Impairment of Biofilm Formation by TiO₂ Photocatalysis through Quorum Quenching

Xiang Xiao^{a,c,*}, Wen-Wen Zhu^a, Qiu-Yue Liu^a, Hang Yuan^b, Wen-Wei Li^c, Li-Jun Wu^{b,*}, Qian Li^a, Han-Qing Yu^{c,*}

^a School of The Environment and Safety Engineering, Jiangsu University, Zhenjiang,

212013, China

^bKey Laboratory of Ion Beam Bioengineering, Institute of Technical Biology &

Agriculture Engineering, Chinese Academy of Sciences, Hefei, 230031, China

^cCAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry,

University of Science & Technology of China, Hefei 230026, China

This supporting information contains 9-page document, including 8 figures and this cover page.

Fig. S1 TEM image (A) and XRD spectra (B) of TiO_2 .

Fig. S2 pUC18-GFP plasmid

Fig. S3 XRD analysis of TiO₂ before and after treatment. TiO₂-untreated refers the TiO₂ without any treatment; TiO₂-dark refers the TiO₂ treated without photoexcitation; TiO₂-UV refers the TiO₂ treated with UV. The diffraction peaks of the untreated TiO₂ could be perfectly indexed to the cubic phase of anatase (JCPDS card No. 65-5714). The XRD spectra of TiO₂ treated with or without UV photoexcitation were similar and both of them could be indexed to the cubic phase of anatase (JCPDS card No. 65-5714). The treatment resulted in the unclear spectra compared with the untreated TiO₂. Since crystallinities of TiO₂-UV and TiO₂-dark were similar, the most likely reason for the unclear spectra was the adsorption of organic components onto the TiO₂ surface.

Fig. S4 FTIR spectra of the TiO₂ samples before and after treatment. TiO₂-untreated refers the TiO₂ without any treatment; TiO₂-dark refers the TiO₂ treated without photoexcitation; TiO₂-UV refers the TiO₂ under UV irradiation. The infrared spectra were analyzed using a Fourier transform infrared spectrometer (Nexus 470, Nicolet Co., USA). Five new characteristic peaks were detected from the treated TiO₂ samples in dark or under UV irradiation, compared with the untreated TiO₂. The absorptions at 1527, 1234, 1081, 876, 556 cm⁻¹ are associated with C-H, C-O, C-O, C-N and C-X, respectively. These results clearly show that organic compounds were adsorbed onto the TiO₂ surface, resulting in the unobvious XRD spectra. These results are consistent with the well recognized observation that TiO₂ nanoparticles display a high stability under usual photocatalytic conditions.

Fig. S5 Cell growth of *E. coli* K12 and AI-2 activity during the microbial growth. All values represent mean \pm SD

Fig. S6 DMPO spin-trapping ESR spectra recorded for $DMPO-O_2^{\bullet}$ in methanol dispersion (A) and DMPO- \bullet OH in aqueous dispersion (B).

Fig. S7 Impact of TiO₂ photoexcitation on the generation of •OH (A) and O₂^{••} (B). All values represent mean \pm SD. Values with the same letter are not significantly different at *P*<0.05, according to the Duncan's multiple range test.

Fig. S8 Impacts of TiO₂ photoexcitation (A) and H₂O₂ at different concentrations (0, 0.05, 0.1 and 0.2%) (B) on the AI-2 activities in vitro. All values represent mean \pm SD. Values with the same letter are not significantly different at *P*<0.05, according to the Duncan's multiple range test.