SNa [M+Na]⁺ 211.0205, found: 211.0203.


The product **3z** was purified with silica gel chromatography (PE/EA = 30:1) as a yellow oil (28.6 mg, 76% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.47-7.46 (m, 1H), 7.37-7.34 (m, 1H), 7.17 (d, *J* = 5.0 Hz, 1H), 5.87 (d, *J* = 48.1 Hz, 1H), 4.34-4.21 (m, 2H),

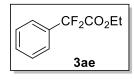
1.29 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.3 (d, J = 27.0 Hz), 134.9 (d, J = 22.4 Hz), 126.9, 125.7 (d, J = 3.4 Hz), 124.9 (d, J = 7.4 Hz), 85.7 (d, J = 184.2 Hz), 62.0, 14.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -176.2. HRMS (ESI) calcd. for C₈H₉FO₂SNa [M+Na]⁺ 211.0205, found: 211.0202.


The product **3aa** was purified with silica gel chromatography (PE/EA = 5:1) as a colorless oil (50.8 mg, 79% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, *J* = 8.6 Hz, 1H), 7.67 (s, 1H), 7.63 (d, *J* = 3.7 Hz, 1H), 7.41 (d, *J* =

8.6 Hz, 1H), 6.59 (d, J = 3.7 Hz, 1H), 5.85 (d, J = 47.8 Hz, 1H), 4.32-4.16 (m, 2H), 1.67 (s, 9H), 1.25 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.0 (d, J = 28.5 Hz), 149.6, 135.8, 130.8, 128.7 (d, J = 20.7 Hz), 127.0, 123.0 (d, J = 5.1 Hz), 119.9 (d, J = 6.2 Hz), 115.6, 107.4, 89.8 (d, J = 185.0 Hz), 84.5, 61.8, 28.2, 14.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -175.2. HRMS (ESI) calcd. for C₁₇H₂₀FNO₄Na [M+Na]⁺ 344.1274, found: 344.1272.


The product **3ab** was purified with silica gel chromatography (PE/EA = 3:1) as a colorless oil (40.1 mg, 86% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.94 (dd, J = 4.2, 1.6 Hz, 1H), 8.17 (d, J = 8.3 Hz, 1H), 8.13 (d, J = 8.8 Hz, 1H), 7.93 (s,

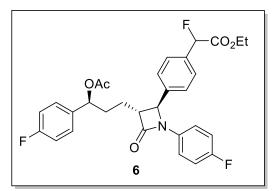
1H), 7.79 (dd, J = 8.8, 1.8 Hz, 1H), 7.43 (dd, J = 8.3, 4.2 Hz, 1H), 5.96 (d, J = 47.5 Hz, 1H), 4.32-4.17 (m, 2H), 1.24 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.3 (d, J = 27.2 Hz), 151.4, 148.5 (d, J = 1.4 Hz), 136.5, 132.6 (d, J = 20.5 Hz), 130.3, 127.9, 127.2 (d, J = 5.2 Hz), 126.2 (d, J = 7.6 Hz), 121.8, 89.1 (d, J = 186.7 Hz), 62.2, 14.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -181.2. HRMS (ESI) calcd. for C₁₃H₁₃FNO₂ [M+H]⁺ 234.0930, found: 234.0932.


The product $3ac^8$ was purified with silica gel chromatography (PE/EA = 30:1) as a colorless oil (24.1 mg, 58% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.43 (m, 2H), 7.37-7.28 (m, 3H), 6.85 (dd, J = 16.0, 2.7 Hz, 1H), 6.29 (ddd,

J = 16.0, 14.2, 6.5 Hz, 1H, 5.44 (ddd, J = 48.1, 6.5, 1.2 Hz, 1H), 4.33-4.25 (m, 2H),1.36 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.5 (d, J = 25.8 Hz), 135.5 (d, J = 11.4 Hz), 135.4 (d, J = 1.2 Hz), 128.9, 128.8, 127.0 (d, J = 1.1 Hz), 121.1 (d, J = 19.1 Hz), 88.7 (d, J = 183.6 Hz), 62.0, 14.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -183.7.

The product **3ad**¹⁰ was purified with silica gel chromatography (PE/EA = 20:1) as a white solid (25.7 mg, 60% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 7.7 Hz, 2H), 7.55 (t, *J* = 7.4 Hz, 1H), 7.50-7.48 (m, 2H), 7.44-7.37 (m, 5H), 6.52 (d, *J* = 48.6

Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 194.4 (d, *J* = 21.4 Hz), 134.3 (d, *J* = 19.9 Hz), 134.1, 133.9, 129.7 (d, *J* = 2.7 Hz), 129.2, 129.2, 128.8, 127.5 (d, *J* = 5.5 Hz), 94.0 (d, *J* = 185.7 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -175.8.


The product $3ae^{11}$ was purified with silica gel chromatography (PE/EA = 30:1) as a colorless oil (23.2 mg, 58% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.62-7.60 (m, 2H), 7.52-7.43 (m, 3H), 4.30

(q, J = 7.1 Hz, 2H), 1.30 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 164.3 (t, J = 35.3 Hz), 132.9 (t, J = 25.5 Hz), 131.1 (t, J = 1.7 Hz), 128.7, 125.5 (t, J = 6.2 Hz), 113.5 (t, J = 252.0 Hz), 63.2, 14.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -103.9

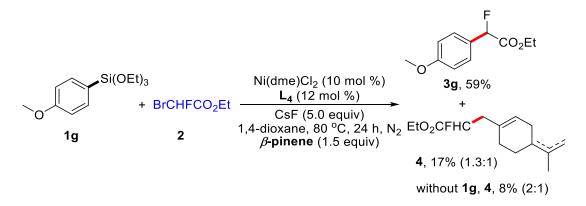
Procedure of Monofluoroalkylation of Ezetimibe Derivative 5

To a 25 mL of Schlenk tube were added Ni(dme)Cl₂ (10 mol %, 0.01 mmol, 2.2 mg),

L4 (12 mol %, 0.012 mmol, 3.2 mg) and CsF (5.0 equiv, 0.5 mmol, 76 mg) under air. The vessel was evacuated and backfilled with N₂ (3 times) and 1,4-dioxane (1.3 mL) was added via syringe. The mixture was stirred for 15 min, and then the ezetimibe derivative (1.2 equiv, 0.12 mmol, 72 mg) was added. After stirring for an additional 10 min, the BrCFHCO₂Et (1.0 equiv, 0.1 mmol, 12 μ L) was added, and the reaction mixture was heated in a preheated oil bath at 80 °C for 24 h. The reaction mixture was cooled to room temperature, diluted with EtOAc and filtered through a pad of celite. The filtrate was concentrated under vacuum and purified by flash column chromatography (PE/EA = 3:1) to give **6** as a colorless oil (49 mg, 91%).

¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, *J* = 8.0 Hz, 2H), 7.36 (d, *J* = 8.1 Hz, 2H), 7.28-7.25 (m, 2H), 7.22-7.18 (m, 2H), 7.01 (t, *J* = 8.6 Hz, 2H), 6.93 (t, *J* = 8.7 Hz, 2H), 5.78 (dd, *J* = 47.6, 2.6 Hz, 1H), 5.70 (t, *J* = 6.8 Hz, 1H), 4.62 (d, *J* = 2.1 Hz, 1H), 4.33-4.18

(m, 2H), 3.06 (td, J = 7.7, 1.6 Hz, 1H), 2.09-1.99 (m, 5H), 1.94-1.82 (m, 2H), 1.27 (td, J = 7.1, 1.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.3, 168.3 (d, J = 27.1 Hz), 166.7, 162.5 (d, J = 246.8 Hz), 159.1 (d, J = 243.7 Hz), 139.1 (d, J = 2.0 Hz), 135.7 (d, J = 3.2 Hz), 134.9 (dd, J = 20.6, 1.0 Hz), 133.7 (d, J = 2.7 Hz), 128.3 (d, J = 8.2 Hz), 127.6 (dd, J = 6.2, 1.4 Hz), 126.3, 118.4 (d, J = 7.9 Hz), 116.0 (d, J = 22.7 Hz), 115.6 (d, J = 21.6 Hz), 88.9 (d, J = 186.4 Hz), 74.9, 62.1, 60.8 (d, J = 4.0 Hz), 60.2, 33.7, 25.0, 21.3, 14.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -113.7 (d, J = 2.8 Hz), -117.7 (d, J = 2.3 Hz), -180.8 (d, J = 23.2 Hz). HRMS (ESI) calcd. for C₃₀H₂₈F₃NO₅Na [M+Na]⁺ 562.1817, found: 562.1821.


Mechanistic studies

1. Radical Trapping Experiment with TEMPO

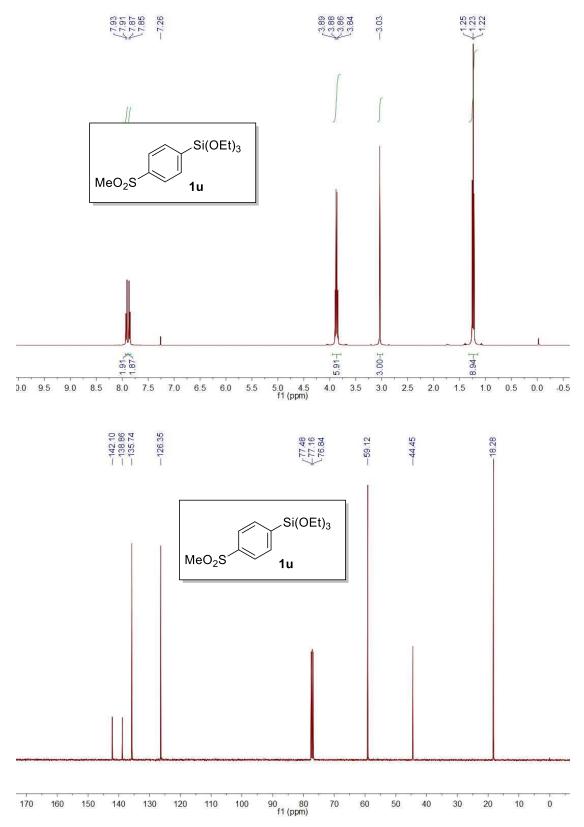
To a 25 mL of Schlenk tube were added Ni(dme)Cl₂ (10 mol %, 0.02 mmol, 4.4 mg), L4 (12 mol %, 0.024 mmol, 6.5 mg) and CsF (5.0 equiv, 1 mmol, 152 mg) under air. The vessel was evacuated and backfilled with N₂ (3 times) and 1,4-dioxane (2.5 mL) was added via syringe. The mixture was stirred for 15 min, and then the 1a (1.2 equiv, 0.3 mmol, 58 uL) was added. After stirring for an additional 10 min, the BrCFHCO₂Et (1.0 equiv, 0.2 mmol, 24 uL) and TEMPO (1.0 equiv, 0.2 mmol, 31.3 mg) was added. The reaction mixture was heated in a preheated oil bath at 80 °C for 24 h. The reaction mixture was cooled to room temperature. No product 3a was detected by crude ¹⁹F NMR.

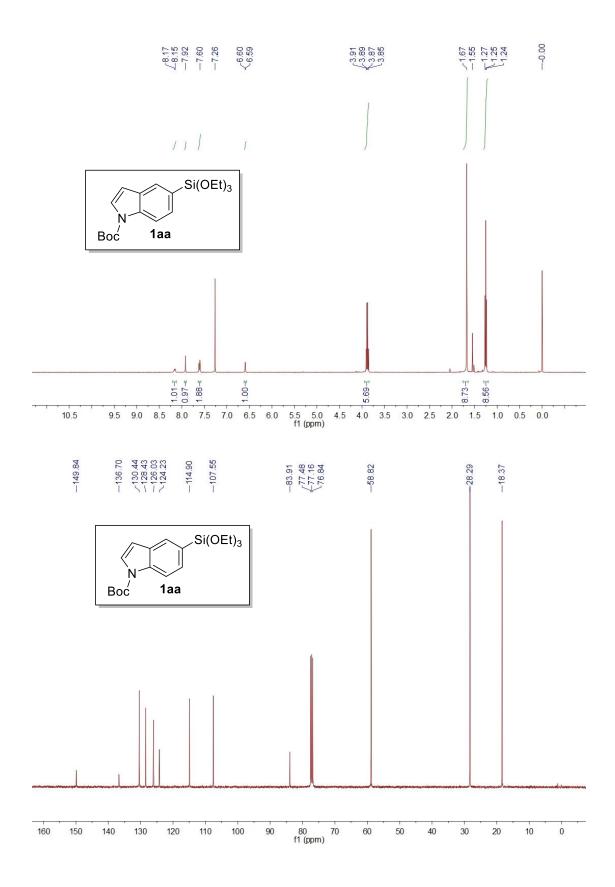
2. Procedure of Monofluoroalkylation of β -pinene

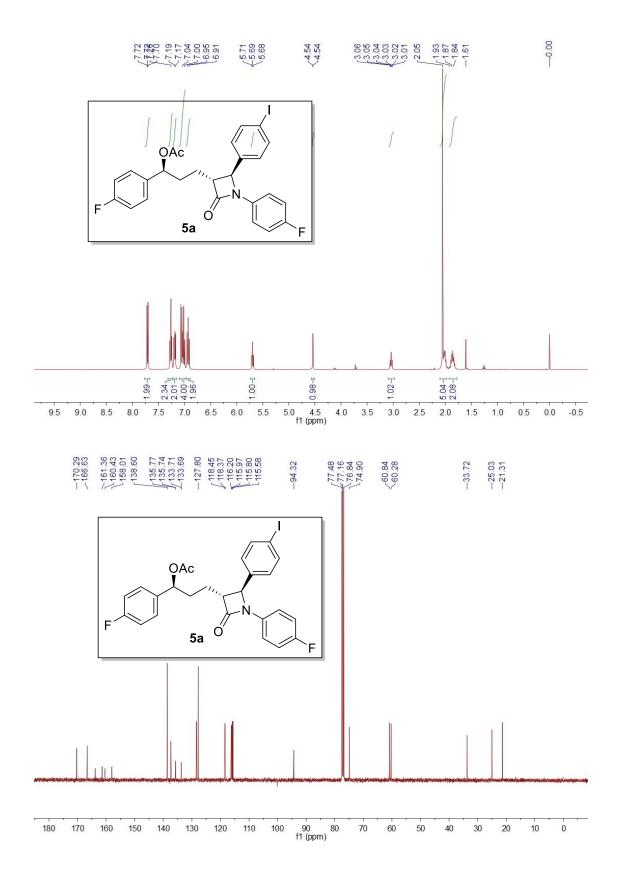
To a 25 mL of Schlenk tube were added Ni(dme)Cl₂ (10 mol %, 0.02 mmol, 4.4 mg), L4 (12 mol %, 0.024 mmol, 6.5 mg) and CsF (5.0 equiv, 1 mmol, 152 mg) under air. The vessel was evacuated and backfilled with N₂ (3 times) and 1,4-dioxane (2.5 mL) was added via syringe. The mixture was stirred for 15 min, and then the arylsilane **1g** (1.2 equiv, 0.24 mmol) was added. After stirring for an additional 10 min, the BrCHFCO₂Et (1.0 equiv, 0.2 mmol, 24 uL) and β -pinene (1.5 equiv, 0.3 mmol, 40.8 mg) was added. The reaction mixture was heated in a preheated oil bath at 80 °C for 24 h. The reaction mixture was cooled to room temperature, diluted with EtOAc and filtered through a pad of celite. The filtrate was concentrated under vacuum and purified by flash column chromatography (PE/EA = 40:1) to give product **3g** in 59% yield and ring-open diene product **4** in 17% yield (1.3:1 isomer ratio).

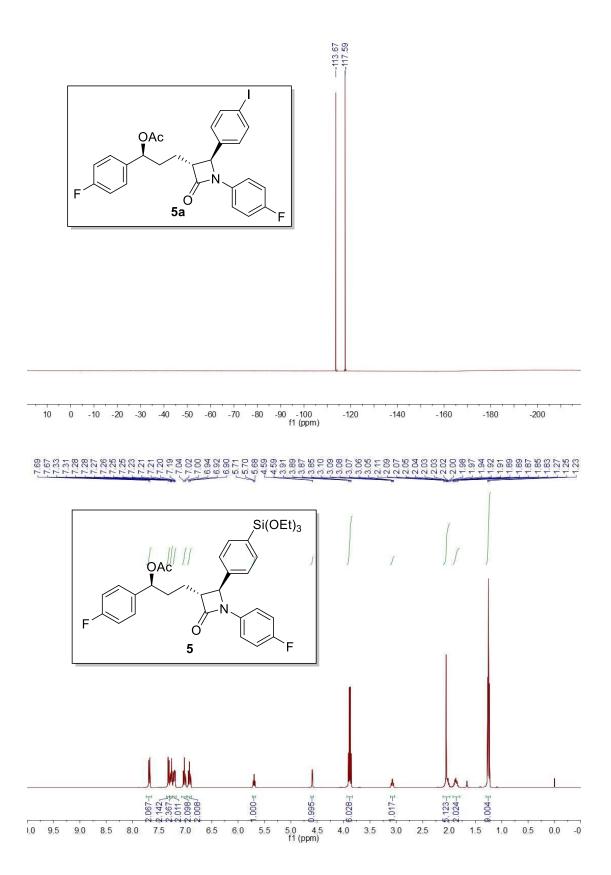
Without 1g: 4 was obtained in 8% yield (2:1 isomer ratio).

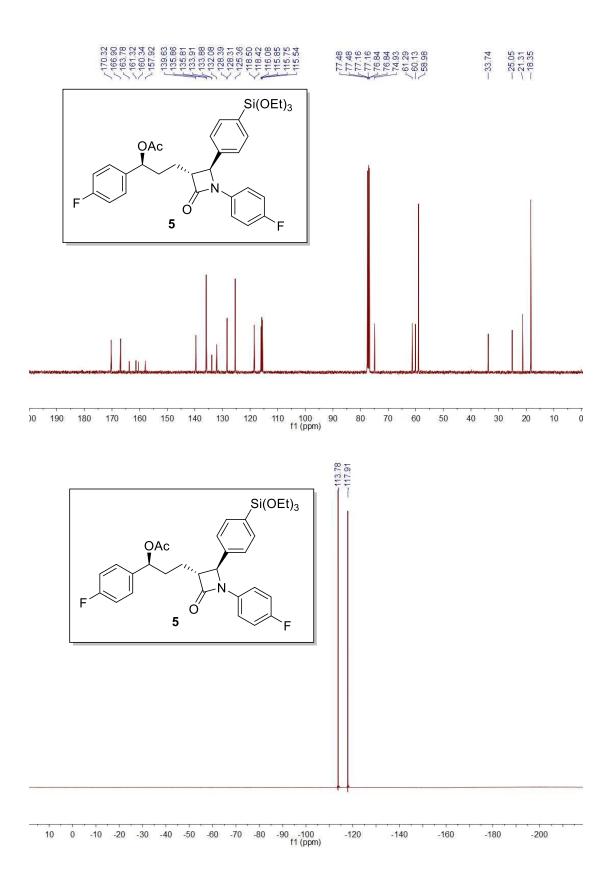
4 (mixture): ¹H NMR (400 MHz, CDCl₃) δ 5.56 (d, J = 13.7 Hz, 1.08H), 5.07-5.01 (m,

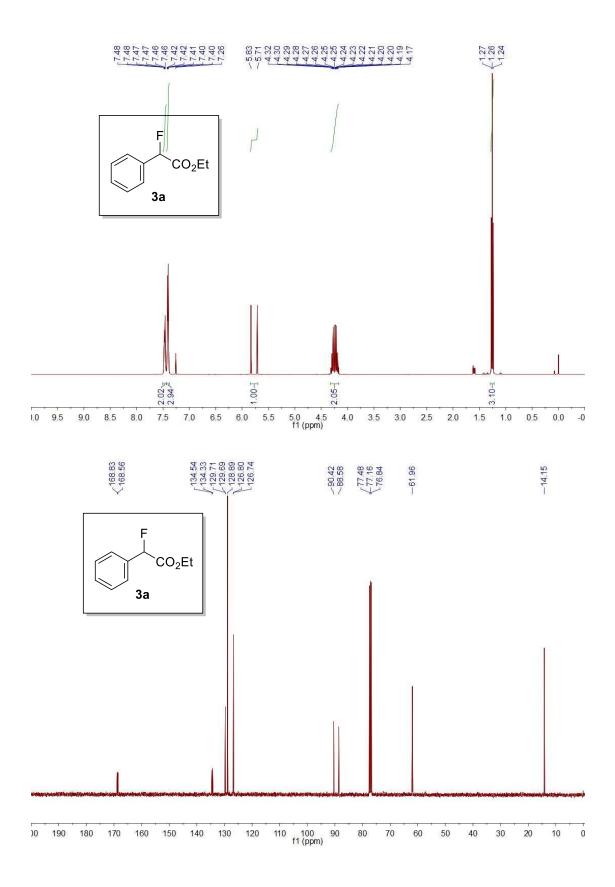

0.55H), 4.94-4.89 (m, 0.55H), 4.71 (d, J = 6.4 Hz, 1H), 4.27-4.21 (m, 2.15H), 2.76 (s, 1.03H), 2.54 (dt, J = 26.6, 5.9 Hz, 2.21H), 2.32 (t, J = 6.3 Hz, 1H), 2.13-1.80 (m, 4.73H), 1.73 (s, 1.48H), 1.68 (s, 1.57H), 1.64 (s, 1.57H), 1.32-1.27 (m, 3.77H). ¹³C NMR (101 MHz, CDCl₃) δ 170.0 (d, J = 23.7 Hz), 149.9 (d, J = 5.0 Hz), 132.1 (d, J = 2.0 Hz), 131.6 (t, J = 1.8 Hz), 126.9, 125.5, 125.4 (d, J = 5.3 Hz), 122.4, 108.8 (d, J = 4.7 Hz), 88.4 (d, J = 186.1 Hz), 61.6, 40.8 (d, J = 4.3 Hz), 40.6 (d, J = 21.2 Hz), 30.9 (d, J = 3.5 Hz), 29.9, 29.7, 29.1, 29.0, 27.8 (d, J = 1.9 Hz), 26.6, 20.9, 20.3, 19.9, 14.3 (d, J = 5.2 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -189.3 (d, J = 180.8 Hz), -189.4. HRMS (ESI) calcd. for C₁₄H₂₂FO₂ [M+H]⁺ 241.1604, found: 241.1602.

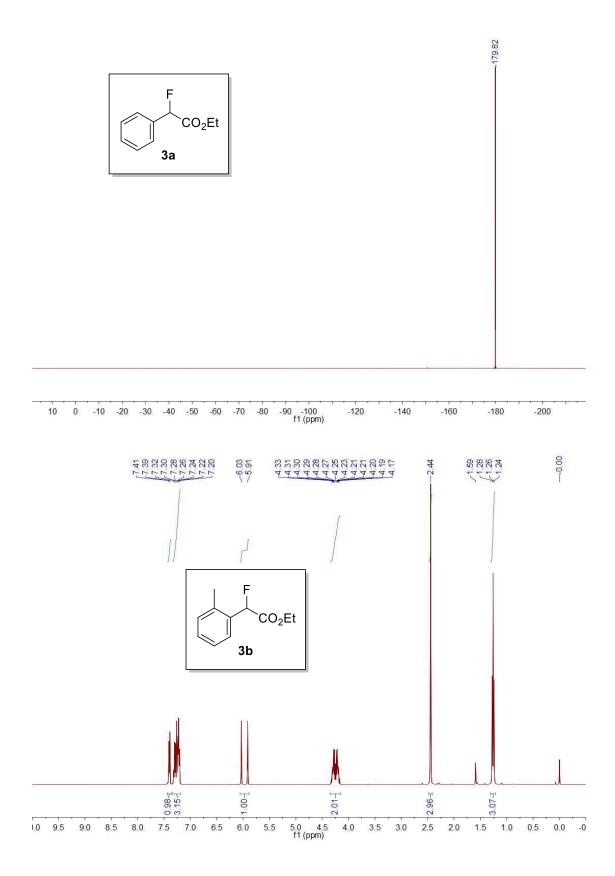

References

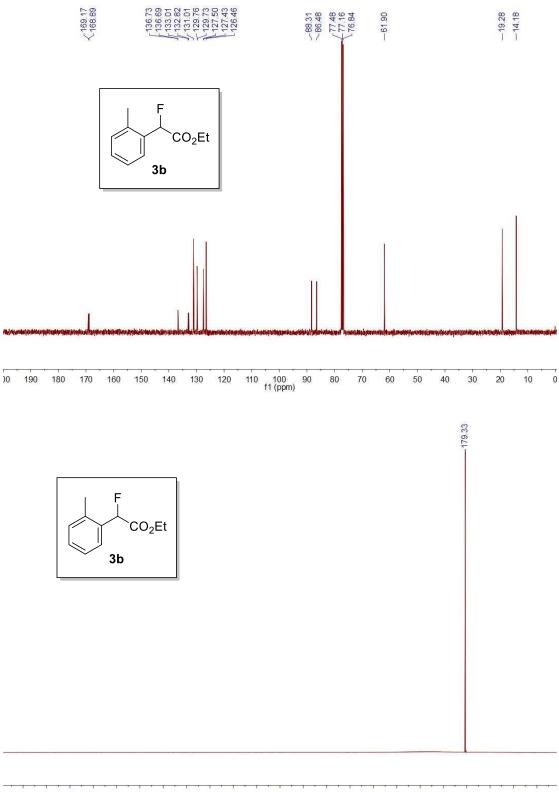

- (1) (a) Yu, J.; Liu, J.; Shi, G.; Shao, C.; Zhang, Y. Angew. Chem., Int. Ed, 2015, 54, 4079. (b) Manoso, A. S.; Ahn, C.; Soheili, A.; Handy, C. J.; Correia, R.; Seganish, W. M.; DeShong, P. J. Org. Chem. 2004, 69, 8305.
- (2) Taylor, P. G.; Bassindale, A. R.; Aziz, Y.; Pourny, M.; Stevenson, R.; Hursthouse, M. B.; Coles, S. J. *Dalton Trans.* 2012, *41*, 2048.
- (3) Diachun, N. A.; Marcus, A. H.; Hussey, D. M.; Fayer, M. D. J. Am. Chem. Soc. 1994, 116, 1027.
- (4) Jorapur, Y. R.; Shimada, T. Synlett 2012, 23, 1064.
- (5) (a) Ishida, S.; Ito, M.; Horiuchi, H.; Hiratsuka, H.; Shiraishi, S.; Kyushin, S. Dalton Trans. 2010, 39, 9421. (b) Swamy P, C. A.; Mukherjee, S.; Thilagar, P. Chem. Commun. 2013, 49, 993. (c) Swamy P, C. A.; Priyanka, R. N.; Thilagar, P. Dalton Trans. 2014, 43, 4067.
- (6) (a) Murata, M.; Ishikura, M.; Nagata, M.; Watanabe, S.; Masuda, Y. Org. Lett. 2002,
 4, 1843. (b) Tang, P.; Ritter, T. Tetrahedron. 2011, 67, 4449.
- (7) Karabelas, K.; Hallberg, A. J. Org. Chem. 1986, 51, 5286.
- (8) Su, Y. -M.; Fen, G. -S.; Wang, Z. -Y.; Lan, Q.; Wang, X. -S. Angew. Chem., Int. Ed. 2015, 54, 6003.
- (9) Guo, C.; Yue, X.; Qing, F. -L. Synthesis 2010, 11, 1837.
- (10) Kitamura, T.; Muta, K.; Muta, K. J. Org. Chem. 2014, 79, 5842.

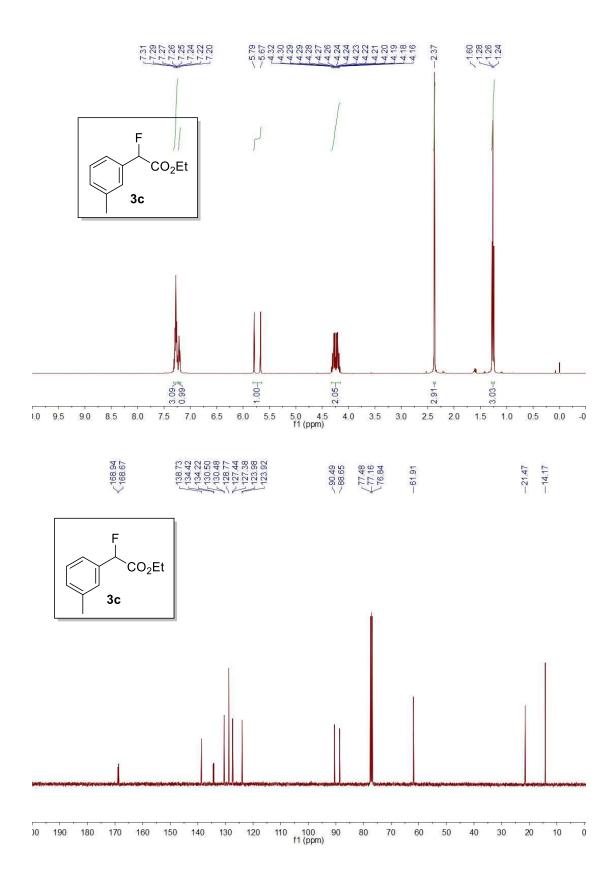

(11) Xiao, Y.-L.; Guo, W.-H.; He, G.-Z.; Pan, Q.; Zhang, X. Angew. Chem., Int. Ed. **2014**, *53*, 9909.

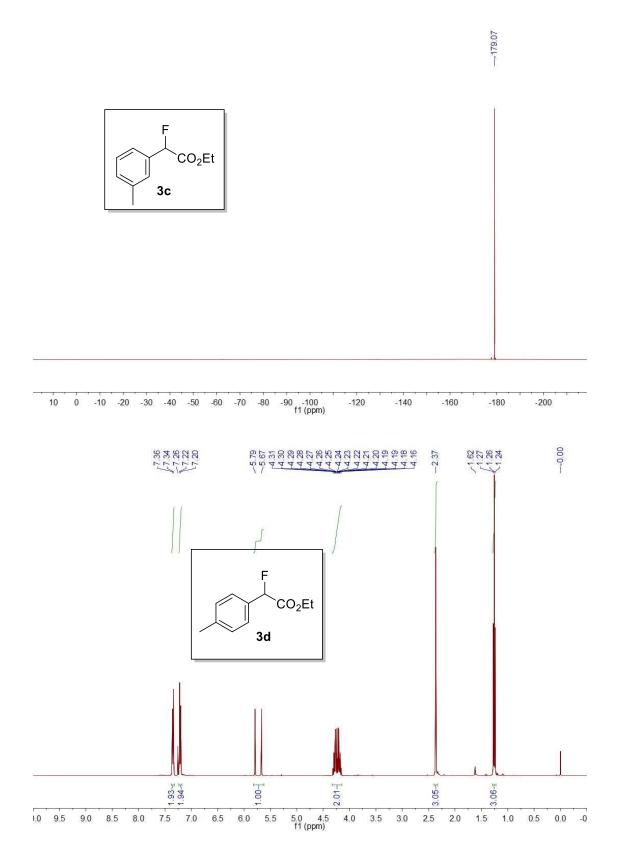

NMR spectra of new compounds (¹H NMR, ¹³C NMR, ¹⁹F NMR)

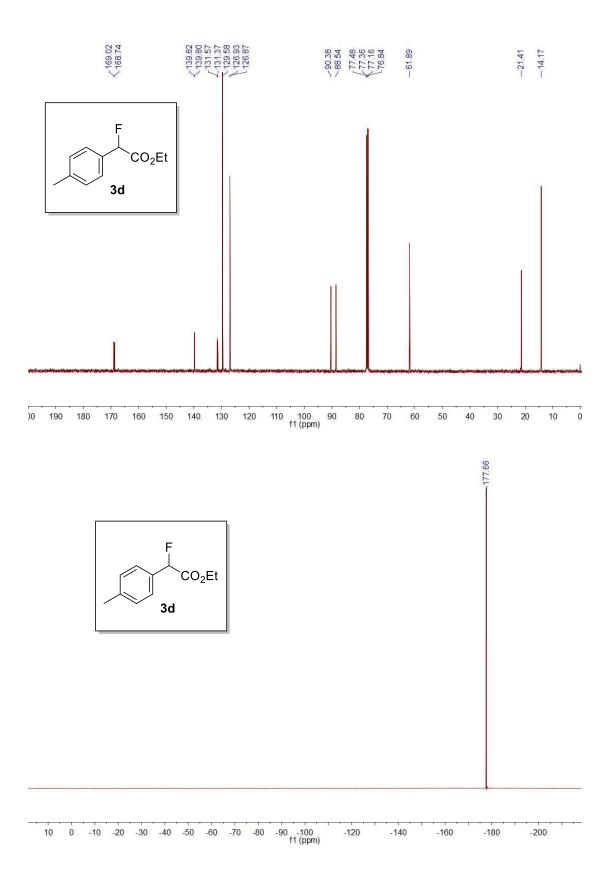


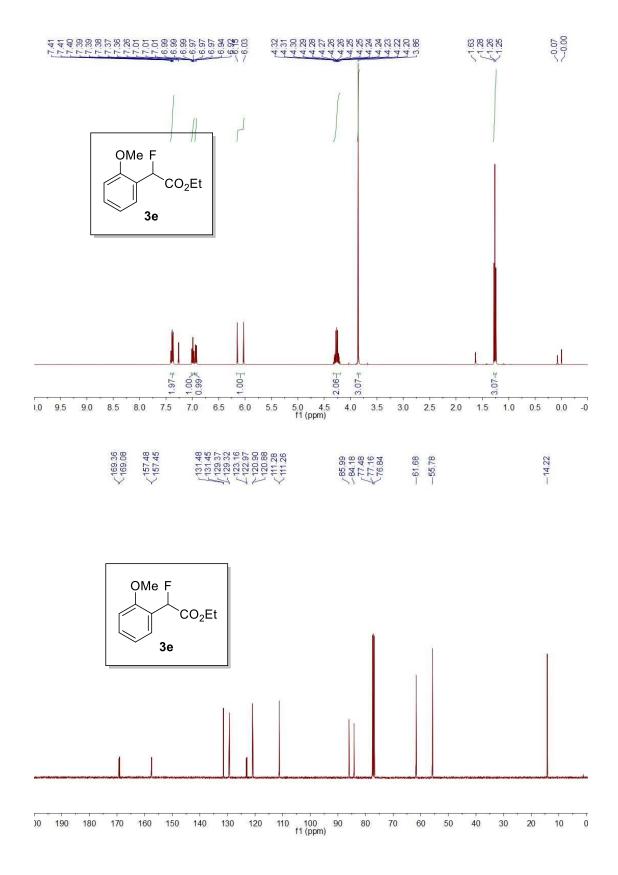


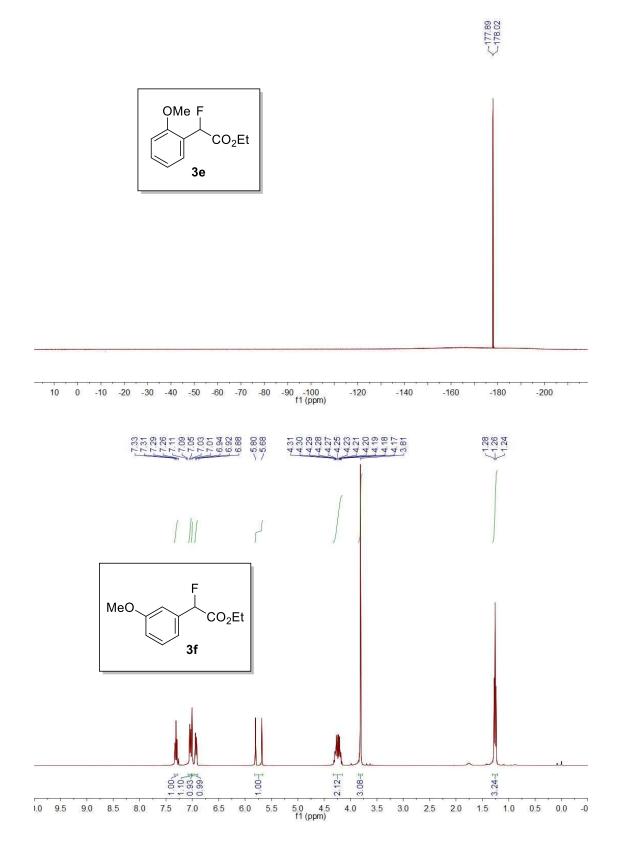


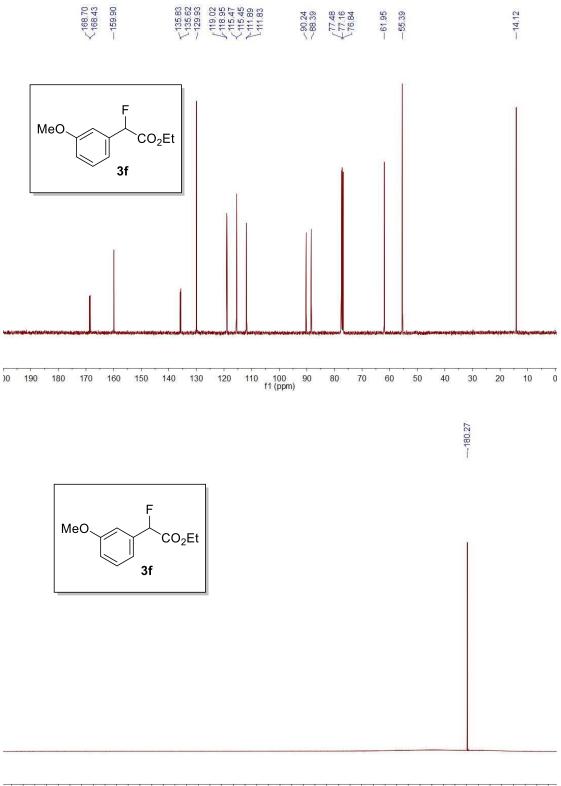


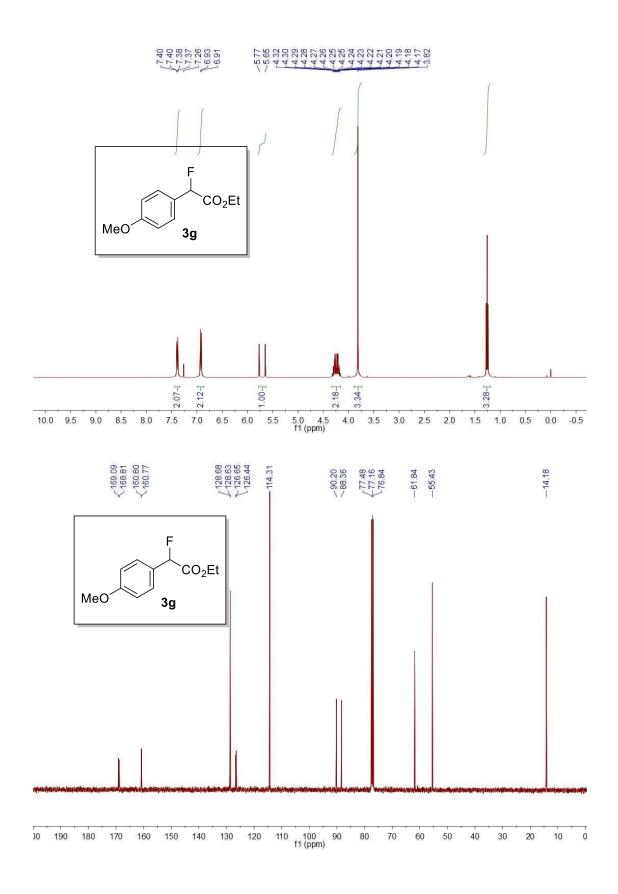


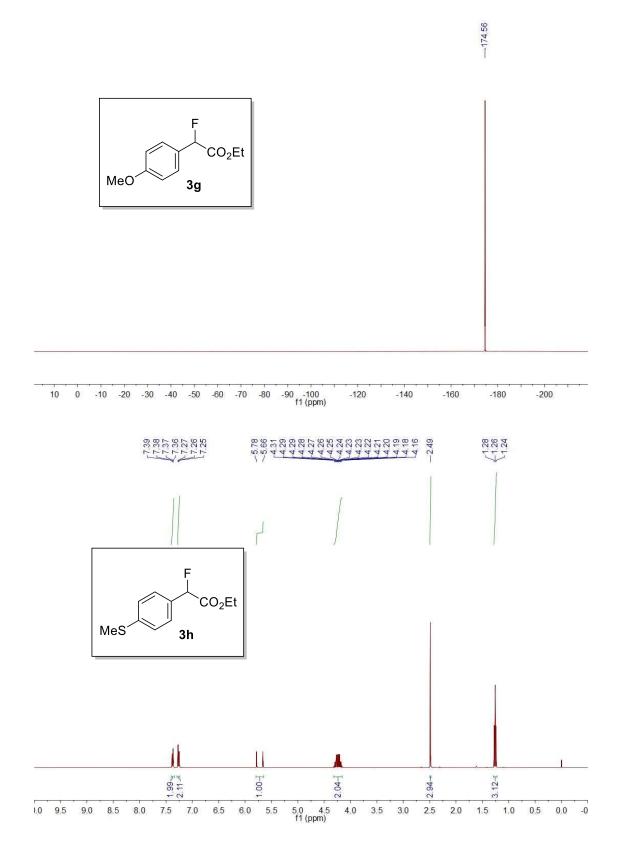


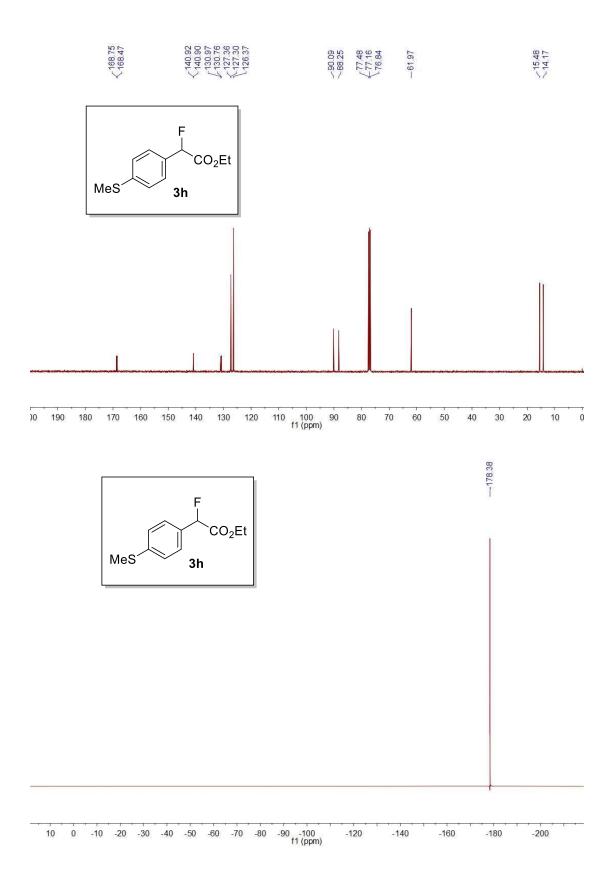


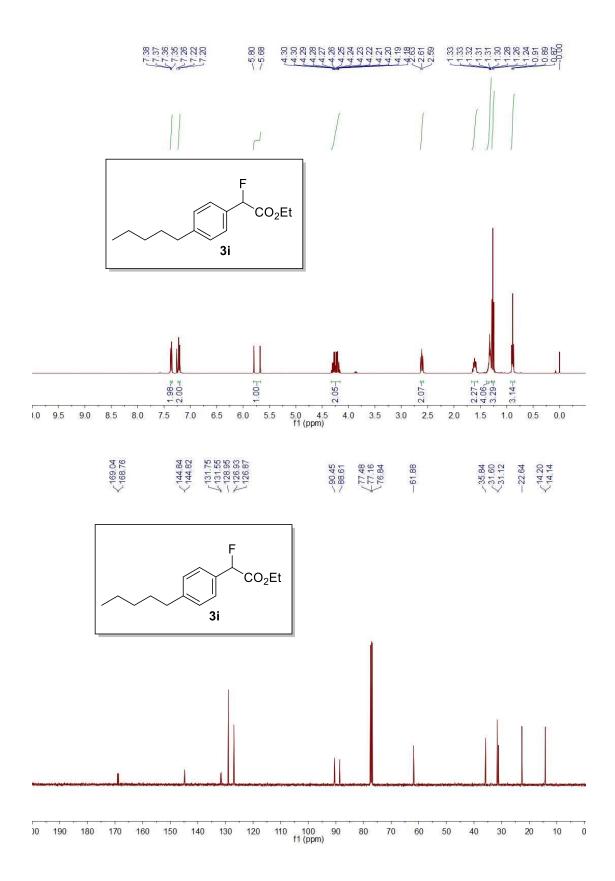

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180 -200 f1 (ppm)

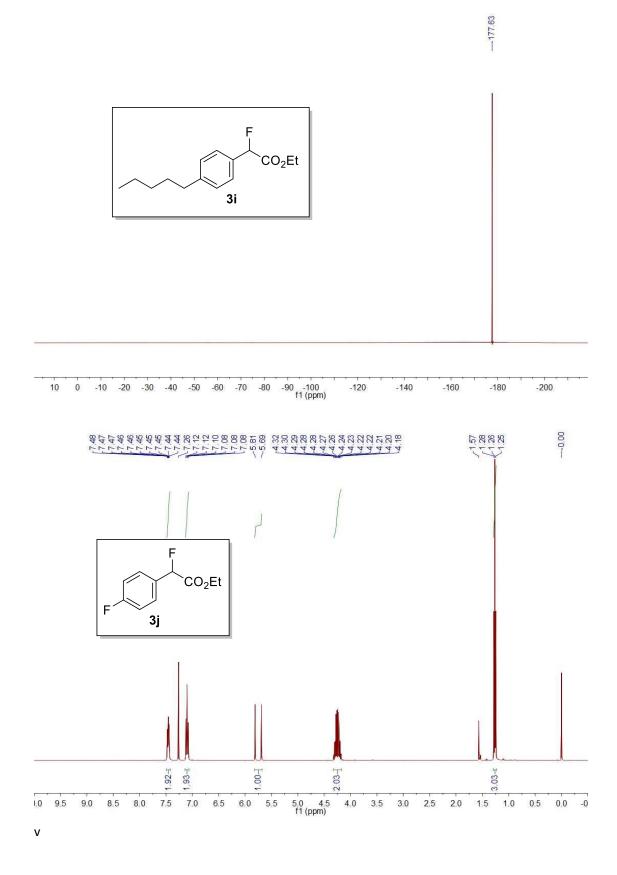


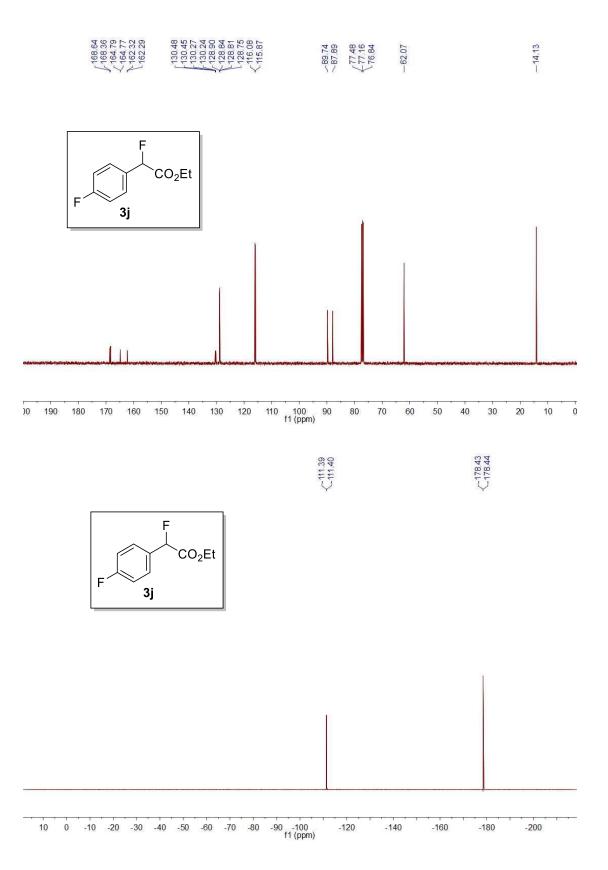


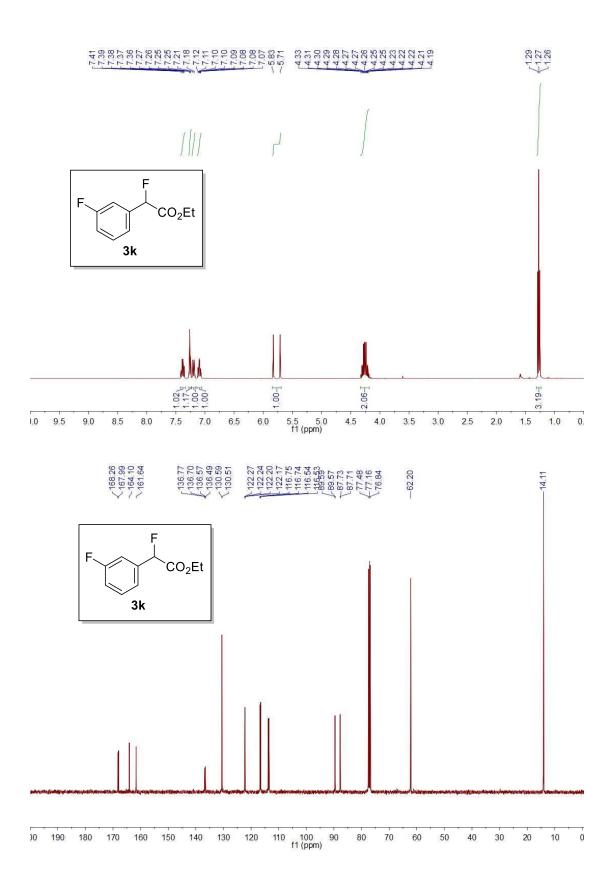


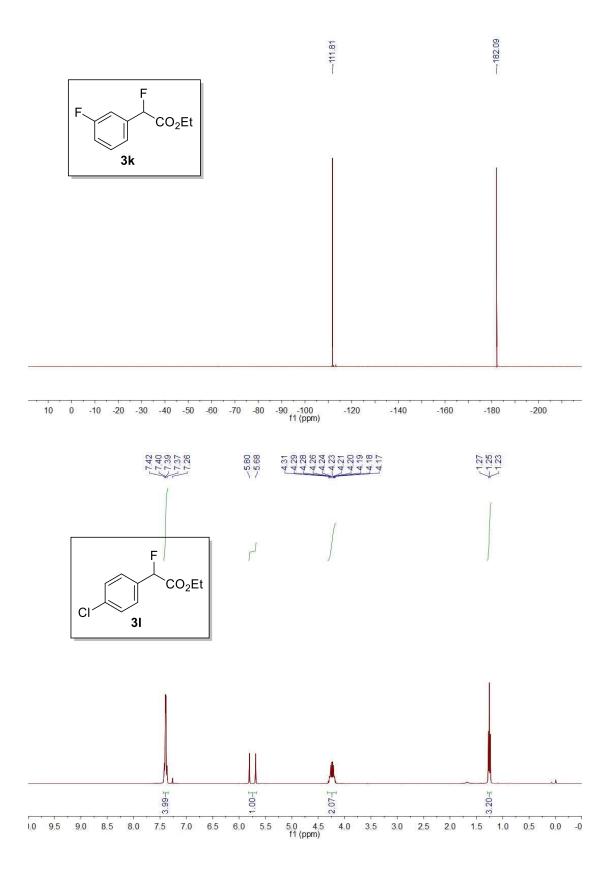


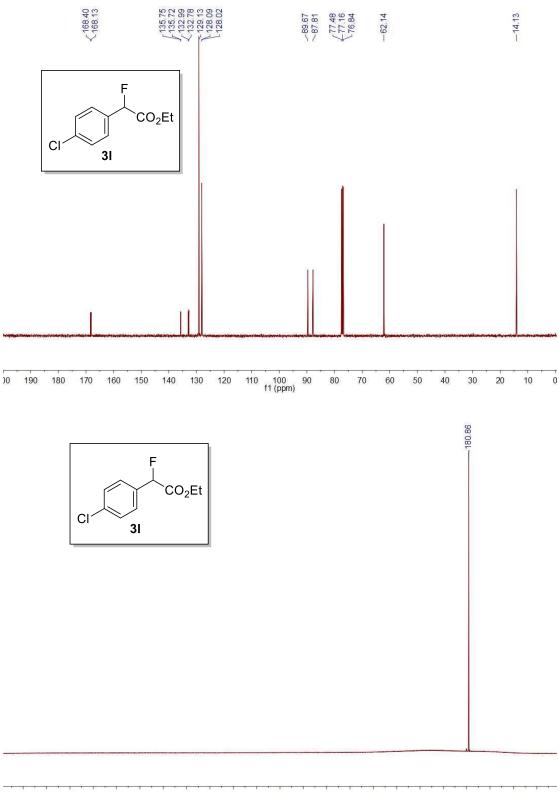


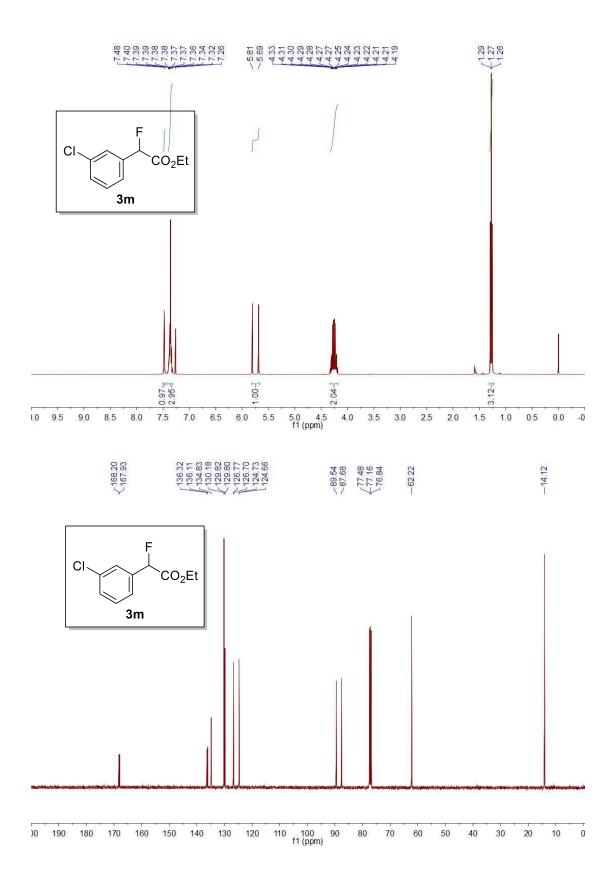

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180 -200 f1 (ppm)

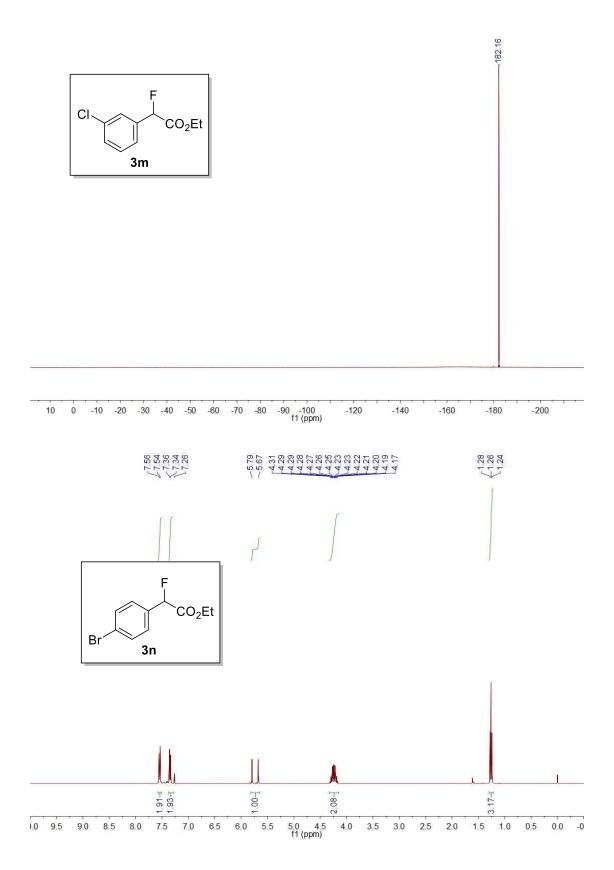


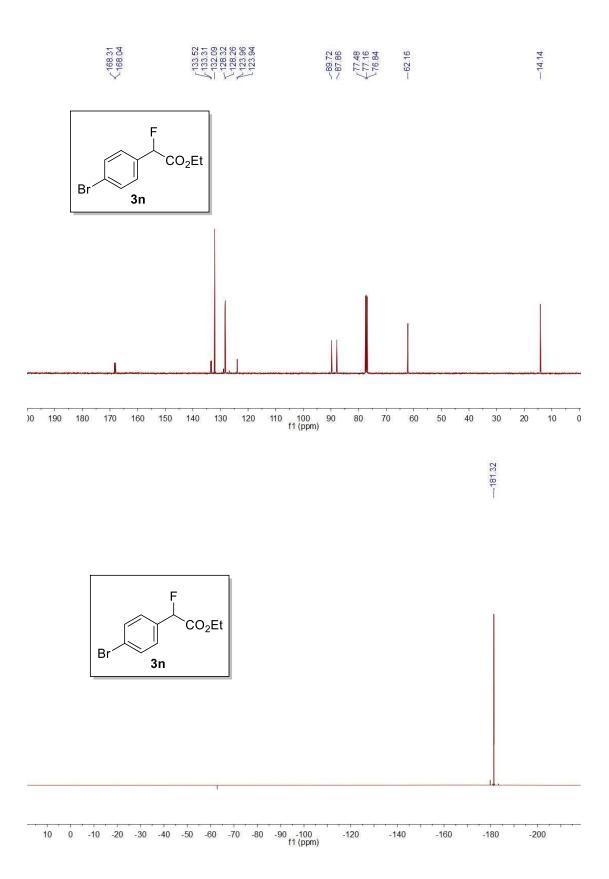


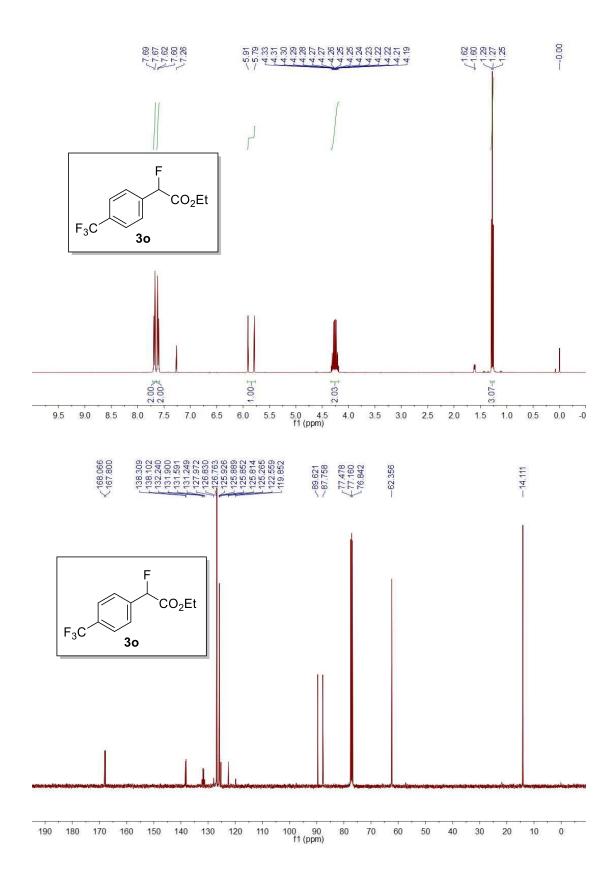


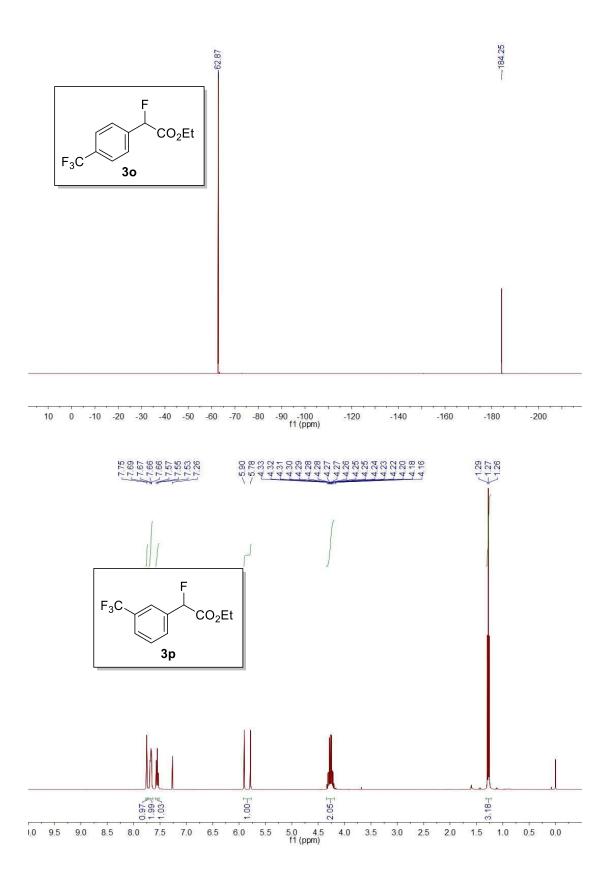


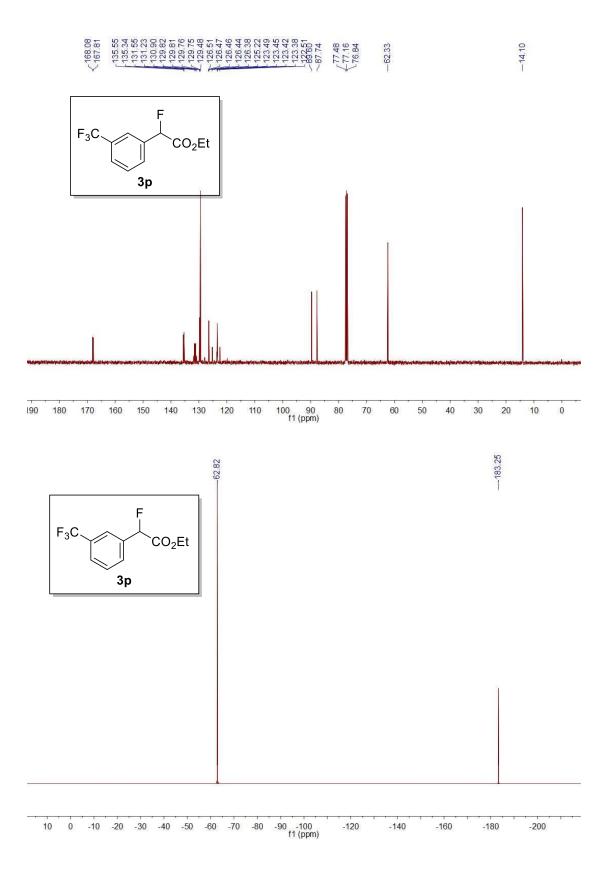


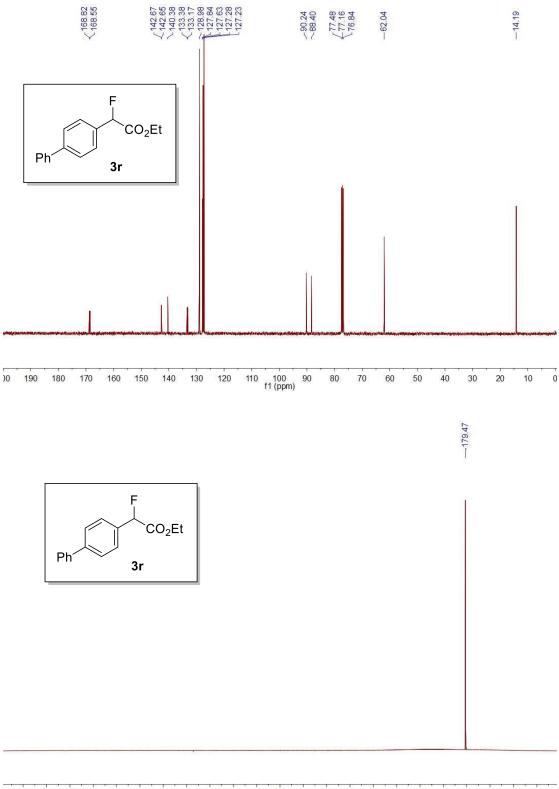


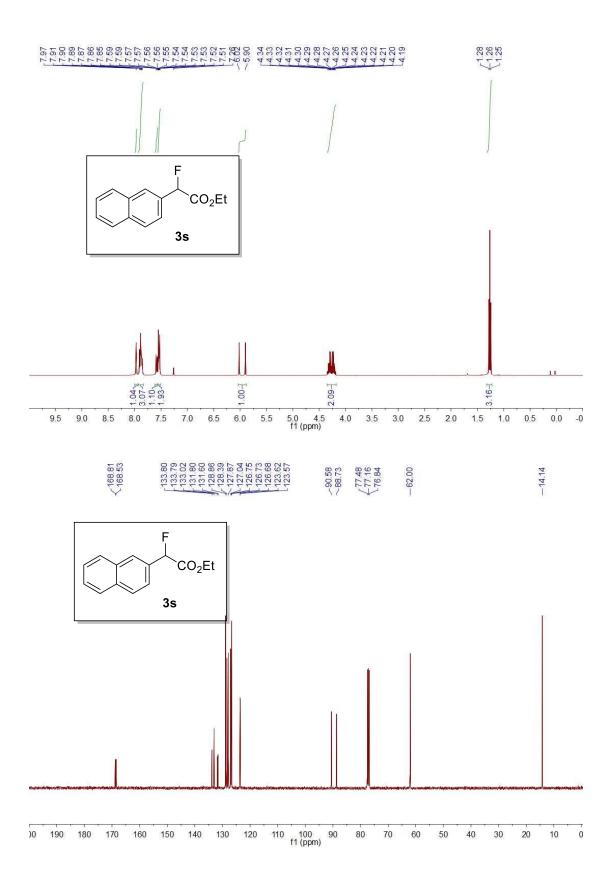


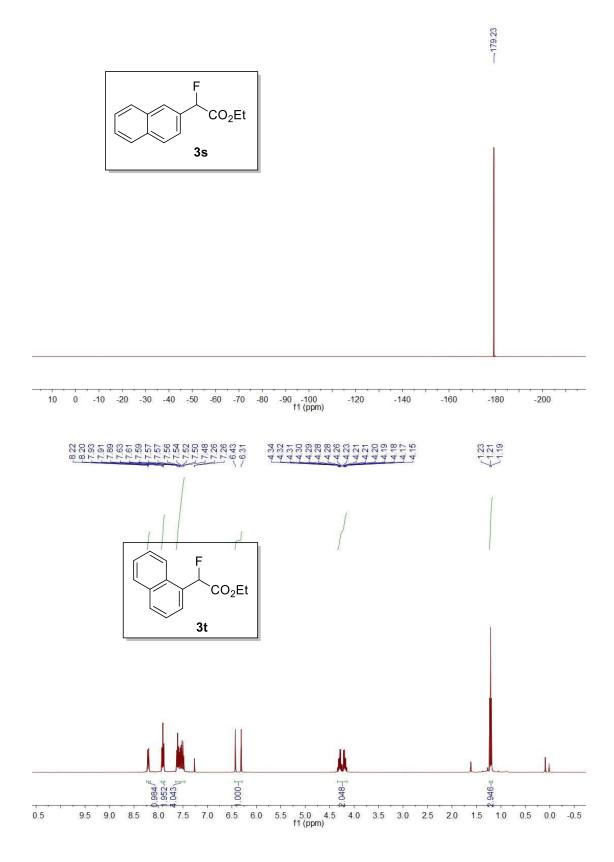


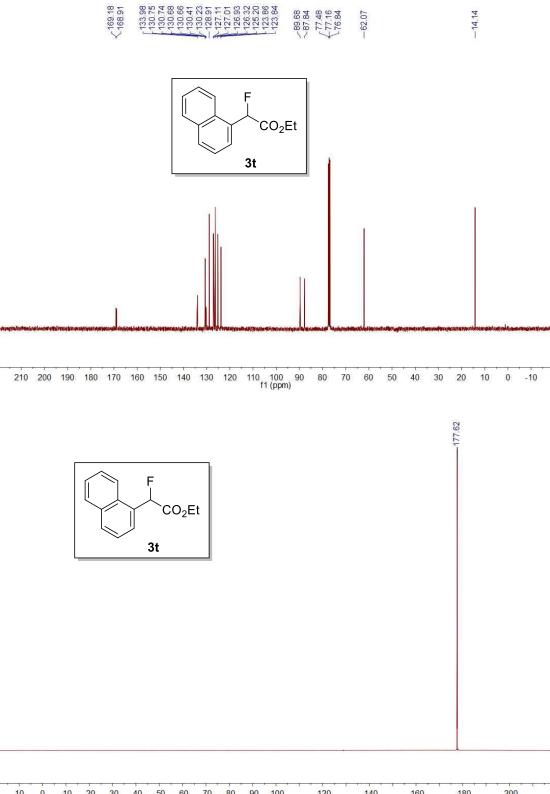

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180 -200 f1 (ppm)

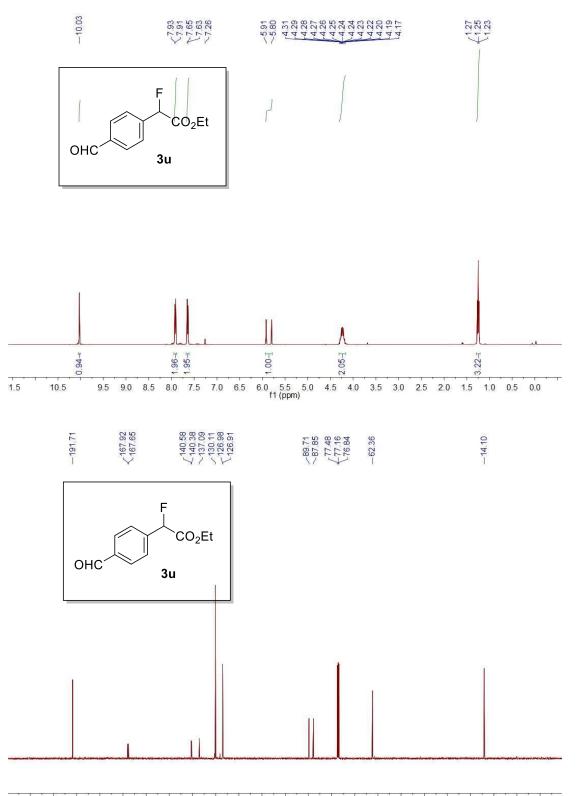


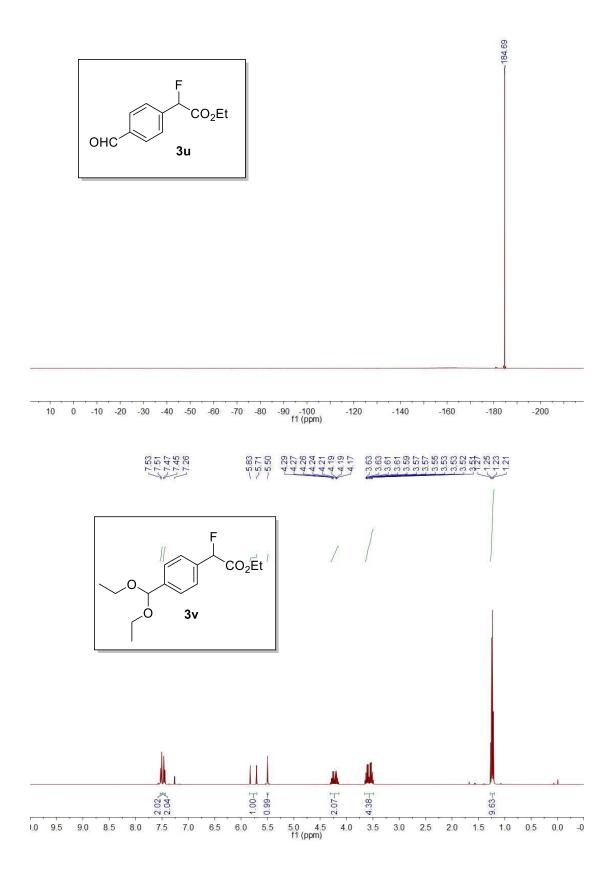


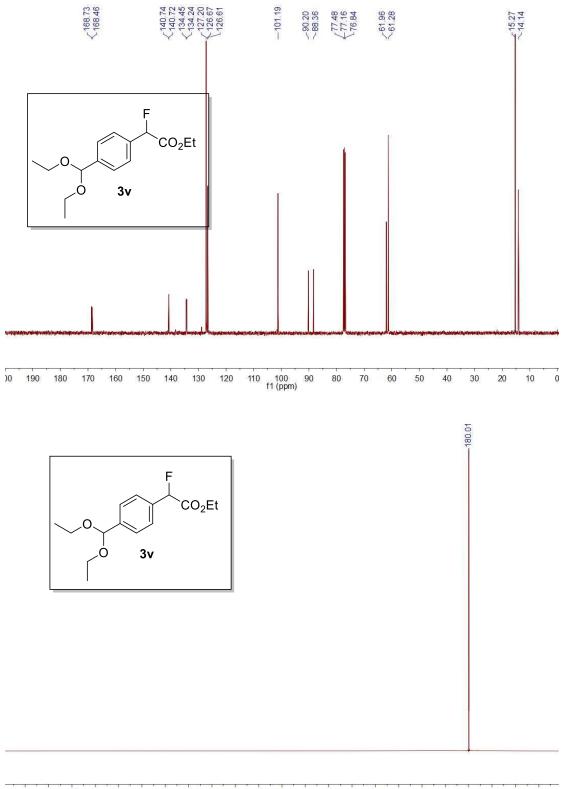




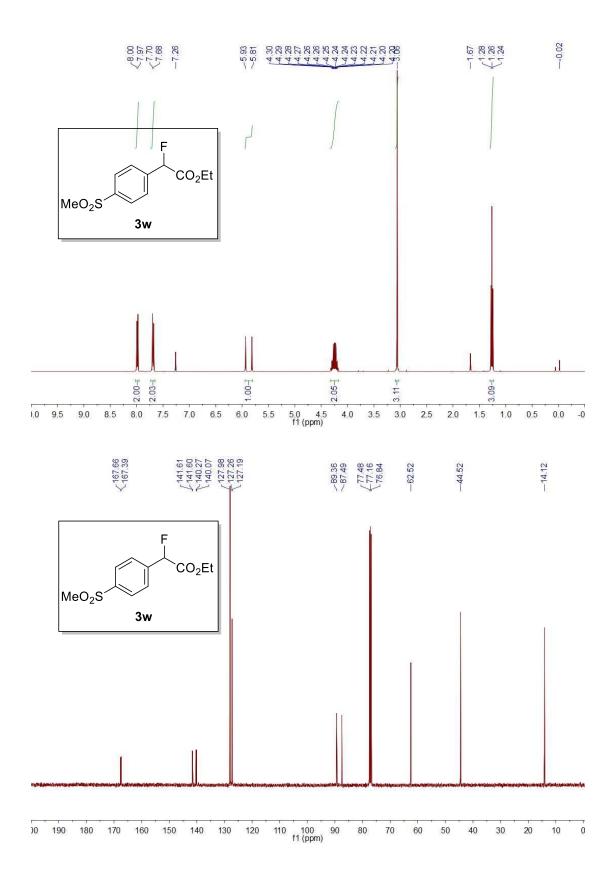


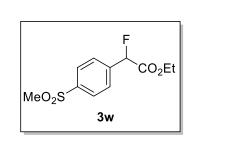

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180 -200 f1 (ppm)

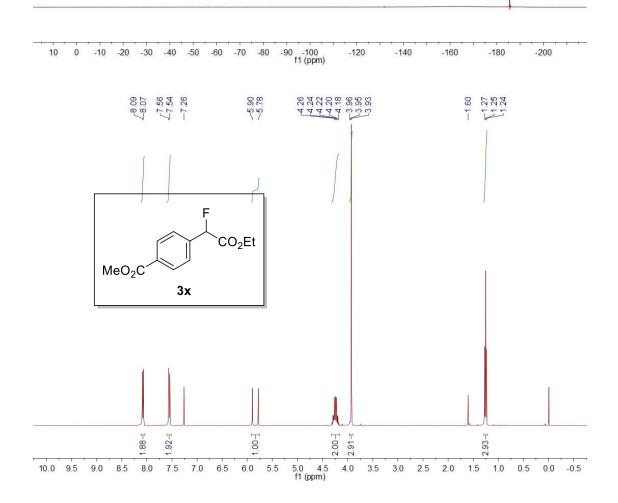


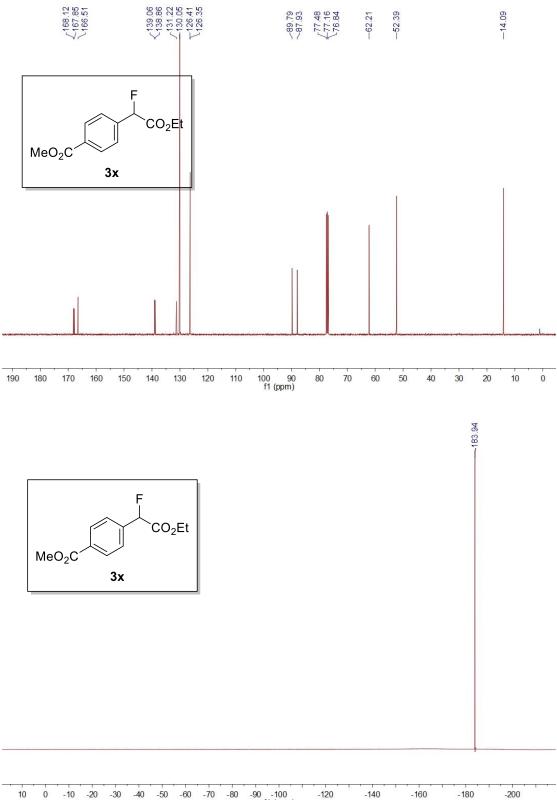


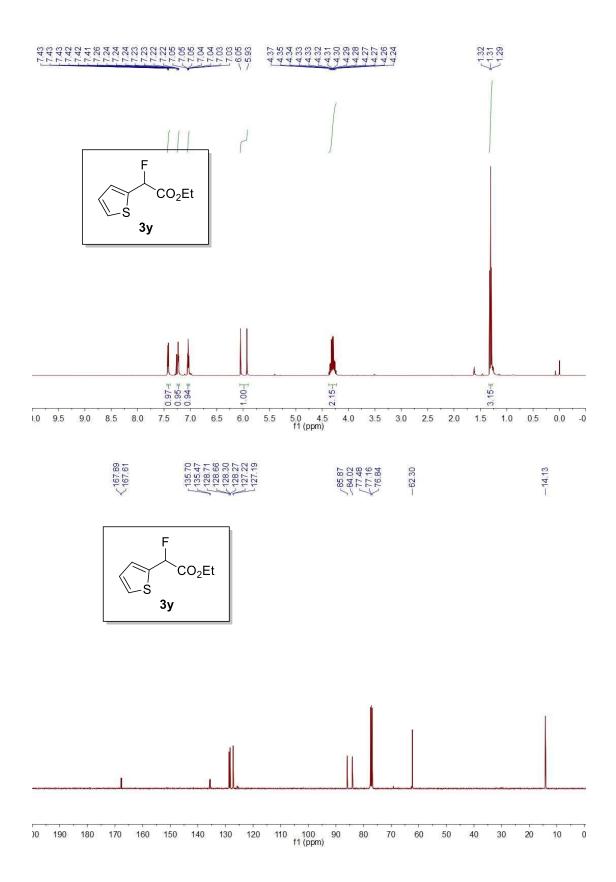
10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180 -200 f1 (ppm)

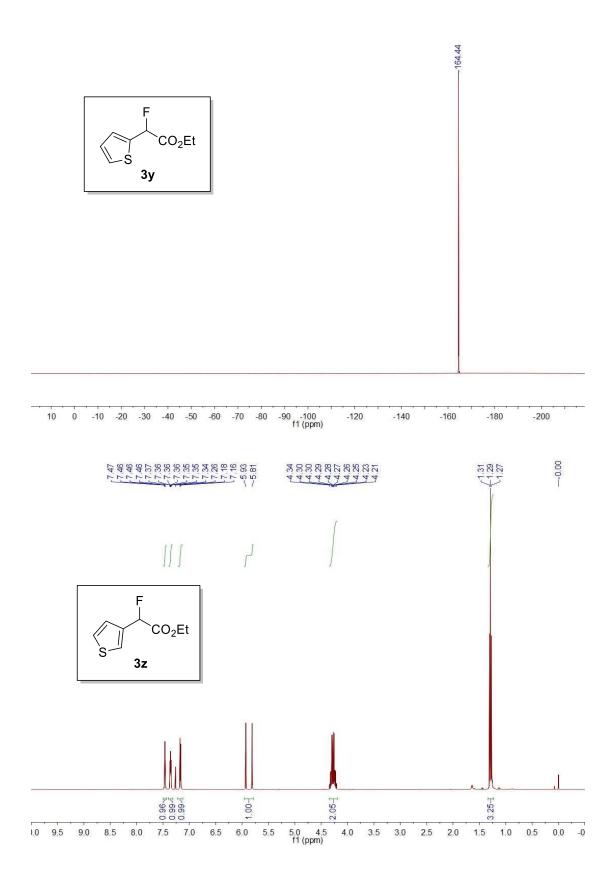


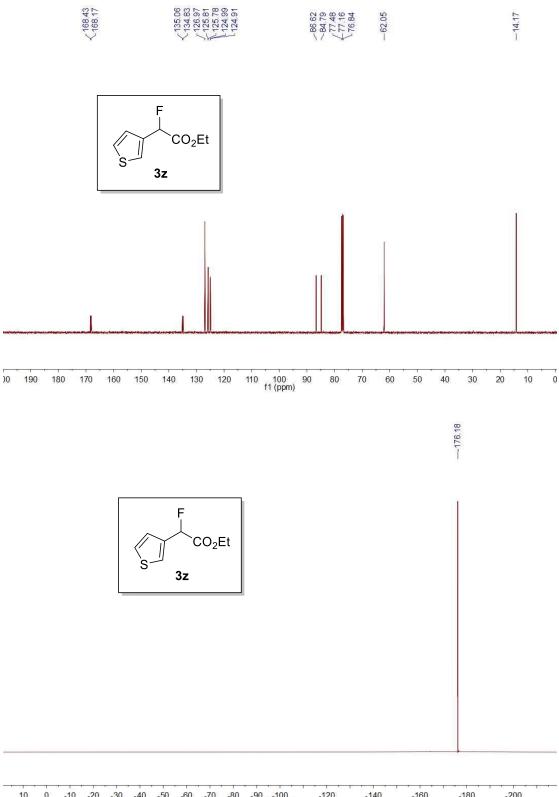

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

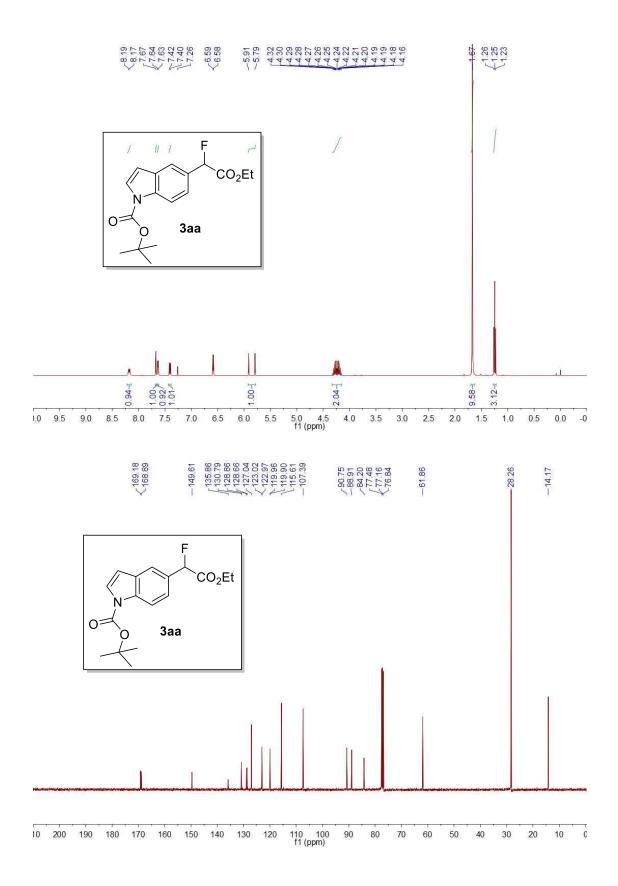


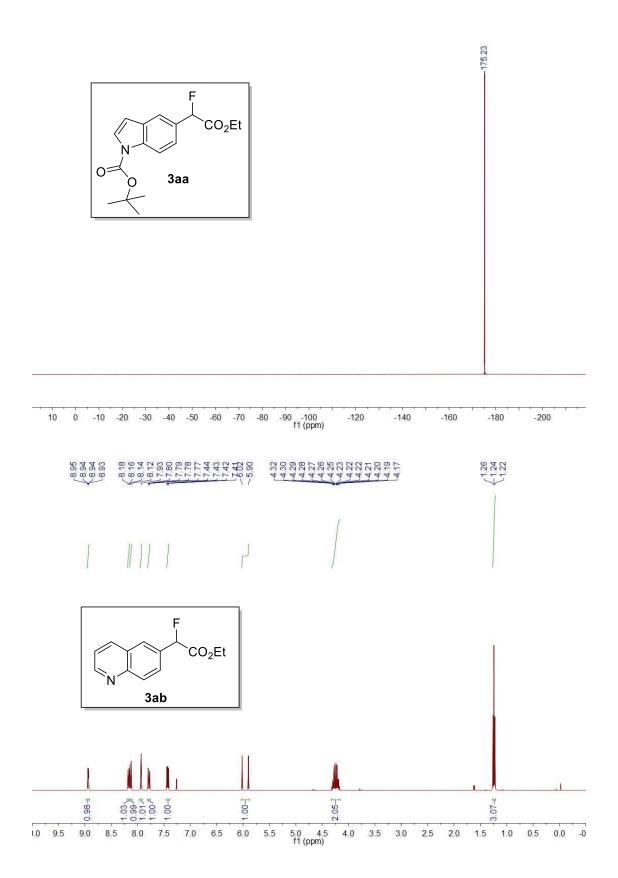

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180 -200 f1 (ppm)

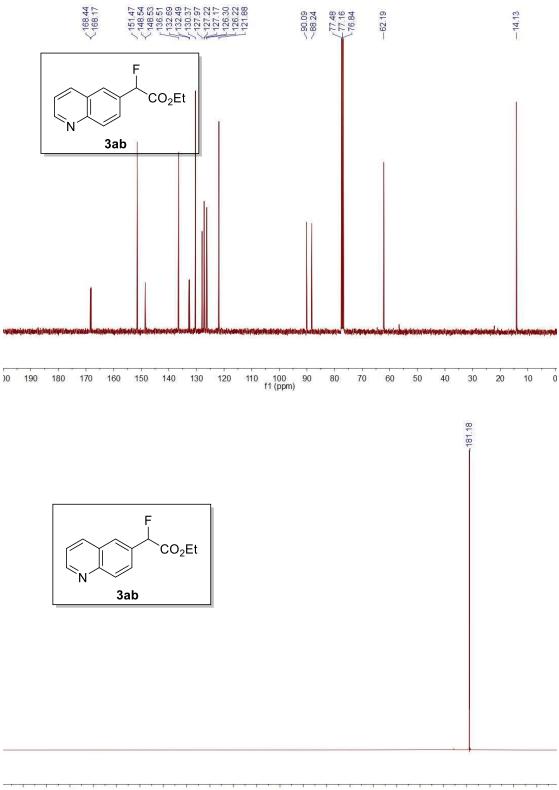


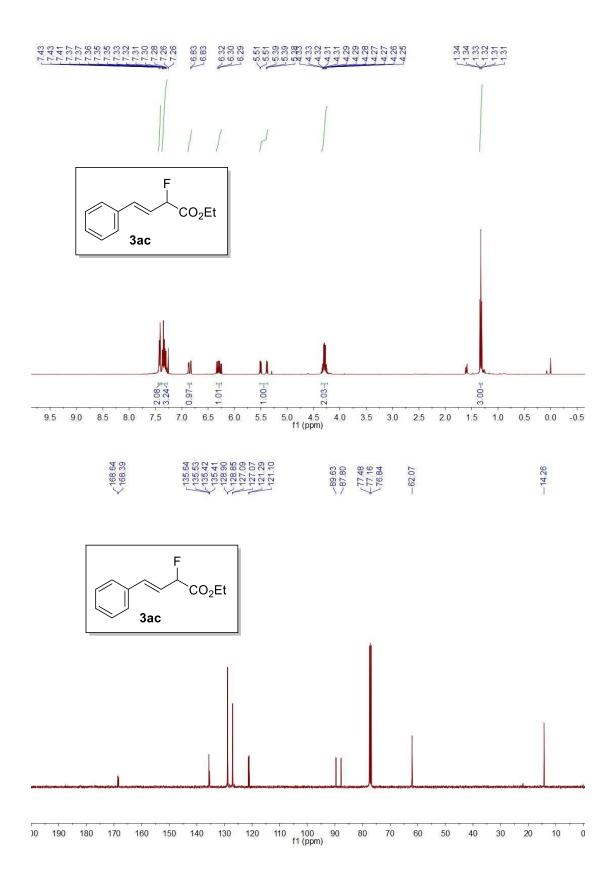


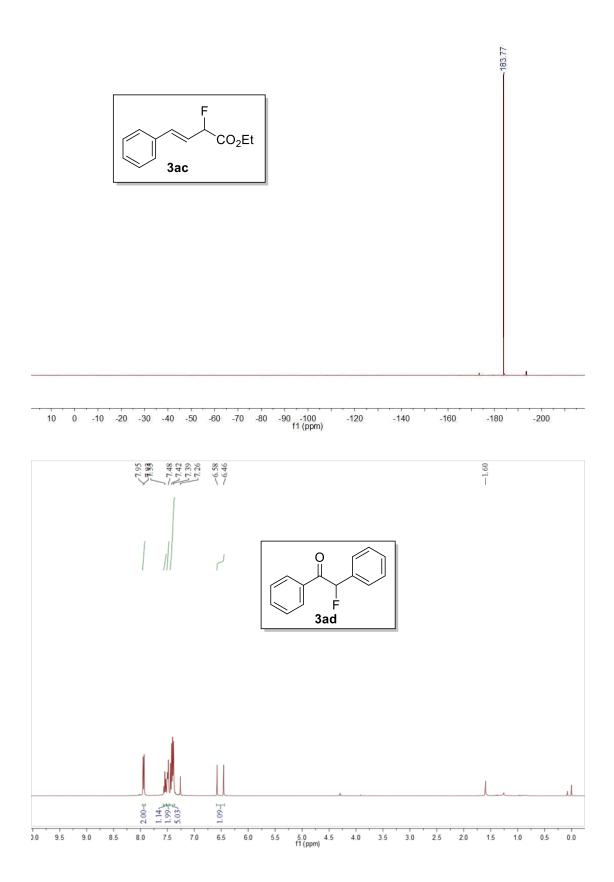

-185.55

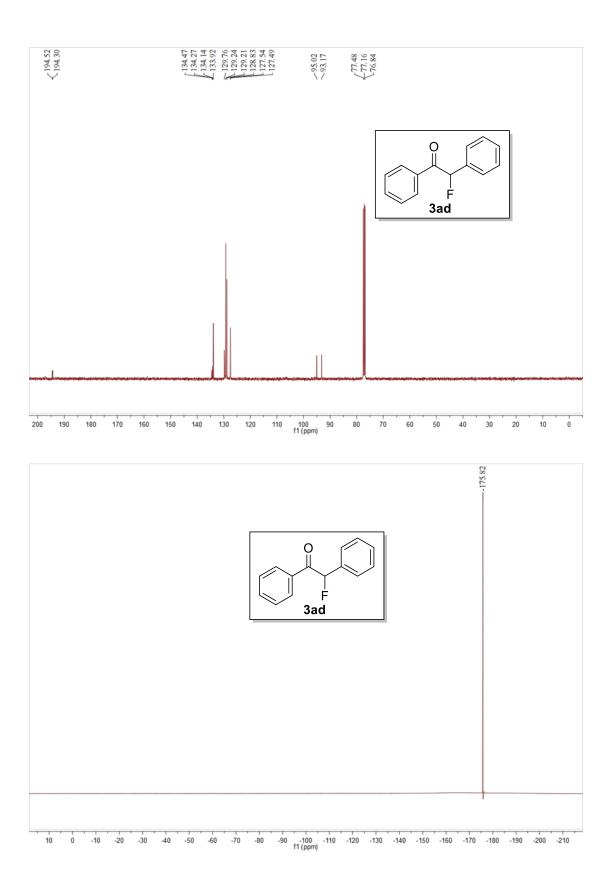

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 f1 (ppm) -120 -140 -160

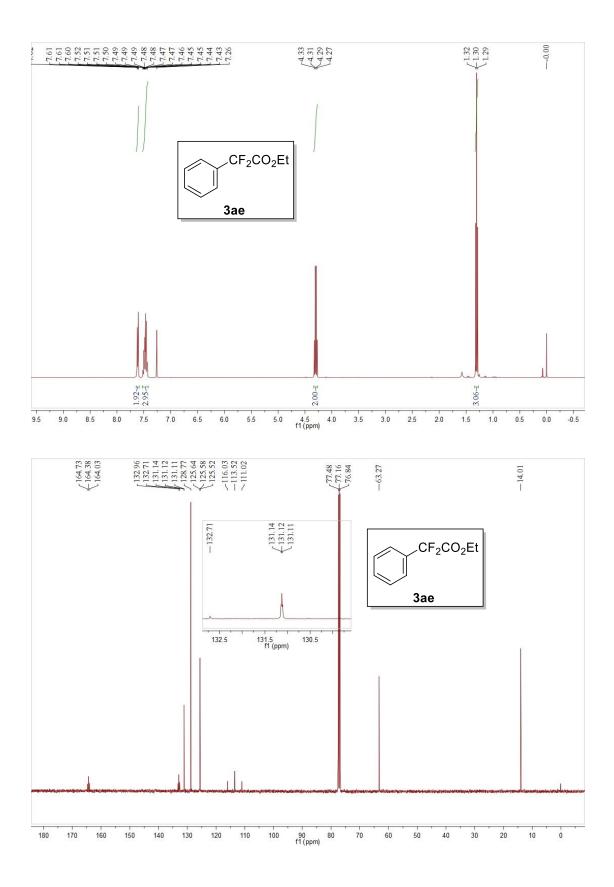


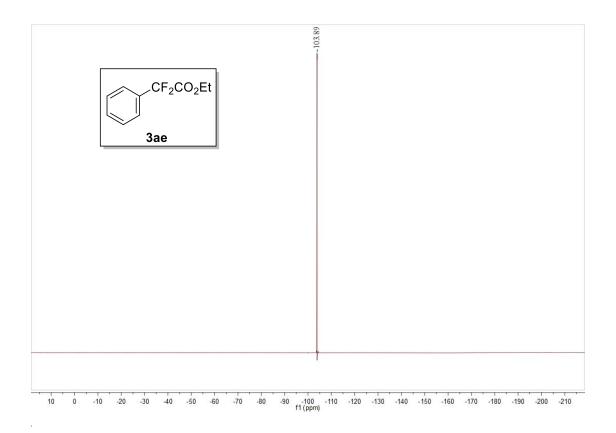



10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180 -200 f1 (ppm)








10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180 -200 f1 (ppm)

