SUPPORTING INFORMATION Graphene Oxide Sorption Capacity Towards Elements over the Whole Periodic Table – a ## Comparative Study Kateřina Klímová ^a, Martin Pumera ^b, Jan Luxa ^a, Ondřej Jankovský ^a, David Sedmidubský ^a, Stanislava Matějková ^c and Zdeněk Sofer ^a,* ^a Institute of Chemical Technology, Department of Inorganic Chemistry, 166 28 Prague ^{6,} Czech Republic. E-mail: zdenek.sofer@vscht.cz; Fax: +420 22431-0422 ^b Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore ^c Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2, 166 10 Prague 6, Czech Republic SI contains following tables and images: - Figure S1. The XPS spectra of HUGO after sorption of vanadium in the form of VO_2^{2+} cation. - **Figure S2.** High resolution XPS spectra of C 1s peak for HUGO sample after sorption of Fe²⁺ and Fe³⁺ cations. - **Figure S3.** The X-ray diffractogram of HUGO after sorption of Pb²⁺. The diffraction lines correspond to PbSO₄. - **Figure S4.** The EDS distribution maps of elements and corresponding SEM image of HUGO after sorption. The scale bar is $5 \mu m$. - **Figure S5.** The XPS spectra of HOGO after sorption of Sn²⁺ and Sn⁴⁺. The images from upstairs show the XPS survey spectra. High resolution C 1s XPS spectra and high resolution 3d Sn spectra and X-ray diffractograms. The diffraction patterns corresponding to SnO₂. - **Figure S6.** The X-ray diffractogram of HOGO after sorption of Pb^{2+} sample and x-ray diffraction patterns of $PbSO_4$. - **Figure S7.** The EDS distribution maps of elements and corresponding SEM image of HOGO after sorption. Scale bar correspond to 5 μ m. The scale bar is 5 μ m. - **Table S1.** The results of deconvolution for XPS spectra of C 1s peak. Figure S1. The XPS spectra of HUGO after sorption of vanadium in the form of VO_2^{2+} cation. **Figure S2.** High resolution XPS spectra of C 1s peak for HUGO sample after sorption of Fe^{2+} and Fe^{3+} cations. **Figure S3.** The X-ray diffractogram of HUGO after sorption of Pb^{2+} . The diffraction lines correspond to $PbSO_4$. Figure S4. The EDS distribution maps of elements and corresponding SEM image of HUGO after sorption. The scale bar is 5 μm . **Figure S5.** The XPS spectra of HOGO after sorption of Sn^{2+} and Sn^{4+} . The images from upstairs show the XPS survey spectra. High resolution C 1s XPS spectra and high resolution 3d Sn spectra and X-ray diffractograms. The diffraction patterns corresponding to SnO_2 . **Figure S6.** The X-ray diffractogram of HOGO after sorption of Pb²⁺ sample and x-ray diffraction patterns of PbSO₄. **Figure S7.** The EDS distribution maps of elements and corresponding SEM image of HOGO after sorption. Scale bar correspond to 5 μ m. The scale bar is 5 μ m. **Table S1.** The results of deconvolution for XPS spectra of C 1s peak. | | HOGO | HUGO | |-------|------|------| | C-C | 11.2 | 8.5 | | C=C | 6.6 | 35.0 | | C-O | 35.4 | 17.3 | | C=O | 18.3 | 18.9 | | O-C=O | 12.4 | 12.2 | | π=π | 16.1 | 8.1 |