Supporting Information

Highly Efficient Cascade Reaction for Selective Formation of Spirocyclobutenes from Dienallenes via Palladium-Catalyzed Oxidative Double Carbocyclization-Carbonylation-Alkynylation

Youai Qiu, Bin Yang, Can Zhu, and Jan-E. Bäckvall*
Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm Sweden

Table of Contents

General information S1
Typical procedure for the preparation of starting materials 1 S2-S8
Optimization of Oxidative Carbocyclization of Dienallenes S9
Typical procedure for the formation of compounds 3 S10-S20
Typical procedure for the formation of compounds 4 S21-S25
Kinetic Isotope Effect (KIE) Experiments S26-S29
The spiro[3,4]octene derivatives $\mathbf{3}$ as single isomers S30-31
References S32
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for compounds S33-S115

General information

Unless otherwise noted, all reagents were used as received from commercial suppliers. $\operatorname{Pd}(\mathrm{TFA})_{2}$ was obtained from Pressure Chemicals and used without further purification. THF and toluene were obtained from a VAC Solvent Purifier. Reactions were monitored using thin-layer chromatography $\left(\mathrm{SiO}_{2}\right)$. TLC plates were visualized with UV light (254 nm) or KMnO_{4} stain. Flash chromatography was carried out with $60 \AA$ (particle size $35-70 \mu \mathrm{~m}$) normal flash silica gel. NMR spectra were recorded at $400 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right)$ or $500 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right)$ and at $100 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$ or $125 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$, respectively. Chemical shifts (δ) are reported in ppm, using the residual solvent peak in $\mathrm{CDCl}_{3}(\mathrm{H}$ $=7.26$ and $\mathrm{C}=77.0 \mathrm{ppm}$) as internal standard, and coupling constants (J) are given in Hz. HRMS were recorded using ESI-TOF techniques.

General procedure for the preparation of starting materials ${ }^{[1]}$

Preparation of allenes 1a~1f and 1k.

Ethyl 5-methylene-3-(2-methylprop-1-en-1-ylidene)non-8-enoate (1a)

To a three-necked flask were added 2-(bromomethyl)hexa-1,5-diene ${ }^{[2]}$ ($522 \mathrm{mg}, 3$ mmol), 2-methylbut-3-yn-2-ol ($252 \mathrm{mg}, 3 \mathrm{mmol}$), CuI ($571 \mathrm{mg}, 3 \mathrm{mmol}$), NaI (899 $\mathrm{mg}, 6 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(829 \mathrm{mg}, 6 \mathrm{mmol})$, and acetone (10 mL). After full consumption of starting material as monitored by TLC at $60{ }^{\circ} \mathrm{C}(12 \mathrm{~h})$ the reaction mixture was filtered to remove precipitates. Evaporation of the solvent afforded the crude product S1, which was used as the starting material in the next step without further purification and characterization.

A dry round-bottomed flask was equipped with a distillation receiver and a condenser. Propargylic alcohol S1 (493 mg, 3 mmol), triethyl orthoacetate (6 mL), and propanoic acid (33 mg .0 .45 mmol) were added sequentially. After the reaction was refluxed for 4 h , the mixture was cooled down to $0{ }^{\circ} \mathrm{C}$ in an ice bath. $\mathrm{Et}_{2} \mathrm{O}$ (50 mL) and HCl (aq., $1 \mathrm{M}, 20 \mathrm{~mL}$) were added. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 50 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated in vacuo, and purified via column chromatography on silica gel (eluent: petroleum ether/ethyl ether $=100 / 1 \sim 50 / 1$) to afford the desired product 1a ($558 \mathrm{mg}, 75 \%$ for two steps): colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 5.87-5.75 (m, 1H), 5.06-4.92 (m, 2H), 4.84-4.78 (m, 2H), 4.11 $(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.87(\mathrm{~s}, 2 \mathrm{H}), 2.75(\mathrm{~s}, 2 \mathrm{H}), 2.23-2.08(\mathrm{~m}, 4 \mathrm{H}), 1.67(\mathrm{~s}, 6 \mathrm{H}), 1.25(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 201.2,171.7,146.2,138.5,114.4$, 111.7, 95.7, 93.2, 60.4, 41.0, 38.1, 34.3, 31.8, 20.5, 14.2; HRMS (ESI): calc. for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 271.1669$; found: 271.1678.

The general method from above was used for the preparation of the following
dinenes:
[D_{6}]-Ethyl 5-methylene-3-(2-methylprop-1-en-1-ylidene)non-8-enoate (1a-d \boldsymbol{d}_{6})

58% isolated yield, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.87-5.74(\mathrm{~m}, 1 \mathrm{H})$, 5.05-4.92 (m, 2H), 4.84-4.79 (m, 2H), $4.11(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.87(\mathrm{~s}, 2 \mathrm{H}), 2.75(\mathrm{~s}$, 2 H), 2.24-2.08 (m, 4H), $1.25(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 201.2, 171.7, 146.2, 138.5, 114.4, 111.7, 93.2, 60.4, 41.0, 38.1, 34.3, 31.8, 14.2; HRMS (ESI): calc. for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{D}_{6} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 277.2045$; found: 277.2046.

Ethyl 3-(cyclopentylidenemethylene)-5-methylenenon-8-enoate (1b)

1b
56% isolated yield, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.88-5.74(\mathrm{~m}, 1 \mathrm{H})$, 5.06-4.91 (m, 2H), 4.86-4.75 (m, 2H), $4.11(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.90(\mathrm{~s}, 2 \mathrm{H}), 2.77(\mathrm{~s}$, $2 \mathrm{H}), 2.36-2.27(\mathrm{~m}, 4 \mathrm{H}), 2.24-2.08(\mathrm{~m}, 4 \mathrm{H}), 1.68-1.61(\mathrm{~m}, 4 \mathrm{H}), 1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 196.7, 171.7, 146.2, 138.5, 114.4, 111.6, 104.4, 95.8, 60.4, 41.2, 38.3, 34.3, 31.8, 30.9, 27.0, 14.2; HRMS (ESI): calc. for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NaO}_{2}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 297.1825$; found: 297.1831.

Ethyl 3-(cyclohexylidenemethylene)-5-methylenenon-8-enoate (1c)

1c
55% isolated yield, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 5.86-5.74 (m, 1 H), 5.05-4.89 (m, 2H), 4.82-4.72 (m, 2H), $4.11(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.88(\mathrm{~s}, 2 \mathrm{H}), 2.76(\mathrm{~s}$, $2 \mathrm{H}), 2.23-2.05(\mathrm{~m}, 8 \mathrm{H}), 1.62-1.45(\mathrm{~m}, 6 \mathrm{H}), 1.24(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100
$\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.7,171.7,146.3,138.5,114.4,111.7,103.2,3.0,60.4,41.2,38.4$, $34.3,31.8,31.5,27.6,26.1,14.2$; HRMS (ESI): calc. for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 311.1982; found:311.1991.

Ethyl 3-(cyclooctylidenemethylene)-5-methylenenon-8-enoate (1d)

59% isolated yield, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.89-5.74(\mathrm{~m}, 1 \mathrm{H})$, 5.07-4.91 (m, 2H), 4.87-4.78 (m, 2H), 4.12 (q, J = 7.2 Hz, 2H), 2.89 (s, 2H), 2.77 (s, $2 \mathrm{H}), 2.25-2.09(\mathrm{~m}, 8 \mathrm{H}), 1.70-1.47(\mathrm{~m}, 10 \mathrm{H}), 1.25(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 201.5,171.8,146.2,138.5,114.4,111.8,105.0,93.6,60.4,40.7,37.9$, 34.3, 31.9, 31.7, 27.0, 26.8, 26.2, 14.2; HRMS (ESI): calc. for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 339.2295; found: 339.2287.

Ethyl 5-methylene-3-(2-phenylprop-1-en-1-ylidene)non-8-enoate (1i)

36% isolated yield, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.47-7.40 (m, 2 H), 7.34-7.29 (m, 2H), 7.23-7.17 (m, 1H), 5.86-5.70 (m, 1H), 5.04-4.84 (m, 4H), 4.19-4.05 (m, 2H), $3.06(\mathrm{~s}, 2 \mathrm{H}), 2.93(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H})$, 2.22-2.14 (m, 4H), $2.1(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 203.8,171.2,145.6,138.2,137.3,128.2,126.6,125.8,114.5,112.3,101.1,97.5$, $60.6,40.7,37.9,34.4,31.7,17.0,14.1$; HRMS (ESI): calc. for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 333.1825; found: 333.1831.

Ethyl 5-methylene-3-(2-methylprop-1-en-1-ylidene)dec-9-enoate (1k)

67% isolated yield, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 5.87-5.74 (m, 1H), 5.03-4.91 (m, 2H), 4.82-4.75 (m, 2H), 4.11 (q, J=7.1 Hz, 2H), $2.87(\mathrm{~s}, 2 \mathrm{H}), 2.73(\mathrm{~s}$, $2 \mathrm{H}), 2.08-2.01(\mathrm{~m}, 4 \mathrm{H}), 1.67(\mathrm{~s}, 6 \mathrm{H}), 1.56-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.24(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 201.2,171.7,146.7,138.7,114.5,111.5,95.6,93.3,60.4$, 40.9, 38.1, 34.5, 33.5, 26.8, 20.5, 14.2; HRMS (ESI): calc. for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 285.1825; found: 285.1830.

Preparation of 5-Methylene-3-(2-methylprop-1-en-1-ylidene)non-8-en-1-yl acetate (1e)

A solution of allene $1 \mathbf{1 a}(496 \mathrm{mg}, 2 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added dropwise to a stirred suspension of $\mathrm{LiAlH}_{4}(76 \mathrm{mg}, 2 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ under Ar atmosphere. The mixture was stirred for 2 h at room temperature, and then carefully quenched with $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 30 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$, and quickly filtered via a short column of silica gel (2 cm , eluent: 20 mL of $\mathrm{Et}_{2} \mathrm{O}$). Evaporation of the solvent afforded the pure product $\mathbf{S} 2$ (363 $\mathrm{mg}, 88 \%$): colorless oil, which was used as the starting material in the next step without further characterization.

To a three-necked flask were added propargyl alcohol S2 (206 g, 1 mmol), DMAP ($12.2 \mathrm{mg}, 0.1 \mathrm{mmol}$), $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL}), \mathrm{Et}_{3} \mathrm{~N}(0.35 \mathrm{~mL}, 2.5 \mathrm{mmol})$, and $\mathrm{Ac}_{2} \mathrm{O}(0.24 \mathrm{~mL}$, 2.5 mmol). After full consumption of starting material as monitored by TLC at room temperature $(12 \mathrm{~h})$, the reaction was carefully quenched with water $(5 \mathrm{~mL})$. The
organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10$ mL). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The crude product was purified via column chromatography on silica gel (eluent: petroleum ether/ethyl ether $=30 / 1)$ to afford the desired acetate $\mathbf{1 f}(228 \mathrm{mg}$, 91\%): colorless oil, ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.87-5.74(\mathrm{~m}, 1 \mathrm{H}), 5.05-4.91(\mathrm{~m}$, $2 \mathrm{H}), 4.83-4.75(\mathrm{~m}, 2 \mathrm{H}), 4.10(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.68(\mathrm{~s}, 2 \mathrm{H}), 2.23-2.14(\mathrm{~m}, 4 \mathrm{H}), 2.02$ $(\mathrm{s}, 3 \mathrm{H}), 1.65(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.8,171.0,146.5,138.4,114.4$, 111.3, 95.9, 95.3, 63.0, 41.5, 34.3, 31.8, 30.5, 20.9, 20.6; HRMS (ESI): calc. for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]^{+}: 271.1669$; found: 271.1677 .

Preparation of allenes 1g~1i. ${ }^{[3]}$

5-Methylene-7-(2-methylprop-1-en-1-ylidene)undec-1-ene (1g)

To a three-necked flask were added propargyl alcohol S1 ($712 \mathrm{mg}, 4 \mathrm{mmol}$), DMAP ($49 \mathrm{mg}, 0.8 \mathrm{mmol}$), $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL}), \mathrm{Et}_{3} \mathrm{~N}(1.4 \mathrm{~mL}, 10 \mathrm{mmol})$, and $\mathrm{Ac}_{2} \mathrm{O}(0.95 \mathrm{~mL}, 10$ $\mathrm{mmol})$. After full consumption of starting material as monitored by TLC at room temperature (15 h), the reaction was carefully quenched with water (10 mL). The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 30$ mL). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated in vacuo. The crude product was purified via column chromatography on silica gel (eluent: petroleum ether/ethyl ether $=30 / 1$) to afford the desired acetate $\mathbf{S 3}(792 \mathrm{mg}$, 90%): colorless oil, which was used as the starting material in the next step without further characterization.

A solution of $n-\mathrm{BuMgCl}(0.9 \mathrm{~mL}, 1.8 \mathrm{mmol}, 2.0 \mathrm{M} / \mathrm{THF})$ was added dropwise to a stirred suspension of propargylic alcohol acetate $\mathbf{S 3}(309 \mathrm{mg}, 1.5 \mathrm{mmol})$ and $\mathrm{Fe}(\mathrm{acac})_{3}(26.6 \mathrm{mg}, 0.075 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(7.5 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$ under Ar atmosphere. The mixture was stirred for 1 h at $-20^{\circ} \mathrm{C}$, and then carefully quenched with citric acid
aqueous solution ($2 \mathrm{~mL}, 10 \%$). The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 30 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated in vacuo, and purified via column chromatography on silica gel (eluent: petroleum ether) to afford the desired product $1 \mathrm{~g}(199 \mathrm{mg}, 61 \%)$: colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.89-5.77(\mathrm{~m}, 1 \mathrm{H})$, 5.07-4.91 (m, 2H), 4.82-4.75 (m, 2H), 2.66 ($\mathrm{s}, 2 \mathrm{H}$), 2.26-2.08 (m, 4H), 1.87-1.81 (m, $2 \mathrm{H}), 1.66(\mathrm{~s}, 6 \mathrm{H}), 1.40-1.27(\mathrm{~m}, 4 \mathrm{H}), 0.89(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta 199.8,147.2,138.7,114.3,110.8,99.2,94.5,41.4,34.4,31.9,31.4,29.8$, 22.3, 20.8, 14.1; HRMS (ESI): calc. for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 244.1927$; found: 244.1900.

The general method from above was used for the preparation of the following compounds:
(2-Methyl-6-methylenedeca-2,3,9-trien-4-yl)cyclohexane (1h)

1h
59% isolated yield, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.90-5.75(\mathrm{~m}, 1 \mathrm{H})$, 5.06-4.91 (m, 2H), 4.81-4.73 (m, 2H), 2.69 ($\mathrm{s}, 2 \mathrm{H}$), 2.24-2.07 (m, 4H), 1.82-1.58 (m, 12H), 1.31-0.97 (m, 5H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 199.5, 147.6, 138.7, 114.3, 110.7, 104.9, 95.4, 40.0, 39.5, 34.5, 32.6, 31.9, 26.5, 26.4, 20.9; HRMS (ESI): calc. for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 267.2063$; found: 267.2138 .
(4-Methylene-2-(2-methylprop-1-en-1-ylidene)oct-7-en-1-yl)benzene (1i)

$1 i$
78% isolated yield, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31-7.25(\mathrm{~m}, 2 \mathrm{H})$, 7.22-7.17 (m, 3H), 5.90-5.76 (m, 1H), 5.07-4.93 (m, 2H), 4.86-4.79 (m, 2H), $3.21(\mathrm{~s}$, $2 \mathrm{H}), 2.64(\mathrm{~s}, 2 \mathrm{H}), 2.23-2.10(\mathrm{~m}, 4 \mathrm{H}), 1.64(\mathrm{~s}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ
$201.2,146.8,140.4,138.6,129.0,128.0,125.8,114.3,111.3,98.8,94.6,40.1,38.9$, 34.5, 31.8, 20.6; HRMS (ESI): calc. for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 275.1770$; found: 275.1775.

Table S1. Optimization of the reaction conditions ${ }^{a}$

			catalyst (5 mol\%) BQ (1.1 equiv) solvent, rt, 6 h		
Entry	Catalyst	Solvent	Yield of 3a $(\%)^{b}$	Yield of 4a $(\%)^{b}$	Recovery of 1a $(\%)^{b}$
1	$\mathrm{Pd}(\mathrm{OAc})_{2}$	DCE	3	41	33
2	$\mathrm{Pd}(\mathrm{TFA})_{2}$	DCE	-	90	-
3	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$	DCE	-	-	90
4		DCE	-	77	-
5	$\mathrm{Pd}(\mathrm{TFA})_{2}$	THF	4	69	-
6	$\mathrm{Pd}(\mathrm{TFA})_{2}$	acetone	7	64	-
7	$\mathrm{Pd}(\mathrm{TFA})_{2}$	toluene	3	81	-
8	$\mathrm{Pd}(\mathrm{TFA})_{2}$	dioxane	2	85	-
9	$\mathrm{Pd}(\mathrm{TFA})_{2}$	MeCN	12	20	45
$10^{\text {c }}$	$\operatorname{Pd}(\mathrm{TFA})_{2}$	MeCN	18	35	20
$11^{\text {d }}$	$\mathrm{Pd}(\mathrm{TFA})_{2}$	MeCN	35	38	-
12^{e}	$\mathrm{Pd}(\mathrm{TFA})_{2}$	MeCN	56	16	-
$13^{\text {e,f }}$	$\mathrm{Pd}(\mathrm{TFA})_{2}$	MeCN	65	9	-
$14^{e, f, g}$	$\mathrm{Pd}(\mathrm{TFA})_{2}$	MeCN	47	8	10
$15^{e, f, h}$	$\mathbf{P d}(\mathrm{TFA})_{2}$	MeCN	75	3	-

${ }^{a}$ The reaction was conducted in the indicated solvent (1 mL) at room temperature using $\mathbf{1 a}(0.1 \mathrm{mmol}), \mathbf{2 a}$ (1.5 equiv), BQ (1.1 equiv) in the presence of the palladium catalyst ($5 \mathrm{~mol} \%$). ${ }^{b}$ Determined by ${ }^{1} \mathrm{HNMR}$ using anisole as the internal standard. ${ }^{c}$ The reaction was conducted at $40{ }^{\circ} \mathrm{C}$. ${ }^{d}$ The reaction was conducted at $60{ }^{\circ} \mathrm{C}$. ${ }^{e}$ The reaction was conducted at $80^{\circ} \mathrm{C} . f_{3} \mathrm{~mL}$ MeCN was used. ${ }^{9} 2,6$-Dimethyl-BQ was used instead of BQ . ${ }^{h} \mathrm{~F}_{4}-\mathrm{BQ}$ was used instead of BQ .

General procedure for palladium-catalyzed oxidative carbocyclization of enallenes for the formation of 3

Representative procedure A for the synthesis of $3 a-3 i$.

Ethyl 2-(6-(2-oxo-4-phenylbut-3-yn-1-yl)-1-(prop-1-en-2-yl)spiro[3.4]oct-1-en-2-yl) acetate (3a)

To a solution of $\operatorname{Pd}(T F A)_{2}(3.3 \mathrm{mg}, 0.01 \mathrm{mmol}), \mathrm{F}_{4}-\mathrm{BQ}(39.6 \mathrm{mg}, 0.22 \mathrm{mmol})$ and 2a ($30.6 \mathrm{mg}, 0.3 \mathrm{mmol}$) in $\mathrm{MeCN}(6 \mathrm{~mL}$) were added enallene 1a ($49.6 \mathrm{mg}, 0.2$ $\mathrm{mmol})$. The tube was closed with a septum. The tube was evacuated and filled with carbon monoxide gas (repeated three times) using a balloon. The reaction was stirred at $80^{\circ} \mathrm{C}$ for 6 h . After full consumption of starting material 1a as monitored by TLC, the reaction mixture was evaporated and purified via column chromatography on silica gel (eluent: petroleum ether/ethyl ether = 15/1) afforded 3a ($56.4 \mathrm{mg}, 75 \%$): colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.60-7.54(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH})$, 7.48-7.42 (m, $1 \mathrm{H}, \mathrm{ArH})$, 7.41-7.35 (m, 2H, ArH$), ~ 4.91-4.84\left(\mathrm{~m}, 1 \mathrm{H}\right.$, one proton of $\left.=\mathrm{CH}_{2}\right), 4.67-4.62$ $\left(\mathrm{m}, 1 \mathrm{H}\right.$, one proton of $\left.=\mathrm{CH}_{2}\right), 4.08\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.08(\mathrm{~d}, J=15.7 \mathrm{~Hz}$, 1 H , one proton of $\left.\mathrm{CH}_{2}\right), 2.94\left(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton of $\left.\mathrm{CH}_{2}\right), 2.86(\mathrm{~d}, \mathrm{~J}=$ $14.2 \mathrm{~Hz}, 1 \mathrm{H}$, one proton of $\left.\mathrm{CH}_{2}\right), 2.82\left(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton of $\left.\mathrm{CH}_{2}\right), 2.47$ (t, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}$, one proton of $\left.\mathrm{CH}_{2}\right), 2.37\left(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton of $\left.\mathrm{CH}_{2}\right)$, $2.11\left(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton of $\left.\mathrm{CH}_{2}\right), 1.89-1.71\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{3}+\mathrm{CH}_{2}+\right.$ one proton of CH_{2}), $1.64(\mathrm{ddd}, J=10.7,4.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 1.22(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$, CH_{3}); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 187.1,172.2,145.4,144.9,133.0,130.7,128.6$, $120.9,120.1,90.5,89.3,60.3,56.2,45.7,42.0,41.5,39.5,38.4,35.8,34.7,22.1,14.2$; HRMS (ESI): calc. for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 399.1931$; found: 399.1926.

The general method from above was used for the preparation of the following compounds 3:

Ethyl 2-(6-(4-(2-methoxyphenyl)-2-oxobut-3-yn-1-yl)-1-(prop-1-en-2-yl)spiro[3.4]oc t-1-en-2-yl)acetate (3ab)

72% isolated yield, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50(\mathrm{dd}, \mathrm{J}=7.6$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41$ (ddd, $J=9.2,7.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{td}, J=7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.90$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.91-4.83(\mathrm{~m}, 1 \mathrm{H}), 4.68-4.61(\mathrm{~m}, 1 \mathrm{H}), 4.08(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, 3.89 (s, 3H), 3.07 (d, $J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.93$ (d, $J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.86$ (d, $J=14.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.82(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{~d}$, $J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.89-1.73(\mathrm{~m}, 8 \mathrm{H}), 1.65(\mathrm{ddd}, J=10.7,4.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.22(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 187.1,172.2,161.6,145.4,145.0,134.9$, $132.4,120.9,120.5,113.1,110.8,109.3,93.4,87.9,60.3,56.2,55.8,45.7,41.9,41.4$, 39.6, 38.4, 35.8, 34.8, 22.1, 14.2; HRMS (ESI): calc. for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$: 429.2036; found: 429.2030.

Ethyl 2-(6-(4-(3-methoxyphenyl)-2-oxobut-3-yn-1-yl)-1-(prop-1-en-2-yl)spiro[3.4]oct -1-en-2-yl)acetate (3ac)

74% isolated yield, colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.41(\mathrm{td}, J=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{dd}, J=2.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{ddd}, J=8.3$, $2.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.90-4.84(\mathrm{~m}, 1 \mathrm{H}), 4.68-4.61(\mathrm{~m}, 1 \mathrm{H}), 4.08(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.82$ (s, 3H), $3.08(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.82(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{t}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{~d}$, $J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.89-1.73(\mathrm{~m}, 8 \mathrm{H}), 1.63(\mathrm{ddd}, J=10.7,4.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.22(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 187.1,172.2,159.4,145.5,144.9,129.7$, $125.5,121.0,120.9,117.5,117.4,113.0,90.4,88.9,60.3,56.1,55.4,45.7,42.0,41.5$,
39.5, 38.4, 35.8, 34.7, 22.1, 14.2; HRMS (ESI): calc. for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$: 429.2036; found: 429.2033.

Ethyl e2-(6-(2-oxo-4-(p-tolyl)but-3-yn-1-yl)-1-(prop-1-en-2-yl)spiro[3.4]oct-1-en-2 -yl)acetate (3ad)

79% isolated yield, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49-7.44(\mathrm{~m}, 2 \mathrm{H})$, 7.21-7.16 (m, 2H), 4.89-4.84 (m, 1H), 4.66-4.62 (m, 1H), $4.08(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, 3.07 (d, $J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{~d}$, $J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.33(\mathrm{~m}, 4 \mathrm{H}), 2.10(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H})$, $1.89-1.71(\mathrm{~m}, 8 \mathrm{H}), 1.63(\mathrm{ddd}, J=10.6,4.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.22(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 187.1,172.2,145.4,144.9,141.4,133.0,129.4,120.9$, $117.0,113.2,91.2,89.2,60.3,56.2,45.7,42.0,41.5,39.5,38.4,35.8,34.7,22.1,21.7$, 14.2; HRMS (ESI): calc. for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 413.2087$; found: 413.2096.

Ethyl 2-(6-(4-(4-fluorophenyl)-2-oxobut-3-yn-1-yl)-1-(prop-1-en-2-yl)spiro[3.4]oct -1-en-2-yl)acetate (3ae)

64% isolated yield, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.61-7.53(\mathrm{~m}, 2 \mathrm{H})$, 7.12-7.03 (m, 2H), 4.90-4.84 (m, 1H), 4.66-4.62 (m, 1H), $4.08(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, 3.07 (d, $J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{~d}$, $J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{t}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{~d}, J=16.9$ $\mathrm{Hz}, 1 \mathrm{H}), 1.90-1.69(\mathrm{~m}, 8 \mathrm{H}), 1.62(\mathrm{ddd}, J=10.6,4.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.22(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 186.9,172.2,164(\mathrm{~d}, J=254 \mathrm{~Hz}), 145.4,144.9$, $135(\mathrm{~d}, J=254 \mathrm{~Hz}), 120.8,116.18(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 116.15(\mathrm{~d}, J=22.2 \mathrm{~Hz}), 113.2,89$ $(\mathrm{d}, \mathrm{J}=24.5 \mathrm{~Hz}), 60.3,56.1,45.7,42.0,41.5,39.5,38.4,35.8,34.7,22.0,14.2 ;{ }^{19} \mathrm{~F}$

NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-106.3$; HRMS (ESI): calc. for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{FNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$: 417.1836; found: 417.1831.

Ethyl 2-(6-(4-(4-bromophenyl)-2-oxobut-3-yn-1-yl)-1-(prop-1-en-2-yl)spiro[3.4]oct-1 -en-2-yl)acetate (3af)

66% isolated yield, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.55-7.50(\mathrm{~m}, 2 \mathrm{H})$, 7.44-7.40 (m, 2H), 4.89-4.85 (m, 1H), 4.66-4.62 (m, 1H), 4.08 (q, J = 7.1 Hz, 2H), $3.07(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{~d}$, $J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{t}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{~d}, J=16.9$ $\mathrm{Hz}, 1 \mathrm{H}), 1.88-1.71(\mathrm{~m}, 8 \mathrm{H}), 1.62(\mathrm{ddd}, J=10.7,4.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.22(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 186.9,172.2,145.5,144.9,134.2,132.0,125.5$, $120.8,119.0,113.2,90.0,89.0,60.3,56.1,45.6,41.9,41.5,39.5,38.4,35.8,34.7$, 22.0, 14.2; HRMS (ESI): calc. for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{Br}^{81} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$: 479.1017; found: 479.1007.

Ethyl 2-(6-(2-oxo-4-(4-(trifluoromethyl)phenyl)but-3-yn-1-yl)-1-(prop-1-en-2-yl)spiro [3.4]oct-1-en-2-yl)acetate (3ag)

77% isolated yield, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70-7.62(\mathrm{~m}, 4 \mathrm{H})$, 4.90-4.85 (m, 1H), 4.67-4.62 (m, 1H), 4.12-4.05 (m, 2H), $3.08(\mathrm{~d}, ~ J=15.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.94(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{t}$, $J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.89-1.72(\mathrm{~m}$, $8 \mathrm{H}), 1.63(\mathrm{ddd}, J=10.5,4.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.22(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 186.7,172.2,145.5,144.8,133.0,132.2(\mathrm{q}, J=33.1 \mathrm{~Hz}), 125.5(\mathrm{q}, J$ $=3.7 \mathrm{~Hz}), 122.9,123.5(\mathrm{q}, J=273 \mathrm{~Hz}), 120.8,113.3,90.3,87.9,60.3,56.2,45.6$,
41.9, 41.5, 39.5, 38.4, 35.8, 34.7, 22.0, 14.2; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-63.2$; HRMS (ESI): calc. for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$: 467.1805; found: 467.1800. Ethyl 2-(6-(2-oxo-4-(thiophen-2-yl)but-3-yn-1-yl)-1-(prop-1-en-2-yl)spiro[3.4]oct-1 -en-2-yl)acetate (3ah)

83% isolated yield, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48$ (ddd, $J=7.1$, $5.1,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.07$ (dd, $J=5.1,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.89-4.84(\mathrm{~m}, 1 \mathrm{H}), 4.67-4.62(\mathrm{~m}, 1 \mathrm{H})$, $4.08(\mathrm{q}, ~ J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.07(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~d}$, $J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~d}, J=16.9$ $\mathrm{Hz}, 1 \mathrm{H}), 2.09(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.89-1.70(\mathrm{~m}, 8 \mathrm{H}), 1.63(\mathrm{ddd}, J=10.7,4.0,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 1.22(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 186.6,172.2,145.4$, $144.9,136.5,131.6,127.7,120.8,119.9,113.2,93.8,84.5,60.3,55.9,45.7,42.0,41.5$, 39.5, 38.4, 35.8, 34.7, 22.0, 14.2; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-106.3; HRMS (ESI): calc. for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{NaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 405.1495$; found: 405.1481 .

Ethyl 2-(6-(2-oxo-4-(thiophen-3-yl)but-3-yn-1-yl)-1-(prop-1-en-2-yl)spiro[3.4]oct-1 -en-2-yl)acetate (3ai)

71% isolated yield, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.75$ (dd, $J=3.0$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{dd}, J=5.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{dd}, J=5.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.89-4.85$ (m, 1H), 4.66-4.62 (m, 1H), $4.08(\mathrm{q}, ~ J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.07(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.93$ (d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{t}, J=$ $4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~d}, \mathrm{~J}=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{~d}, \mathrm{~J}=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.88-1.71(\mathrm{~m}, 8 \mathrm{H})$, $1.62(\mathrm{ddd}, J=10.7,4.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.22(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 187.1,172.2,145.4,144.9,133.7,130.2,126.2,120.9,119.4,89.5,85.9$,
60.3, 56.1, 45.7, 42.0, 39.5, 38.5, 35.8, 34.7, 22.1, 14.2; HRMS (ESI): calc. for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{NaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 405.1495$; found: 405.1493.

Ethyl 2-(6-(4-cyclohexyl-2-oxobut-3-yn-1-yl)-1-(prop-1-en-2-yl)spiro[3.4]oct-1-en-2 -yl)acetate (3aj)

66% isolated yield, colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.88-4.85(\mathrm{~m}, 1 \mathrm{H})$, 4.65-4.62 (m, 1H), $4.09(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.07(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{~d}, J=$ $15.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{~d}, \mathrm{~J}=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-2.50(\mathrm{~m}, 1 \mathrm{H})$, $2.44(\mathrm{t}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H})$, $1.88-1.65(\mathrm{~m}, 12 \mathrm{H}), 1.60-1.45(\mathrm{~m}, 4 \mathrm{H}), 1.40-1.29(\mathrm{~m}, 3 \mathrm{H}), 1.24(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 187.5,172.2,145.4,145.0,120.9,113.1,97.8,82.3$, $60.3,56.2,45.7,41.8,41.5,39.5,38.4,35.7,34.7,31.5,29.1,25.6,24.7,22.1,14.2$; HRMS (ESI): calc. for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$: 405.2400; found: 405.2401.
(E)-Ethyl 2-(6-(2-oxo-6-phenylhex-5-en-3-yn-1-yl)-1-(prop-1-en-2-yl)spiro[3.4]oct-1 -en-2-yl)acetate (3ak)

70% isolated yield, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39-7.29(\mathrm{~m}, 4 \mathrm{H})$, 7.27-7.21 (m, 1H), 6.67-6.59 (m, 1H), $6.13(\mathrm{dt}, J=15.8,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.89-4.85(\mathrm{~m}$, $1 \mathrm{H}), 4.65-4.62(\mathrm{~m}, 1 \mathrm{H}), 4.09(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.31(\mathrm{dd}, J=5.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.07$ (d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{~d}, J=$ $14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{t}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{~d}, J=16.9 \mathrm{~Hz}$, $1 \mathrm{H}), 1.87-1.69(\mathrm{~m}, 8 \mathrm{H}), 1.59(\mathrm{ddd}, J=10.5,4.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.23(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 187.1,172.2,145.4,144.9,136.5,132.7,128.6,127.7$, $126.3,121.6,120.9,113.2,90.1,83.9,60.3,56.0,45.6,41.8,41.4,39.5,38.4,35.8$,
34.7, 22.5, 22.1, 14.2; HRMS (ESI): calc. for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 439.2244$; found: 439.2238.

Ethyl 2-(6-(2-oxo-4-(trimethylsilyl)but-3-yn-1-yl)-1-(prop-1-en-2-yl)spiro[3.4]oct-1 -en-2-yl)acetate (3al)

79% isolated yield, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.89-4.84(\mathrm{~m}, 1 \mathrm{H})$, 4.66-4.61 (m, 1H), $4.10(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.06(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{~d}, J=$ $15.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{t}, J=4.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.30(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.88-1.66(\mathrm{~m}, 8 \mathrm{H})$, $1.60-1.54(\mathrm{~m}, 1 \mathrm{H}), 1.24(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.24(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 186.9,172.2,145.4,144.9,120.8,113.2,103.5,97.5,60.3,55.9,45.6,41.8,41.4$, 39.5, 38.4, 35.7, 34.7, 22.1, 14.2, -0.8; HRMS (ESI): calc. for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{NaO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}$: 395.2013; found: 395.2012.

Ethyl 2-(1-(cyclopent-1-en-1-yl)-6-(2-oxo-4-phenylbut-3-yn-1-yl)spiro[3.4]oct-1-en $-2-y l)$ acetate (3b)

71% isolated yield, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.59-7.54(\mathrm{~m}, 2 \mathrm{H})$, 7.48-7.42 (m, 1H), 7.41-7.35 (m, 2H), 5.50-5.42 (m, 1H), $4.09(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $3.08(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{~d}$, $J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.53-2.26(\mathrm{~m}, 6 \mathrm{H}), 2.12(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.92-1.73(\mathrm{~m}, 7 \mathrm{H})$, 1.63 (ddd, $J=10.6,4.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.23(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 187.2,172.3,142.8,140.6,132.9,130.7,128.6,127.7,121.9,120.1,90.5$, 89.3, 60.3, 56.2, 46.3, 41.9, 41.4, 39.6, 35.9, 34.9, 34.8, 32.7, 23.5, 14.2; HRMS (ESI): calc. for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$: 425.2087; found: 425.2078.

Ethyl 2-(1-(cyclohex-1-en-1-yl)-6-(2-oxo-4-phenylbut-3-yn-1-yl)spiro[3.4]oct-1-en-2 -yl)acetate (3c)

68% isolated yield, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.59-7.54(\mathrm{~m}, 2 \mathrm{H})$, 7.48-7.42 (m, 1H), 7.41-7.35 (m, 2H), 5.38-5.32 (m, 1H), 4.11-4.05 (m, 2H), $3.04(\mathrm{~d}$, $J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{~d}, J=$ $14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.46-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{~d}, \mathrm{~J}=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.13-1.97(\mathrm{~m}, 4 \mathrm{H})$, 1.96-1.69 (m, 6H), 1.67-1.53 (m, 5H), $1.22(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 187.2,172.2,146.1,138.0,133.0,130.6,128.6,124.0,120.5,120.1,90.5$, 89.3, 60.2, 56.3, 45.7, 42.0, 41.6, 39.7, 38.5, 35.9, 34.8, 27.7, 25.1, 22.9, 22.2, 14.2; HRMS (ESI): calc. for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 439.2244$; found: 439.2248.
(E)-Ethyl 2-(1-(cyclooct-1-en-1-yl)-6-(2-oxo-4-phenylbut-3-yn-1-yl)spiro[3.4]oct-1-en $-2-y l) a c e t a t e ~(3 d)$

80% isolated yield, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.59-7.55(\mathrm{~m}, 2 \mathrm{H})$, 7.48-7.43 (m, 1H), 7.41-7.35 (m, 2H), $5.34(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.12-4.05(\mathrm{~m}, 2 \mathrm{H})$, $3.15(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{~d}$, $J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.49-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.06(\mathrm{~m}, 5 \mathrm{H})$, $1.89-1.69(\mathrm{~m}, 5 \mathrm{H}), 1.63$ (ddd, $J=10.6,4.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.59-1.45(\mathrm{~m}, 8 \mathrm{H}), 1.22(\mathrm{t}, J$ $=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 187.2,172.5,146.5,140.6,133.0$, $130.6,128.6,127.7,120.6,120.1,90.5,89.3,60.2,56.2,45.8,42.0,41.5,39.8,38.7$, 35.9, 34.6, 29.6, 29.0, 28.4, 26.6, 26.5, 26.4, 14.2; HRMS (ESI): calc. for $\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{NaO}_{3}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 467.2557$; found: 467.2544 .

Ethyl 2-(6-(2-oxo-4-phenylbut-3-yn-1-yl)-1-(1-phenylvinyl)spiro[3.4]oct-1-en-2-yl)
acetate (3e)

62% isolated yield, colorless oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60-7.51(\mathrm{~m}, 2 \mathrm{H})$, 7.49-7.43 (m, 1H), 7.42-7.36(m, 4H), 7.35-7.26(m, 3H), $5.53(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.04(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.13(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{~d}, J$ $=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{~d}, J=17.1$ $\mathrm{Hz}, 1 \mathrm{H}), 2.31(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.94-1.71(\mathrm{~m}, 5 \mathrm{H}), 1.62$ $(\mathrm{ddd}, J=10.6,3.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.22(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 187.1,172.1,147.6,143.6,139.1,132.9,130.7,128.6,128.4,127.7,126.7,124.6$, $120.1,113.7,90.6,89.3,60.4,56.2,45.7,42.0,41.6,40.4,38.5,36.0,34.3,14.2$; HRMS (ESI): calc. for $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 461.2087$; found: 461.2065. 2-(6-(2-Oxo-4-phenylbut-3-yn-1-yl)-1-(prop-1-en-2-yl)spiro[3.4]oct-1-en-2-yl)ethyl acetate (3f)

68% isolated yield, colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60-7.55(\mathrm{~m}, 2 \mathrm{H})$, 7.49-7.43 (m, 1H), 7.42-7.36(m, 2H), 4.88-4.82(m, 1H), 4.62-4.56(m, 1H), $4.03(\mathrm{t}, J$ $=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.86(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.44-2.22(\mathrm{~m}, 4 \mathrm{H})$, $2.07(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.85-1.74(\mathrm{~m}, 6 \mathrm{H}), 1.74-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.61$ $(\mathrm{ddd}, J=10.7,4.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 187.1,171.0,145.4$, $144.8,133.0,130.7,128.6,123.1,120.1,112.5,90.5,89.3,63.5,56.3,45.2,41.9,39.9$, 36.0, 34.8, 31.9, 22.5, 21.0; HRMS (ESI): calc. for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 399.1931$; found: 399.1931 .

1-(2-Butyl-1-(prop-1-en-2-yl)spiro[3.4]oct-1-en-6-yl)-4-phenylbut-3-yn-2-one (3g)

55% isolated yield, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.61-7.55(\mathrm{~m}, 2 \mathrm{H})$, 7.49-7.43 (m, 1H), 7.42-7.35 (m, 2H), 4.86-4.78 (m, 1H), 4.59-4.53 (m, 1H), $2.85(\mathrm{~d}$, $J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.42-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{~d}, J=17.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.03$ (d, $J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.00-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.65$ (m, 8H), 1.60 (ddd, $J=$ $10.5,4.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.32-1.19(\mathrm{~m}, 5 \mathrm{H}), 0.85(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 187.4,146.0,141.4$, , $132.9,130.7,128.6,127.7,120.2,90.5,89.4$, 56.7, 44.9, 42.0, 39.9, 36.0, 34.9, 32.5, 31.1, 22.69, 22.67, 14.1; HRMS (ESI): calc. for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]^{+}: 369.2189$; found: 369.2182 .

1-(2-Cyclohexyl-1-(prop-1-en-2-yl)spiro[3.4]oct-1-en-6-yl)-4-phenylbut-3-yn-2-one (3h)

60% isolated yield, colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.61-7.55(\mathrm{~m}, 2 \mathrm{H})$, 7.49-7.43 (m, 1H), 7.42-7.35 (m, 2H), 4.83-4.76 (m, 1H), 4.57-4.51 (m, 1H), $2.85(\mathrm{~d}$, $J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.22(\mathrm{~m}, 3 \mathrm{H}), 2.04(\mathrm{~d}, J=16.8 \mathrm{~Hz}$, $1 \mathrm{H}), 1.86-1.53(\mathrm{~m}, 12 \mathrm{H}), 1.42-1.33(\mathrm{~m}, 2 \mathrm{H}), 1.32-1.14(\mathrm{~m}, 4 \mathrm{H}), 1.12-1.00(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 187.5,146.4,140.3,132.9,132.1,130.6,128.6,120.2$, $111.4,90.5,89.4,56.8,41.8,41.7,40.8,40.7,40.1,35.6,35.0,32.3,31.2,26.6,26.5$, 26.2, 23.1; HRMS (ESI): calc. for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]^{+}$: 38.2345; found: 395.2335 . 1-(2-Benzyl-1-(prop-1-en-2-yl)spiro[3.4]oct-1-en-6-yl)-4-phenylbut-3-yn-2-one (3i)

63% isolated yield, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52-7.48(\mathrm{~m}, 2 \mathrm{H})$, 7.48-7.42 (m, 1H), 7.40-7.34 (m, 2H), 7.25-7.20 (m, 2H), 7.16-7.07 (m, 3 H$)$, 4.89-4.85 (m, 1H), 4.73-4.68 (m, 1H), $3.39(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~d}, J=14.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.79(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{t}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.24(\mathrm{dd}, J=17.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.98-1.61(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $187.2,145.5,143.7,140.9,132.9,130.6,128.6,128.4,128.2,125.8,125.6,120.1$, $112.5,90.5,89.3,56.2,44.9,42.0,41.8,40.0,38.6,35.8,34.9,22.8 ;$ HRMS (ESI): calc. for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]^{+}$: 403.2032; found: 403.2036.

General procedure for palladium-catalyzed oxidative carbocyclization of enallenes for the formation of compounds 4

Representative procedure B for the synthesis of 4a-4i.
Ethyl 2-(4-oxo-7-(2-oxo-4-phenylbut-3-yn-1-yl)-3-(prop-1-en-2-yl)spiro[4.4]non-2 -en-2-yl)acetate (4a)

To a solution of $\operatorname{Pd}(\mathrm{TFA})_{2}(3.3 \mathrm{mg}, 0.01 \mathrm{mmol})$, $\mathrm{BQ}(23.8 \mathrm{mg}, 0.22 \mathrm{mmol})$ and 2a ($30.6 \mathrm{mg}, 0.3 \mathrm{mmol}$) in DCE (2 mL) were added enallene 1a $(49.6 \mathrm{mg}, 0.2 \mathrm{mmol})$. The tube was closed with a septum. The tube was evacuated and filled with carbon monoxide gas (repeated three times) using a balloon. The reaction was stirred at room temperature for 3 h . After full consumption of starting material 1a as monitored by TLC, the reaction mixture was evaporated and purified via column chromatography on silica gel (eluent: petroleum ether/ethyl ether $=5 / 1)$ afforded $\mathbf{4 a}(72.7 \mathrm{mg}, 90 \%, \mathrm{~d} / \mathrm{r}$ $=91 / 9$ determined by ${ }^{1} \mathrm{H}$ NMR analysis): colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.61-7.55 (m, 2H, ArH), 7.48-7.42 (m, 1H, ArH), 7.41-7.35 (m, 2H, ArH), 5.23-5.16 $\left(\mathrm{m}, 1 \mathrm{H}\right.$, one proton of $\left.=\mathrm{CH}_{2}\right), 4.87-4.81\left(\mathrm{~m}, 1 \mathrm{H}\right.$, one proton of $\left.=\mathrm{CH}_{2}\right), 4.21-4.13(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.50\left(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton of $\left.\mathrm{CH}_{2}\right), 3.46(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}$, one proton of $\left.\mathrm{CH}_{2}\right), 2.93-2.80\left(\mathrm{~m}, 1 \mathrm{H}\right.$, one proton of $\left.\mathrm{CH}_{2}\right), 2.76-2.57(\mathrm{~m}, 4 \mathrm{H}, 2 \times$ $\left.\mathrm{CH}_{2}\right), 2.34-2.26\left(\mathrm{~m}, 0.91 \mathrm{H}\right.$, one proton of $\left.\mathrm{CH}_{2}\right), 2.22-2.12(\mathrm{~m}, 0.91 \mathrm{H}$, one proton of $\left.\mathrm{CH}_{2}\right), 2.20-1.88\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{3}+\right.$ one proton of $\left.\mathrm{CH}_{2}\right)$, 1.66-1.54 $(\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}), 1.48-1.36$ ($\mathrm{m}, 1 \mathrm{H}$, one proton of CH_{2}), 1.34-1.23 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}_{3}+$ one proton of CH_{2}); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{M}, \mathrm{Hz}, \mathrm{CDCl}_{3}$) the following signal is discernible for major isomer: $\delta 211.1$, 187.2, 169.2, 161.4, 143.4, 137.2, 133.1, 130.7, 128.6, 119.9, 117.1, 91.1, 87.8, 61.2, 54.2, 51.8, 48.3, 43.2, 38.4, 37.1, 35.9, 33.1, 21.9, 14.1; HRMS (ESI): calc. for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 427.1880$, found: 427.1873.

The general method from above was used for preparation of the following compounds 4:

Ethyl 2-(3-(cyclopent-1-en-1-yl)-4-oxo-7-(2-oxo-4-phenylbut-3-yn-1-yl)spiro[4.4]non -2-en-2-yl)acetate (4b)

90% isolated yield, $\mathrm{d} / \mathrm{r}=95 / 5$, colorless oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.61-7.55 (m, 2H), 7.48-7.42 (m, 1H), 7.41-7.35 (m, 2H), 6.14-6.06 (m, 1H), 4.22-4.13 (m, 2H), $3.54(\mathrm{~d}, ~ J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{~d}, ~ J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.92-2.80(\mathrm{~m}$, $1 \mathrm{H}), 2.77-2.53(\mathrm{~m}, 6 \mathrm{H}), 2.48-2.39(\mathrm{~m}, 2 \mathrm{H}), 2.31(\mathrm{dd}, J=13.2,8.7 \mathrm{~Hz}, 0.95 \mathrm{H})$, 2.21-2.12 (m, 0.95H), 1.99-1.85 (m, 3H), 1.64-1.53 (m, 1H), 1.47-1.35 (m, 1H), 1.33-1.24 (m, 4H); ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{M}, \mathrm{Hz}, \mathrm{CDCl}_{3}\right)$ the following signal is discernible for major isomer: $\delta 211.6,187.2,169.3,160.6,137.4,134.4,133.1,133.0,130.7$, 128.6, 119.9, 91.1, 87.9, 61.2, 54.1, 51.8, 48.7, 43.3, 38.6, 37.7, 35.9, 34.6, 33.1, 33.0, 23.4, 14.2; HRMS (ESI): calc. for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 453.2036$; found: 453.2029. Ethyl 2-(3-(cyclohex-1-en-1-yl)-4-oxo-7-(2-oxo-4-phenylbut-3-yn-1-yl)spiro[4.4]non -2-en-2-yl)acetate (4c)

93% isolated yield, $\mathrm{d} / \mathrm{r}=91 / 9$, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.61-7.54 (m, 2H), 7.48-7.41 (m, 1H), 7.41-7.35 (m, 2H), 5.60-5.53 (m, 1H), 4.21-4.13 (m, 2H), 3.46 (d, $J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.44$ (d, $J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.93-2.79$ (m, $1 \mathrm{H}), 2.74-2.56(\mathrm{~m}, 4 \mathrm{H}), 2.29(\mathrm{dd}, J=13.2,8.7 \mathrm{~Hz}, 0.95 \mathrm{H}), 2.20-2.07(\mathrm{~m}, 5 \mathrm{H})$, $1.97-1.88(\mathrm{~m}, 0.91 \mathrm{H}), 1.71-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.47-1.34(\mathrm{~m}, 1 \mathrm{H}), 1.33-1.24(\mathrm{~m}, 4 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{M}, \mathrm{Hz}, \mathrm{CDCl}_{3}$) the following signal is discernible for major isomer: δ $211.7,187.3,169.4,160.8,143.8,133.1,130.7,128.7,128.6,119.9,91.1,87.8,61.1$, 54.1, 51.8, 48.1, 43.2, 38.4, 37.2, 35.8, 33.1, 27.3, 25.3, 22.4, 21.9, 14.1; HRMS (ESI): calc. for $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$: 467.2193; found: 467.2187.
(E)-Ethyl 2-(3-(cyclooct-1-en-1-yl)-4-oxo-7-(2-oxo-4-phenylbut-3-yn-1-yl)spiro[4.4]
non-2-en-2-yl)acetate (4d)

89% isolated yield, $\mathrm{d} / \mathrm{r}=93 / 7$, colorless oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.60-7.55 (m, 2H), 7.48-7.42 (m, 1H), 7.41-7.35 (m, 2H), 5.57-5.44 (m, 1H), 4.24-4.10 (m, 2H), $3.51(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.92-2.79(\mathrm{~m}$, $1 \mathrm{H}), 2.77-2.57(\mathrm{~m}, 4 \mathrm{H}), 2.38-2.11(\mathrm{~m}, 6 \mathrm{H}), 1.99-1.87(\mathrm{~m}, 0.93 \mathrm{H}), 1.65-1.37(\mathrm{~m}, 10 \mathrm{H})$, 1.33-1.23 (m, 4H); ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{M}, \mathrm{Hz}, \mathrm{CDCl}_{3}\right)$ the following signal is discernible for major isomer: $\delta 211.9,187.3,169.4,161.2,144.3,133.5,133.1,131.9,130.7$, 128.6, 119.9, 91.1, 87.8, 51.2, 54.0, 51.8, 48.1, 43.2, 38.4, 37.2, 35.9, 33.1, 29.5, 28.5, 28.1, 26.5, 26.4, 26.3, 14.1; HRMS (ESI): calc. for $\mathrm{C}_{31} \mathrm{H}_{36} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$: 495.2506; found: 495.2516.

3-Benzyl-7-(2-oxo-4-phenylbut-3-yn-1-yl)-2-(prop-1-en-2-yl)spiro[4.4]non-2-en-1-on $e(4 \mathbf{i})$

88% isolated yield, $\mathrm{d} / \mathrm{r}=88 / 12$, colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 7.60-7.53 (m, 2H), 7.48-7.42 (m, 1H), 7.41-7.35 (m, 2H), 7.35-7.29 (m, 2H), 7.28-7.22 (m, 1H), 7.16-7.10 (m, 2H), 5.28-5.23 (m, 1H), 4.94-4.90 (m, 1H), $3.82(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H})$, 3.78 (d, $J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.90-2.77(\mathrm{~m}, 1 \mathrm{H}), 2.71-2.59(\mathrm{~m}, 2 \mathrm{H}), 2.50-2.36(\mathrm{~m}, 2 \mathrm{H})$, $2.28(\mathrm{dd}, J=13.2,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.18-2.07(\mathrm{~m}, 0.88 \mathrm{H}), 2.04-1.86(\mathrm{~m}, 4 \mathrm{H}), 1.54-1.46$ $(\mathrm{m}, 1 \mathrm{H}, \mathrm{CH})$, 1.39-1.16 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{M}, \mathrm{Hz}, \mathrm{CDCl}_{3}$) the following signal is discernible for major isomer: $\delta 211.6,187.3,168.5,137.5,133.1,130.7,128.8$, 128.7, 128.6, 126.7, 119.9, 116.8, 91.1, 87.8, 53.9, 51.7, 47.5, 43.2, 38.4, 37.4, 35.9, 33.1, 22.4; HRMS (ESI): calc. for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 431.1982; found: 431.1977. Ethyl 2-(7-(4-(2-methoxyphenyl)-2-oxobut-3-yn-1-yl)-4-oxo-3-(prop-1-en-2-yl) spiro[4.4]non-2-en-2-yl)acetate (4ab)

84% isolated yield, $\mathrm{d} / \mathrm{r}=90 / 10$, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.53-7.47 (m, 1H), 7.45-7.36 (m, 1H), 6.98-6.86 (m, 2H), 5.23-5.15 (m, 1H), 4.88-4.80 (m, 1H), 4.21-4.12 (m, 2H), [3.91 (s), 3.89 (s), 3H], 3.49 (d, $J=15.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.46(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.97-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.74-2.58(\mathrm{~m}, 4 \mathrm{H}), 2.32(\mathrm{dd}, J=$ $13.2,8.9 \mathrm{~Hz}, 0.9 \mathrm{H}), 2.23-2.13(\mathrm{~m}, 0.91 \mathrm{H}), 1.98-1.88(\mathrm{~m}, 4 \mathrm{H}), 1.64-1.56(\mathrm{~m}, 1 \mathrm{H})$, 1.46-1.35 (m, 1H), 1.35-1.23 (m, 4H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{M}, \mathrm{Hz}, \mathrm{CDCl}_{3}$) the following signal is discernible for major isomer: $\delta 211.1,187.4,169.2,161.4,143.4,137.2$, 135.0, 132.5, 120.5, 117.1, 110.8, 109.1, 91.9, 88.7, 61.2, 55.8, 54.2, 51.9, 48.3, 43.2, 38.6, 37.1, 35.9, 33.1, 21.9, 14.1; HRMS (ESI): calc. for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{NaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}$: 457.1985; found: 457.1981.

Ethyl 2-(4-oxo-7-(2-oxo-4-(p-tolyl)but-3-yn-1-yl)-3-(prop-1-en-2-yl)spiro[4.4]non -2-en-2-yl)acetate (4ad)

87% isolated yield, $\mathrm{d} / \mathrm{r}=92 / 8$, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.50-7.43 (m, 2H), 7.22-7.15 (m, 2H), 5.22-5.17 (m, 1H), 4.86-4.81 (m, 1H), 4.21-4.13 (m, 2H), 3.49 (d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.47$ (d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.90-2.79(\mathrm{~m}$, $1 \mathrm{H}), 2.76-2.59(\mathrm{~m}, 4 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{dd}, J=13.2,8.7 \mathrm{~Hz}, 0.92 \mathrm{H}), 2.21-2.12(\mathrm{~m}$, $0.92 \mathrm{H}), 1.99-1.88(\mathrm{~m}, 4 \mathrm{H}), 1.65-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.46-1.35(\mathrm{~m}, 1 \mathrm{H}), 1.34-1.22(\mathrm{~m}, 4 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{M}, \mathrm{Hz}, \mathrm{CDCl}_{3}$) the following signal is discernible for major isomer: δ $211.1,187.3,169.2,161.4,143.4,141.5,137.2,133.1,129.4,117.1,116.8,91.8,87.7$, 61.2, 54.2, 51.8, 48.3, 43.2, 38.5, 37.1, 35.9, 33.1, 21.9, 21.7, 14.1; HRMS (ESI): calc. for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 441.2036$; found: 441.2030.

Ethyl 2-(4-oxo-7-(2-oxo-4-(thiophen-2-yl)but-3-yn-1-yl)-3-(prop-1-en-2-yl)spiro[4.4]
non-2-en-2-yl)acetate (4ah)

72% isolated yield, $\mathrm{d} / \mathrm{r}=91 / 9$, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.56-7.45 (m, 2H), 7.12-7.03 (m, 1H), 5.25-5.14 (m, 1H), 4.87-4.82 (m, 1H), 4.22-4.13 (m, 2H), $3.50(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.88-2.78(\mathrm{~m}$, $1 \mathrm{H}), 2.76-2.60(\mathrm{~m}, 4 \mathrm{H}), 2.31$ (dd, $J=13.3,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.21-2.12(\mathrm{~m}, 0.91 \mathrm{H})$, 1.99-1.89 (m, 4H), 1.66-1.58 (m, 1H), 1.46-1.37 (m, 1H), 1.34-1.24 (m, 4H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{M}, \mathrm{Hz}, \mathrm{CDCl}_{3}$) the following signal is discernible for major isomer: δ $211.1,186.7,169.2,161.4,143.4,137.2,136.8,131.7,127.7,119.7,117.1,92.5,85.0$, $61.3,54.2,51.5,48.3,43.2,38.5,37.1,35.8,33.1,21.9,14.1 ;$ HRMS (ESI): calc. for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{NaO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 433.1444$; found: 433.1442 .

Ethyl 2-(4-oxo-7-(2-oxo-4-(thiophen-3-yl)but-3-yn-1-yl)-3-(prop-1-en-2-yl)spiro[4.4] non-2-en-2-yl)acetate (4ai)

78% isolated yield, $\mathrm{d} / \mathrm{r}=88 / 12$, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta[7.78$ (dd, $J=2.9,1.2 \mathrm{~Hz}), 7.75$ (dd, $J=3.0,1.2 \mathrm{~Hz}$), 1H], 7.35-7.31 (m, 1H), 7.25-7.21 (m, $1 \mathrm{H}), 5.22-5.19(\mathrm{~m}, 1 \mathrm{H}), 4.86-4.82(\mathrm{~m}, 1 \mathrm{H}), 4.21-4.14(\mathrm{~m}, 2 \mathrm{H}), 3.49(\mathrm{~d}, J=15.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.47$ (d, $J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.90-2.79$ (m, 1H), 2.75-2.59 (m, 4H), 2.30 (dd, $J=$ $13.2,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.20-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.89(\mathrm{~m}, 4 \mathrm{H}), 1.66-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.46-1.36$ $(\mathrm{m}, 1 \mathrm{H}), 1.33-1.24(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{M}, \mathrm{Hz}, \mathrm{CDCl}_{3}$) the following signal is discernible for major isomer: $\delta 211.1,187.2,169.2,161.4,143.4,137.2,134.0,130.3$, $126.2,119.2,117.1,88.1,86.6,61.3,54.1,51.6,48.3,43.2,38.4,37.1,35.9,33.1$, 21.8, 14.1; HRMS (ESI): calc. for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{NaO}_{4} \mathrm{~S}$ [M+Na] ${ }^{+}$: 433.1444; found: 433.1437.

Kinetic Isotope Effect (KIE) Experiments

1. Determination of Intermolecular Competition KIE

To a solution of $\operatorname{Pd}(\mathrm{TFA})_{2}(3.3 \mathrm{mg}, 0.01 \mathrm{mmol})$ and $\mathrm{F}_{4}-\mathrm{BQ}(39.6 \mathrm{mg}, 0.22 \mathrm{mmol})$ in $\mathrm{CD}_{3} \mathrm{CN}(3.0 \mathrm{~mL})$ were added enallene $\mathbf{1 a}(24.8 \mathrm{mg}, 0.1 \mathrm{mmol})$, enallene $\mathbf{1 a}-\boldsymbol{d}_{6}(25.4$ $\mathrm{mg}, 0.1 \mathrm{mmol}$), phenylacetylene ($30.6 \mathrm{mg}, 0.3 \mathrm{mmol}$), and $\mathrm{CD}_{3} \mathrm{CN}(3.0 \mathrm{~mL}$) sequentially. The tube was closed with a septum. The tube was evacuated and filled with carbon monoxide gas using a balloon for three times. The reaction was stirred at $80{ }^{\circ} \mathrm{C}$ for 90 seconds, then quickly evaporated. The yields of 3a and 3a- \boldsymbol{d}_{5} were determined by ${ }^{1} \mathrm{H}$ NMR measurement using anisole as the internal standard ($22 \mu \mathrm{~L}$, 0.2 mmol).

As shown in the attached spectra, the combined yield of 3a and $3 \mathbf{a}-\boldsymbol{d}_{5}$ was 11%, and the yield of 3a was 9%, thus the yield of $\mathbf{3 a}-\boldsymbol{d}_{5}$ was $\mathbf{2 \%}$. Therefore, the ratio of $\mathbf{3 a}$ and 3a- \boldsymbol{d}_{5} was determined as $4.5: 1$. Furthermore, the combined recovery of $\mathbf{1 a}$ and $\mathbf{1 a} \mathbf{-} \boldsymbol{d}_{6}$ was 86% [Integration of $\left(\mathrm{H}^{a}+\mathrm{H}^{b}\right)$], so the reaction conversion was 11.3%. Finally, the isotope effect value calculated from the product ratio and conversion of the reaction is 4.9 according to Sih's equation. ${ }^{[4]}$

2. Intermolecular KIE Experiments (Separate experiments)

To a solution of $\operatorname{Pd}(\text { TFA })_{2}(3.3 \mathrm{mg}, 0.01 \mathrm{mmol})$ and $\mathrm{F}_{4}-\mathrm{BQ}(39.6 \mathrm{mg}, 0.22 \mathrm{mmol})$ in $\mathrm{CD}_{3} \mathrm{CN}(3.0 \mathrm{~mL})$ were added enallene 1a $(49.6 \mathrm{mg}, 0.2 \mathrm{mmol})$, enallene $\mathbf{1 a}-\boldsymbol{d}_{6}(50.8$ $\mathrm{mg}, 0.2 \mathrm{mmol}$), phenylacetylene ($30.6 \mathrm{mg}, 0.3 \mathrm{mmol}$), and $\mathrm{CD}_{3} \mathrm{CN}(3.0 \mathrm{~mL}$) sequentially. The tube was closed with a septum. The tube was evacuated and filled with carbon monoxide gas using a balloon for three times. The reaction was stirred at room temperature and recorded at different time (see Table S2 and S3 respectively). The yields were determined by ${ }^{1} \mathrm{H}$ NMR measurement using anisole as the internal standard.

Table S2. For 1a:

Time/s	20	35	60	90	120
Yield of 3a/\%	4	8	14	19	24

Due to the nature of the experiment, plots to determine the KIE were taken for $\mathbf{1 a}$
(Figures S1).

Figure S1. Linear function fit for reaction rate of 1a.

Table S3. For 1a- \boldsymbol{d}_{6} :

Time/s	90	120	150	180	240
Yield of 3a- $\boldsymbol{d}_{5} / \%$	11	13	16	18	22

Due to the nature of the experiment, plots to determine the KIE were taken for $1 \mathrm{a}-\boldsymbol{d}_{6}$ (Figures S2).

Figure S2. Linear function fit for reaction rate of $\mathbf{1 a}-\boldsymbol{d}_{6}$.

Finally, the intermolecular isotope effect value is determined as 2.7.

$$
k_{H} / k_{D}=(0.1977) /(0.0743)=2.7
$$

The spiro[3,4]octene derivatives $\mathbf{3}$ as single isomers
Re-face coordination is favored over si-face coordination.
Re-face coordination:

Si-face coordination:

Determination of relative seterochemistry of 3a

The assignment of ${ }^{1} \mathrm{H}$ NMR signals for 3a was as follows: ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 7.60-7.54 (m, 2H, ArH), 7.48-7.42 (m, 1H, ArH), 7.41-7.35 (m, 2H, ArH), 4.91-4.84 $\left(\mathrm{m}, 1 \mathrm{H}\right.$, one proton of $\left.=\mathrm{CH}_{2}\right), 4.67-4.62\left(\mathrm{~m}, 1 \mathrm{H}\right.$, one proton of $\left.=\mathrm{CH}_{2}\right), 4.08$ (q, $\left.J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.08\left(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{a}}\right), 2.94(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{H}^{\mathrm{a}}\right), 2.86\left(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{b}}\right), 2.82\left(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{b}}\right), 2.47(\mathrm{t}, J=4.0 \mathrm{~Hz}$, 1 H , one proton of CH_{2}), 2.37 (br. d, $J=16.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{c}}$), 2.11 (br. d, $J=16.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{H}^{\mathrm{c}^{\prime}}\right), 1.89-1.71\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{3}+\mathrm{CH}_{2}+\right.$ one proton of $\left.\mathrm{CH}_{2}\right), 1.64(\mathrm{ddd}, J=10.7,4.1,1.0$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}), 1.22\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.

We were able to assign $\mathrm{H}^{a}, \mathrm{H}^{a^{a}}$ in 3a by comparing the ${ }^{1} \mathrm{H}$ NMR spectra of products 3a and 3g. A clear NOE was observed between $\mathrm{H}^{b}\left(\mathrm{H}^{b^{\prime}}\right)$ and H^{c} in $\mathbf{3 a}$ (see p. S57). Thus, the relative sterochemistry of $\mathrm{CH}^{b} \mathrm{H}^{b^{\prime}}$ and $\mathrm{CH}^{c} \mathrm{H}^{c^{\prime}}$ in 3a could be determined to be cis to one another as shown in the above structure.

References:

(1) (a) Zhu, C.; Yang, B.; Jiang, T.; Bäckvall, J.-E. Angew. Chem. Int. Ed. 2015, 54, 9066. (b) Zhu, C.; Yang, B.; Bäckvall, J.-E. J. Am. Chem. Soc. 2015, 137, 11868. (c) Qiu, Y.; Yang, B.; Zhu, C.; Bäckvall, J.-E. Angew. Chem. Int. Ed. 2016, 55, 6520.
(2) Sherwood, T. C.; Trotta, A. H.; Snyder, S. A. J. Am. Chem. Soc. 2014, 136, 9743.
(3) Kessler, S. N.; Bäckvall, J.-E. Angew. Chem. Int. Ed. 2016, 55, 3734.
(4) Chen, C.-S.; Fujimoto, Y.; Girdaukas, G.; Sih, C. J. J. Am. Chem. Soc. 1982, 104, 7294.
udd

- 201.20

-7.260

udd	0.0	s.0	01			$\mathrm{s} \cdot \mathrm{Z}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{\varphi}} \\ & 0 . \varepsilon \\ & \hline \end{aligned}$	$\mathrm{s}^{\prime} \varepsilon$	$\left\|\begin{array}{c}N \\ 0 \\ 0\end{array}\right\|$ $0 . t$ 1	$\mathrm{c}^{\prime} \mathrm{t}$	$\begin{gathered} \left.\\| \begin{array}{c} n \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right\rvert\, \\ 0.9 \\ \hline \end{gathered}$	$\mathrm{G} \cdot \mathrm{~S}$	0.9	G.9	0.2	$G^{\prime} L$	$\begin{array}{r}08 \\ \hline\end{array}$

udd

W0 OL－コ－甘O OL－モ－ØX
－ 171.82
－ 146.20
－ 138.46
-114.42
-111.80
－ 105.03
－ 93.58
77.31
77.00
76.68
－ 60.40
40.70
$\mathbf{3 7}$
$\mathbf{3 7}$
34.34
\times
31.85
31.69
$\mathbf{2 6 . 9 8}$
26.77
26.16
udd

[^0]

udd

udd

$\sim_{1} 145.42$
144.91
-141.38
-132.98
-129.40
-120.88
-116.95
-113.17
-91.22
$-\quad 89.17$
77.32
77.00
76.68

- 60.28
- 56.15
45.68
41.96
41.48
39.54
38.44
35.83
34.74
$<\begin{array}{r}22.05 \\ 21.71\end{array}$
-14.17

- 186.93
- 172.20
165.20
-162.68
$<_{144.87}^{145}$

$<$
$\begin{aligned} & 135.27 \\ & 135.19\end{aligned}$
120.83
116.26
116.20
116.16
116.04
113.22
$<\begin{array}{r}89.40 \\ 89.16\end{array}$
77.31
\sim
$\mathbf{7 7 . 0 0}$
76.68
-60.30
-56.12
45.65
41.95
$\mathbf{4} .50$
$-\quad 39.52$
$-\quad 38.43$
$\mathbf{3 5 . 8 3}$
34.73

- 22.04
- 14.18

WOO $-\mathrm{H}-\supset-\varnothing 80-\varepsilon-$ ठス

007 (

0

mot

WOO $\quad-\mathrm{H}-\mathrm{\forall}-\varsigma 80-\varepsilon-$ OX

- 186.55
-172.20
145.43
144.89
-136.54
-131.56
-127.70
-120.84
-119.88
-113.18
- 93.82
84.51
$-\begin{array}{r}77.31 \\ -77.00 \\ 76.68\end{array}$
- 60.30
- 55.86
45.68
42.02
$\quad 41.45$
$=$
39.52

38.42

35.82
34.73
-22.05
-14.17

7.754
7.751
7.746
7.743
7.345
7.337
7.332
7.325
7.260
7.227
7.224
7.214
7.211

$\left[\begin{array}{l}4.876 \\ 4.872 \\ 4.869 \\ 4.866 \\ 4.648 \\ {\left[\begin{array}{l}4.646 \\ 4.641 \\ 4.639 \\ 4.109\end{array}\right.} \\ {\left[\begin{array}{l}4.091 \\ 4.074 \\ 4.056 \\ 3.092 \\ 3.053 \\ 2.954 \\ 2.915 \\ 2.861 \\ 2.825 \\ 2.806 \\ 2\end{array}\right.} \\ \begin{array}{l}2.770 \\ 2.471 \\ 2.461 \\ 2.451 \\ 2.385 \\ 2.343 \\ 2.124 \\ 2.082 \\ 1.795 \\ 1.782 \\ 1.780 \\ 1.777 \\ 1.644 \\ 1.641 \\ 1.633 \\ 1.630 \\ 1.617 \\ 1.614 \\ 1.607 \\ 1.604 \\ 1.239 \\ 1.221 \\ 1.204\end{array} \\ \hline\end{array}\right.$

- 187.05
- 172.23
145.44
144.90

-133.73
-130.18
-126.15
-120.86
-119.37
-113.20
-89.51
$-\quad 85.94$ 77.32
\sim
77.00
76.68
-60.31
-56.05

- 22.06
-14.18

WOO $\quad-\mathrm{H}-\mathrm{D}-\varsigma 80-\varepsilon-$ OK
$\left[\begin{array}{l}4.869 \\ 4.866 \\ 4.862 \\ 4.859 \\ 4.642 \\ 4.640 \\ 4.635 \\ 4.633 \\ 4.120 \\ 4.103 \\ 4.085 \\ 4.067 \\ 3.085 \\ 3.046 \\ 2.936 \\ 2.897 \\ 2.746 \\ 2.711 \\ 2.710 \\ 2.688 \\ 2.652 \\ 2.552 \\ 2.542 \\ 2.532 \\ 2.449 \\ 2.438 \\ 2.427 \\ 2.330 \\ 2.288 \\ 2.064 \\ 2.022 \\ 1.778 \\ 1.774 \\ 1.772 \\ 1.741 \\ 1.725 \\ 1.701 \\ 1.671 \\ 1.584 \\ 1.579 \\ 1.520 \\ 1.511 \\ 1.349 \\ 1.332 \\ 1.255 \\ 1.237\end{array}\right.$

udd

udd

-186.87

- 187.15
-172.28
-142.78
-140.60
-132.94
$=130.65$
$=128.60$
$=127.67$
-121.93
-120.09
90.51
-89.28

-60.31
-56.22
46.34
41.87
41.37
39.62
38.87
35.86
34.92
34.80
32.73
- 23.54
-14.20

(1)

- 187.23
- 172.48
- 146.49
-140.55
132.96
\mathbf{r}
$\mathbf{1} 20.64$
$\mathbf{1} 28.60$
127.67
\times
120.61
120.13
_ 90.49
77.31
\sim
77.00
76.68
- 60.21
- 56.23
45.84
42.03
41.52
39.82
38.68
35.94
34.59
29.63
28.96
28.35
26.64
26.52
26.42
- 14.22

4.825
4.822
4.818
4.818
4.815
4.562
4.560
4.558
4.555
4.553
2.878
2.843
2.820
2.785
2.383

2. 344
3. 302
2.053
2.010
1.955
-1.936
1.936
1.806
1.779
1.777
1.776
1.774
$\left[\begin{array}{l}1.668 \\ 1.614 \\ 1.611 \\ 1.604 \\ 1.601 \\ 1.587 \\ 1.584 \\ 1.577 \\ 1.574 \\ 1.279 \\ 1.271 \\ 1.260 \\ 1.255 \\ 1.246 \\ 1.238\end{array}\right.$

-146.40

- 140.30
$\begin{array}{r}132.93 \\ -132.07 \\ -130.64 \\ \hline\end{array}$
-120.15
-111.41
90.51
$-\quad 89.40$
77.31
\sim
77.00
76.68
41.81
41.74
40.80
40.72
40.15
35.64
34.96
32.25
31.15
26.63
26.52
26.22
23.05

- 211.09
- 187.21
- 169.21
- 161.40
-143.38
-137.20
-133.10
130.71
$-\quad 128.60$
-119.90
$-\quad 117.11$
-91.11
$-\quad 87.84$
77.31
$<$
77.00
76.68
- 61.24

54.15
$-\quad 51.78$
-48.26
-43.21
38.44
-37.11
-35.86
33.08

-21.86
-14.13

- 211.68
-187.26
-169.44
-160.84
-143.79
133.09
130.68
130.41
128.66
128.58
-119.91
-91.06
$-\quad 87.84$
77.31
\times
77.00
76.68

- 211.11
- 187.28
- 169.21
- 161.40
\square
-143.39
-141.45
-137.21
-133.14
-129.40
$<{ }_{116.77}^{117.09}$
-91.81
-87.73
77.32
<77.00
76.68
-61.23
$\begin{array}{r}54.17 \\ \hline-51.76\end{array}$
- 48.2
$\begin{array}{r}43.21 \\ \mathbf{3 8 . 4 5} \\ =37.11 \\ \hline\end{array}$
- 33.08
$<{ }_{21.71}^{21.86}$
-14.12

udd

-211.14

-161.42
- 143.37
-137.20
$-\quad 134.01$
-130.29
-126.15
119.19
-117.12

- 61.25
$\begin{array}{r}54.14 \\ -\quad 51.61 \\ \hline\end{array} \quad 48.26 ~ 子 \begin{array}{r}43.22 \\ \\ 38.41 \\ 37.11 \\ 35.90 \\ 33.08\end{array}$
-21.87
-14.13

[^0]:

