Supporting Information

3D Porous Graphene Aerogel Cathode with High Sulfur Loading and Embedded TiO₂ Nanoparticles for Advanced Lithium-Sulfur Batteries

Jian-Qiu Huang, Zhenyu Wang, Zheng-Long Xu, Woon Gie Chong, Xianying Qin, Xiangyu Wang and Jang-Kyo Kim*

Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR China.

Corresponding Author

E-mail address: mejkkim@ust.hk (J.-K. Kim). Tel: +852 2358 7207, Fax: +852 2358 1543.

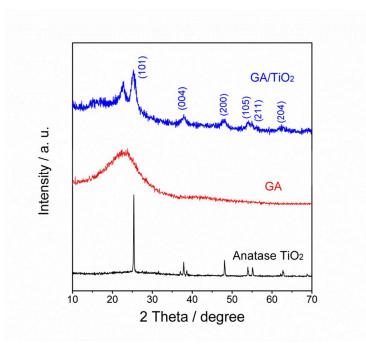
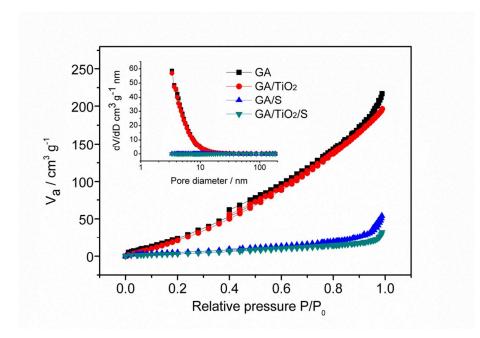



Figure S1. XRD patterns of neat TiO₂, neat GA and GA/TiO₂ composite.

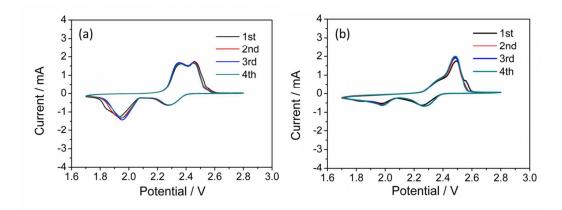


Figure S2. Nitrogen adsorption/desorption isotherm curves and pore size distributions of neat GA, GA/TiO₂, GA/S and GA/TiO₂/S composites.

Materials	Surface area (m ² /g)	Pore volume (cm^3/g)
GA	219.5	0.3249
GA/TiO ₂	129.5	0.2973
GA/S	20.1	0.0736
GA/TiO ₂ /S	14.1	0.0418

Table S1 Surface areas and pore volumes of neat GA, GA/TiO2, GA/S and GA/TiO₂/S composites

As shown in Figure S2 and Table S1, GA presented a large surface area of 219.5 m^2/g and a large pore volume of 0.3249 cm³/g. With TiO₂ nanoparticles grown on the graphene layers, the GA/TiO₂ composite maintained a highly porous structure in spite of the reduced surface area and pore volume. After the incorporation of sulfur into GA and GA/TiO₂, the specific surface areas for the GA/S and GA/TiO₂/S composites dramatically decreased to 20.1 and 14.1 m²/g, respectively, indicating the sulfur particles occupying the most of micro- and mesopores.

Figure S3. Cyclic voltammetric profiles of (a) GA/S composite electrode and (b) pure sulfur electrode at a scan rate of 0.1 mV/s.

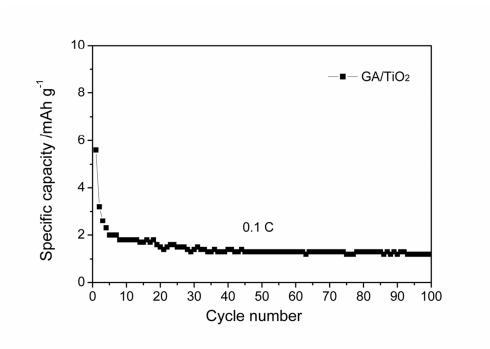


Figure S4. Cyclic performace of GA/TiO₂ composite electrode without sulfur.

Figure S5. Charge/discharge voltage profiles of (a) GA/S electrode and (b) pure sulfur electrode determined at different current rates.

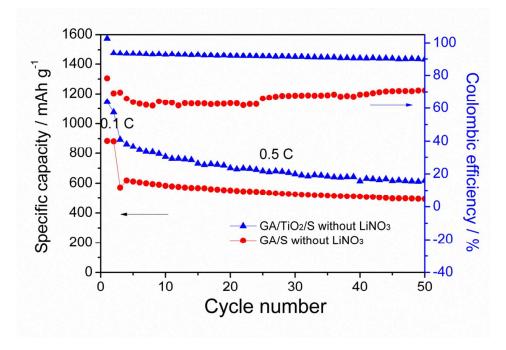


Figure S6. Cyclic performance of $GA/TiO_2/S$ and GA/S eletcrodes using the electrolyte without LiNO₃.