Supporting information

Photocatalytic Oxidation-Hydrogenolysis of Lignin β-O-4 Models via Dual Light Wavelength Switching Strategy

Nengchao Luo,^{a, b} Min Wang,^a Hongji Li,^{a, b} Jian Zhang,^a Huifang Liu,^{a, b} and Feng Wang^{*a}

^a State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy,

Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China

^b University of Chinese Academy of Sciences, Beijing 100049, P. R. China

Corresponding Author:

* Prof. F. Wang Email: wangfeng@dicp.ac.cn

Table of Content

1. Catalyst characterization

2. Additional experimental results

Figure S1. Optimization of reaction conditions for photocatalytic C–O bond cleavage of **1b** via hydrogenolysis.

Figure S2. TEM of TiO₂

Figure S3. TEM of TiO₂ with different mainly exposed crystal facets.

Figure S4. TEM of Pd/ZnIn₂S₄.

Figure S5. (a) X-Ray diffraction patterns of TiO₂ with different mainly exposed crystal facets. (b)

X-Ray diffraction patterns of Pd/ZnIn₂S₄.

Figure S6. (a) The UV-visible diffuse reflectance spectra and (b) curves of the Kubelka-Munk

function plotted against the photon energy of TiO₂ with different mainly exposed crystal facets. (c)

The UV-visible diffuse reflectance spectra of $Pd/ZnIn_2S_4$.

Table S1. Influence of Metal loadings on the C–O bond cleavage of 1b.

Table S2. Screening of reaction conditions for photocatalytic oxidation of 1a over Pd/ZnIn₂S₄.

Table S3. Scope of β -O-4 alcohols for photocatalytic oxidation of 1a over Pd/ZnIn₂S₄.

3. Synthesis of Model Compounds

1. Catalyst Characterization

Powder X-ray diffraction patterns were conducted with a PANalytical X-Pert PRO diffractometer, using Cu-Kα radiation at 40 kV and 20 mA. Continuous scans were collected in the 2θ ranges 10-80°. Transmission electron microscopy (TEM, JEOL JEM-2000EX) was used to observe the sample morphology. UV-Vis diffuse reflectance spectra was recorded on JASCO V-650 UV-Vis spectrophotometer. Electron paramagnetic resonance (EPR) tests were performed on a Bruker spectrometer in the X-band at 77 K with a field modulation of 100 kHz. The microwave frequency was maintained at 9.401 GHz.

2. Additional Experimental Results

Figure S1. Optimization of reaction conditions for photocatalytic C–O bond cleavage via hydrogenolysis. (a) and (b) Screen of different week bases and their amounts. (c) Influence of solvents. Only protic solvents except 'BuOH promote the C–O bond cleavage of **1b**. CH₃CN and 1,2-DCE (1,2-dichloroethane) show near no activities in the hydrogenolysis of **1b**. (d) Time curve of the C–O bond cleavage of **1b**. **1b** was totally cleaved in 4 h, but the yields of **1c** and **1d** reach their maximum at 5 h. After 5 h of reaction, the yield of **1d** decreases slowly with reaction time.

Figure S2. TEM of TiO₂. (a) and (b) TEM of TiO₂ (anatase, hydrophilic, 40 nm). (c) HR-TEM of

 TiO_2 (anatase, hydrophilic, 40 nm). (d) Size distribution of TiO_2 (anatase, hydrophilic, 40 nm).

Figure S3. TEM of TiO_2 with different mainly exposed crystal facets. (a) (101) crystal facet. (b)

(111) crystal facet. (c) (001) crystal facet.

Figure S4. TEM of Pd/ZnIn₂S₄. (a) TEM of Pd/ZnIn₂S₄, and the ZnIn₂S₄ is nanosheets. (b) HR-TEM of Pd/ZnIn₂S₄. 0.322 nm is the interplanar distance of (102) crystal facet. (c) HR-TEM of Pd/ZnIn₂S₄. 0.419 nm is the interplanar distance of (006) crystal facet. (d) EDX of Pd/ZnIn₂S₄ indicates the existence of Pd.

Figure S5. (a) X-Ray diffraction patterns of TiO_2 with different mainly exposed crystal facets. (b) X-Ray diffraction patterns of Pd/ZnIn₂S₄.

X-Ray diffraction patterns of the as-prepared TiO_2 are in accord with anatase TiO_2 . While the broad peak of Pd/ZnIn₂S₄ suggests the nanosheet feature of Pd/ZnIn₂S₄ and is well accord with the XRD pattern in literature.¹ Besides, the presence of (006) diffraction peak is observed and confirms the (006) crystal facet in Figure S4(c).

Figure S6. (a) The UV-visible diffuse reflectance spectra and (b) curves of the Kubelka–Munk function plotted against the photon energy of TiO_2 with different mainly exposed crystal facets. (c) The UV-visible diffuse reflectance spectra of Pd/ZnIn₂S₄.

The UV-visible diffuse reflectance shows that the as-prepared TiO_2 with varied exposed crystal facets adsorb light above 400 nm. However, the Kubelka-Munk function plotted aganst the photon energy indicates nearly no decrease of bandgap of different TiO_2 . Therefore, the reaction results of the C–O bond hydrogenolysis cleavage of **1b** can exclude the influence of the light absorption of TiO_2 with varied exposed crystal facets.

The UV-visible diffuse reflectance spectra of $Pd/ZnIn_2S_4$ indicates the light harvesting beyond 800 nm. The absorption at 455 nm is intensively enough to drive photocatalytic oxidation of **1a** in O₂ atmosphere.

		Catalyst, NaOAc	OH +	<	
	1b		1c 1d		
Entry	Catalytst ^b	Conv. (%)	Yield (%)		
			1c	1d	
1	_	> 99	93	90	
2	Pd/TiO ₂	70	41	38	
3	Rh/TiO ₂	64	39	38	
4	Pt/TiO ₂	48	24	25	
5	Ru/TiO ₂	38	18	21	
6	Au/TiO ₂	57	46	44	

Table S1. Influence of Metal loadings on the C–O bond hydrogenolysis cleavage of 1b.^a

^{*a*} Reaction conditions: 0.1 mmol **1b**, 5 mg Catalyst, 0.75 mL EtOH, N₂ atmosphere, 5 h, 5.6 W LED (365 nm). ^{*b*} The loadings of metal is 2 wt%, and is reduced with 30 mL/min H₂ at 400 °C for 4 h.

		Pd/Zn 455 nm, O	lln₂S₄ P₂, solvent		+)	OH +	+ Others	
		Reaction				Sel. (%)		
Entry	Solvent	nt time (h)	hv	Conv. (%) —	1b	1c	1d	
1	MeCN	24	+	>99	97	< 1	< 1	
2	EtOH	24	+	70	48	< 1	3	
3 ^{<i>b</i>}	EtOH	22	_	4	< 1	< 1	< 1	

 Table S2. Screening of reaction conditions for photocatalytic oxidation of 1a over Pd/ZnIn₂S₄.^a

^a Reaction conditions: 0.1 mmol 1a, 10 mg Pd/ZnIn₂S₄, 0.75 mL Solvent, O₂ atmosphere, 5.6 W

LED (455 nm).^b Reacted at 65 °C in the dark.

Table S3. Scope of β -O-4 alcohols for photocatalytic oxidation of 1a over Pd/ZnIn₂S₄.^{*a*}

^a Reaction conditions: 0.1 mmol 1a, 10 mg Pd/ZnIn₂S₄, 0.75 mL CH₃CN, O₂ atmosphere, 5.6 W

LED (455 nm).

3. Synthesis of Model Compounds

Preparation of 2-phenoxy-1-phenylethanone (1b)

2-Phenoxy-1-phenylethanone was prepared by reference.^{2,3} To a solution of phenol (6.9 g, 73 mmol) and K₂CO₃ (10.4 g, 75 mmol) in acetone (150 mL) was added 2-bromoacetophenone (14.0 g, 70 mmol) with Ar atmosphere protection and was stirred at RT for 16 h. After reaction, the suspension was filtered and concentrated *in vacuo*. The solid was dissolved in ethyl acetate and washed with NaOH aqueous (5%, 30mL) and water (30mL) successively. The organic phase was then dried by anhydrous Na₂SO₄. The crude product was recrystallized from ethanol to give 2-phenoxy-1-phenylethanone as a white solid in 87% yield. The spectral data were in accordance with those previously reported.

For the other methoxy substituted 2-phenoxy-1-phenylethanone, the procedures are the same as described above, except that different stating materials was used.

Procedure for preparation of 2-phenoxy-1-phenylethanol

2-Phenoxy-1-phenylethanol was prepared referred to literature. To THF/water mixed solvent (50 mL, 4:1 v/v) was added 2-phenoxy-1-phenylethanone (2.12 g, 10 mmol). Afterwards, NaBH₄ (0.76 g, 20 mmol) was added in one portion and stirred at r.t. for 1 h followed by the addition of excess amount of saturated NH₄Cl aqueous solution (30 mL). Then the crude product was

extracted with 20 mL of ethyl acetate for three times. The combined organic extracts were washed with brine (100 mL) and dried by anhydrous Na₂SO₄. The organic solvent was distilled under vacuum to give 2-phenoxy-1-phenylethanol as a white solid. Spectral data were in accordance with those previously reported.

For the other methoxyl substituted 2-phenoxy-1-phenylethanol, the preparation procedure is the same as described above, except that using different stating materials.

1-(3,4-dimethoxyphenyl)-3-hydroxy-2-(2-methoxyphenoxy)propan-1-one

1-(3,4-dimethoxyphenyl)-3-hydroxy-2-(2-methoxyphenoxy)propan-1-one was prepared by the literature procedures. To a stirring suspension of K_2CO_3 (0.6 g, 4.3 mmol) and 1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)ethanone (1.2 g, 4 mmol) in a mixed solution of ethanol and acetone (v/v=1:1, 20ml) at r.t was added formaldehyde aqueous solution (36.5-38%) (0.6 mL, 7.3 mmol). After 4 h of reaction, the reaction mixture was concentrated in *vacuo* to give a solid product. The obtained solid was purified by column chromatography (pentane/ethyl acetate, 1:1) to yield 1-(3,4-dimethoxyphenyl)-3-hydroxy-2-(2-methoxyphenoxy)propan-1-one as a little yellow solid (1.19 g, 3.6 mmol) in 90% yield.

2-phenoxy-1-phenylethanone

Prepared from 2-bromoacetophenone and phenol in 87% yield. White solid. ¹H NMR (400 MHz, CD₂Cl₂) δ = 8.08 – 8.00 (m, 2H), 7.73 – 7.64 (m, 1H), 7.56 (dd, *J*=10.6 Hz, 4.8, 2H), 7.39 – 7.29 (m, 2H), 7.08 – 6.94 (m, 3H), 5.35 (s, 2H). ¹³C NMR (101 MHz, CD₂Cl₂) δ = 194.29, 158.12, 134.68, 133.80, 129.54, 128.83, 127.94, 121.47, 114.64, 70.61.

2-(2-methoxyphenoxy)-1-phenylethanone

Prepared from 2-bromoacetophenone and guaiacol in 71% yield. White solid. ¹H NMR (400 MHz, CDCl₃) δ = 8.06 – 7.97 (m, 2H), 7.60 (t, *J*=7.4 Hz, 1H), 7.48 (t, *J*=7.7 Hz, 2H), 7.02 – 6.82 (m, 4H), 5.34 (s, 2H), 3.88 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 194.59, 149.86, 147.57, 134.69, 133.74, 128.79, 128.12, 122.52, 120.81, 115.02, 112.27, 72.19, 55.93.

1-(4-methoxyphenyl)-2-phenoxyethanone

Prepared from 2-bromo-1-(4-methoxyphenyl)ethanone and phenol in 83% yield. White solid. ¹H NMR (400 MHz, CDCl₃) δ = 8.00 (d, *J*=8.8 Hz, 2H), 7.27 (dd, *J*=13.0 Hz, 4.4, 2H), 7.02 – 6.90 (m, 5H), 5.20 (s, 2H), 3.87 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 193.13, 164.06, 158.13, 130.58, 129.56, 127.70, 121.57, 114.82, 114.02, 70.76, 55.53.

$\label{eq:2-2-methoxyphenoxy} 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl) ethanone$

Prepared from 2-bromo-1-(4-methoxyphenyl)ethanone and guaiacol in 88% yield. White solid. ¹H NMR (400 MHz, CDCl₃) δ = 8.08 – 7.96 (m, 2H), 7.00 – 6.81 (m, 6H), 5.27 (s, 2H), 3.87 (s, 3H), 3.86 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 193.15, 163.97, 149.78, 147.67, 130.52, 127.75, 122.34,

 $120.81,\,114.79,\,113.96,\,112.22,\,72.02,\,55.93,\,55.51.$

1-(3, 4-dimethoxy phenyl)-2-(2-methoxy phenoxy) ethanone

Prepared from 2-bromo-1-(3,4-dimethoxyphenyl)ethanone and guaiacol in 92% yield. Little yellow solid. ¹H NMR (400 MHz, CDCl₃) δ = 7.68 (dd, *J*=8.4 Hz, 1.9, 1H), 7.60 (d, *J*=1.8 Hz, 1H), 7.02 – 6.82 (m, 5H), 5.29 (s, 2H), 3.98 – 3.86 (m, 9H). ¹³C NMR (101 MHz, CDCl₃) δ = 193.30, 149.76, 149.23, 147.63, 127.89, 122.80, 122.37, 120.83, 114.76, 112.20, 110.50, 110.16, 72.08, 56.11, 56.01, 55.92.

2-phenoxy-1-phenylethanol

Prepared from 2-phenoxy-1-phenylethanone and NaBH₄ in 98% yield. White solid. ¹H NMR (400 MHz, CD₃CN) δ = 7.46 (d, *J*=7.3 Hz, 2H), 7.42 – 7.21 (m, 5H), 6.98 – 6.89 (m, 3H), 5.00 (dt, *J*=7.8 Hz, 4.0, 1H), 4.05 (ddd, *J*=17.5, 9.9, 5.8 Hz, 2H), 3.68 (d, *J*=4.0 Hz, 1H). ¹³C NMR (101 MHz, CD₃CN) δ = 159.36, 142.10, 130.09, 128.84, 128.22, 126.98, 121.42, 117.88, 115.17, 73.62, 72.36.

2-(2-methoxyphenoxy)-1-phenylethanol

Prepared from 2-(2-methoxyphenoxy)-1-phenylethanone and NaBH₄ in 94% yield. White solid. ¹H NMR (400 MHz, CD₃CN) δ = 7.48 – 7.41 (m, 2H), 7.41 – 7.25 (m, 3H), 6.90 (dddd, *J*=9.6, 7.8, 5.5, 2.4 Hz, 4H), 4.99 (dt, *J*=7.8, 3.8 Hz, 1H), 4.05 (ddd, *J*=18.0, 10.1, 5.9 Hz, 2H), 3.80 (s, 3H), 3.69 (d, *J*=3.8 Hz, 1H). ¹³C NMR (101 MHz, CD₃CN) δ = 150.46, 148.93, 142.06, 128.83, 128.21, 127.00, 122.36, 121.51, 117.88, 115.39, 113.08, 75.26, 72.47, 56.07.

1-(4-methoxyphenyl)-2-phenoxyethanol

Prepared from 1-(4-methoxyphenyl)-2-phenoxyethanone and NaBH₄ in 90% yield. White solid. ¹H NMR (400 MHz, CD₃CN) δ = 7.44 – 7.31 (m, 2H), 7.31 – 7.23 (m, 2H), 6.98 – 6.88 (m, 5H), 4.94 (dt, *J*=7.3, 3.5 Hz, 1H), 4.02 (qd, *J*=9.8, 5.9 Hz, 2H), 3.77 (s, 3H), 3.59 (d, *J*=3.7 Hz, 1H). ¹³C NMR (101 MHz, CD₃CN) δ = 159.85, 159.39, 134.10, 130.09, 128.24, 121.38, 117.88, 115.17, 114.19, 73.60, 71.95, 55.48.

2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanol

Prepared from 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanone and NaBH₄ in 87% yield. White solid. ¹H NMR (400 MHz, CD₃CN) δ = 7.35 (t, *J*=5.7 Hz, 2H), 7.01 – 6.82 (m, 6H), 4.93 (dd, *J*=7.7, 3.7 Hz, 1H), 4.01 (ddd, *J*=18.0, 10.0, 6.0 Hz, 2H), 3.76 (t, *J*=15.3 Hz, 6H), 3.72 (s, 1H). ¹³C NMR (101

MHz, CD₃CN) δ = 159.85, 150.36, 148.93, 134.04, 128.27, 122.26, 121.52, 117.91, 115.18, 114.19,

113.02, 75.18, 72.03, 56.06, 55.48.

1-(3,4-dimethoxyphenyl)-3-hydroxy-2-(2-methoxyphenoxy)propan-1-one

¹H NMR (400 MHz, CD₃CN) δ = 7.75 (dd, *J*=8.5, 2.0 Hz, 1H), 7.56 (d, *J*=2.0 Hz, 1H), 7.04 – 6.89 (m, 3H), 6.89 – 6.73 (m, 2H), 5.56 (dd, *J*=5.5, 4.3 Hz, 1H), 3.99 (td, *J* = 6.0, 3.3 Hz, 2H), 3.87 (s, 3H), 3.83 (s, 3H), 3.78 (s, 3H), 3.72 (q, *J* = 5.9 Hz, 1H), 3.23 (dd, *J*=7.9, 4.5 Hz, 1H). ¹³C NMR (101 MHz, CD₃CN) δ = 195.86, 154.61, 150.46, 149.73, 147.68, 128.88, 123.96, 122.89, 121.30, 117.90, 116.26,

113.28, 111.50, 111.31, 82.55, 63.63, 56.22, 56.01, 55.98.

2-phenoxy-1-phenylethanone

$\label{eq:constraint} \textbf{2-} (\textbf{1-methoxyphoxy}) \textbf{-} \textbf{1-phenylethanone}$

1-(4-methoxyphenyl)-2-phenoxyethanone

2-(2-methoxyphenoxy)-1-(4-methoxyphenyl) ethanone

1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)ethanone

2-phenoxy-1-phenylethanol

7.45 7.37 7.37 7.32 7.32 7.32 7.32 7.32 7.29 7.29 7.29 7.29 7.29 7.25 7.25 7.25	6.96 6.93 6.93 6.91 6.91	5.02 5.01 5.01 4.99 4.09 4.07 3.99	3.68 3.67
			\square

$\label{eq:2-2-2} 2-(2-methoxy phenoxy)-1-phenylethanol$

1- (4-methoxy phenyl)-2-phenoxy ethanol

$\label{eq:2-2-methoxyphenoxy} \textbf{2-} (2-methoxyphenoxy) \textbf{-} \textbf{1-} (4-methoxyphenoyl) ethanol$

References:

- (1) Chen, Z.; Xu, J.; Ren, Z.; He, Y.; Xiao, G. J. Solid State Chem. 2013, 205, 134-141.
- (2) Picart, P.; Muller, C.; Mottweiler, J.; Wiermans, L.; Bolm, C.; Dominguez de Maria, P.; Schallmey,
- A. ChemSusChem 2014, 7, 3164-3171.
- (3) Dawange, M.; Galkin, M. V.; Samec, J. S. M. ChemCatChem 2015, 7, 401-404.