Supporting Information

Cobalt-Catalyzed C(sp²)-H Borylation with an Air-Stable, Readily Prepared Terpyridine Cobalt(II) Bis(acetate) Precatalyst

Nadia G. Léonard, Máté J. Bezdek, and Paul. J. Chirik*

Department of Chemistry

Princeton University, Princeton NJ 08544, United States

Table of Contents

- I. Additional Spectroscopic Data
- II. Characterization Data for Borylation Products
- III. References

I. Additional Spectroscopic Data

Figure S1. CDCl₃ ¹H NMR spectrum of (^{Ar}Tpy)Co(OAc)₂ at 23 °C.

Figure S2. CDCl₃ ¹H NMR spectrum of (^{Ar}Tpy)Co(OAc)₂-d6 at 23 °C.

Figure S3. C₆D₆ ¹H NMR spectrum of (^{Ar}Tpy)CoCH₂SiMe₃ at 23 °C.

Figure S4. CDCl₃ 1 H NMR spectrum of Ar Tpy Me at 23 $^{\circ}$ C.

Figure S5. CDCl₃ ¹H NMR spectrum of (^{Ar}Tpy^{Me})Co(OAc)₂ at 23 °C.

Figure S6. $C_6D_6^{-1}H$ NMR spectrum of $Co[PinB(OAc)_2]_2$ at 23 °C. Peaks at 6-8 ppm correspond to free $^{Ar}Tpy^{Me}$ ligand. Peaks at 0-2 ppm correspond to residual solvent.

Table S1. Reaction conditions: toluene (5.7 mmol), B₂Pin₂ (0.38 mmol), catalyst (0.019 mmol, 5 mol%), 80 °C. Percent yields based on GC-FID using cyclooctane as an internal standard.

R = Me

% yield
80
90
53
75
69

Figure S7. X-band EPR spectrum of $(^{Ar}Tpy)Co(OAc)_2$ recorded in toluene glass at 10K. Microwave frequency = 9.378 GHz, power = 0.63 mW, modulation amplitude = 1 mT/100 kHz.; Spectroscopic parameters; $g_z = 5.66$, $g_y = 5.59$, $g_x = 1.99$, $H_{strain} = (100, 10, 10)$, $g_{strain} = (1.71, 1.30, 0.37)$.

Figure S8. X-band EPR spectrum of $(^{Ar}Tpy)Co(OAc)_2$ plus x equivalents of HBPin recorded in toluene glass at 10K. Microwave frequency = 9.380 GHz, power = 2.0 mW, modulation amplitude = 1 mT/100 kHz.

Figure S9. X-band EPR spectrum of $Co[PinB(OAc)_2]$ generated from addition of 2 equivalents HBPin to $(^{Ar}Tpy^{Me})Co(OAc)_2$ in toluene at room temperature. Spectra collected at 10 K in toluene glass. Microwave frequency = 9.380 GHz, power = 2.0 mW, modulation amplitude = 1 mT/100 kHz. Simulation parameters for complex A: $g_z = 1.99$, $g_y = 2.66$, $g_x = 2.04$, $g_{strain} = (0.19, 0.01, 0.17)$, $A_z = 225$ MHz, $A_y = 1$ MHz, $A_x = 1$ MHz, $A_{strain} = (58, 0, 0)$.

II. Characterization Data for Borylation Products

BPin

(1a): A mixture of isomers was isolated as an off-white solid (0.061 g, 80%) following removal of excess solvent under reduced pressure, redissolving in CDCl₃, and filtration of the crude reaction mixture through a plug of silica in a Pasteur pipette. The *meta*: *para* ratio was determined to be 70:30 by integration of the characteristic peaks in the quantitative ¹³C NMR spectrum. {¹H}¹³C NMR (chloroform-d 23 °C): δ 137.12, 135.34, 132.05, 131.78, 127.69, 83.14,

24.07, 21.27 (*meta*); δ 141.55, 134.81, 128.51, 83.77, 24.84, 21.73 (*para*). The ¹H NMR and ¹³C NMR spectrum agree with previously reported data.¹

(1b): The excess solvent was removed under reduced pressure. The crude reaction mixture was dissolved in CDCl₃, passed through a plug of silica gel in a Pasteur pipette and then analyzed by 1 H and 13 C NMR spectroscopy without additional purification. The compound was isolated as a white solid (0.060 g, 84% yield) upon removal of solvent in vacuo. 1 H NMR (chloroform-d, 23 $^{\circ}$ C): δ 7.82 (d, $\Delta v_{1/2} = 7.31$ Hz, 2H), 7.45 – 7.36 (m, 3H), 1.35 (s, 12H). ${^{1}}$ H ${^{13}}$ C NMR (chloroform-d, 23 $^{\circ}$ C): δ 134.87, 131.39, 127.84, 83.91, 25.02. ${^{1}}$ H and ${^{13}}$ C NMR data agree with previously reported data.

BPin

BPin

(1c): The excess solvent was removed under reduced pressure. The crude reaction mixture was dissolved in CDCl₃, passed through a plug of silica gel in a Pasteur pipette and then analyzed by ¹H and ¹³C NMR spectroscopy without additional purification. The mixture of isomers were isolated as a white solid (0.055 g, 65% yield) upon removal of solvent in vacuo. The ¹H NMR was not assigned since the proton resonances of the *meta* and *para* isomers overlap with each other. The *ortho*: *meta* ratio was determined to be 80:20 by integration of the characteristic peaks in the quantitative ¹³C NMR spectrum. { ¹H } ¹³C NMR (chloroform-*d*, 23 °C): δ 168.17, 166.18, 137.02, 136.79, 133.32, 133.25, 123.58, 123.50, 115.34 115.15, 84.12, 24.50 (*ortho*).; δ 163.46, 161.50, 131.26, 130.30, 129.50, 129.44, 121.03, 120.88, 118.25, 118.09, 83.91, 24.84 (*meta*). ¹³C NMR data agree with previously reported data.³

BPin

F (1d): The crude reaction mixture was exposed to air to quench the catalyst and filtered through a plug of silica gel in a Pasteur pipette and then analyzed by ¹H and ¹³C NMR spectroscopy without additional purification. NMR yield of the crude mixture was determined by

¹⁹F NMR using fluorobenzene as an external standard (70% yield). The 1 H NMR was not assigned since the proton resonances of the *3*- and *4*- borylated isomers overlap with each other. The *3:4* ratio was determined to be 70:30 by integration of the characteristic peaks in the 19 F NMR spectrum. A trace amount of *ortho* borylated fluorobenzene was observed in the 19 F NMR, likely due to defluorination-borylation. { 1 H} 13 C NMR (chloroform-*d*, 23 °C): δ 154.5, 150.4, 131.1, 124.0, 120.78, 119.27, 117.83, 117.21, 83.72, 25.12 (*3*).; δ 153.65, 153.57, 151.98, 151.90, 151.18, 151.10, 149.53, 149.45, 131.53, 123.96, 123.82, 116.84, 116.41, 84.19, 25.42. (*4*). 13 C NMR data agree with previously reported data. ^{4,5}

BPin

through a plug of silica gel in a Pasteur pipette and then analyzed by 1 H and 13 C NMR spectroscopy without additional purification. NMR yield of the crude mixture was determined using cyclooctane as an external standard (90% yield). 1 H NMR (chloroform-d, 23 $^{\circ}$ C): δ 7.21 (dd, J = 7.31 Hz, J = 1.5 Hz, 1H), 6.92 (dd, J = 7.31 Hz, J = 1.1 Hz 1H), 6.82 (t, J = 7.31 Hz, 1H), 6.02 (s, 2H), 1.36 (s, 12H). ${^{1}}$ H ${^{13}}$ C NMR (chloroform-d, 23 ${^{\circ}}$ C): δ 152.54, 146.87, 127.82, 121.06, 111.16, 100.72, 83.91, 24.80. ${^{1}}$ H and ${^{13}}$ C NMR data agree with previously reported data.

PinB Me (1f): The compound was isolated (0.029 g, 32% yield) upon removal of solvent in vacuo. 1 H NMR (chloroform-d, 23 $^{\circ}$ C): δ 7.31 (s, 2H), 2.52 (s, 6H), 1.35 (s, 12H). $\{^{1}$ H $\}$ ¹³C NMR (chloroform-d, 23 $^{\circ}$ C): δ 156.92, 125.16, 84.25, 24.74. 1 H and 13 C NMR data agree with previously reported data. 7

MeO (1g): The crude reaction mixture was exposed to air to quench the catalyst and filtered through a plug of silica gel in a Pasteur pipette and then analyzed by ¹H and ¹³C NMR

spectroscopy without additional purification. NMR yield of the crude mixture was determined using cyclooctane as an external standard (60% yield). The ¹H NMR was not assigned since the proton resonances of the *meta* and *para* isomers overlap with each other. The *meta: para* ratio was determined to be 75:25 by integration of the characteristic peaks in the quantitative ¹³C NMR spectrum. {¹H} ¹³C NMR (chloroform-*d*, 23 °C): δ 159.20, 129.06, 128.61, 118.48, 117.42, 83.39, 54.46, 24.41 (*meta*).; δ 161.85, 136.54, 113.46, 83.39, 54.46, 24.41 (*para*). δ 164.19, 136.87, 132.54, 120.21, 110.06, 82.26, 59.91, 24.63 (*ortho*). ¹³C NMR data agree with previously reported data. ^{8,9,10}

(1h): The crude reaction mixture was exposed to air to quench the catalyst and filtered through a plug of silica gel in a Pasteur pipette and then analyzed by ¹H and ¹³C NMR spectroscopy without additional purification. NMR yield of the crude mixture was determined using cyclooctane as an external standard (67%yield). The ¹H NMR was not assigned since the proton resonances of the *meta*, *para* and *ortho* isomers overlap with each other. The *meta*: *para*: *ortho* ratio was determined to be 75:25:*trace* by integration of the characteristic peaks in the quantitative ¹³C NMR spectrum. { ¹H } ¹³C NMR (chloroform-d, 23 °C): δ 150.0, 128.94, 127.19, 118.65, 117.94, 83.18, 55.10, 24.54 (*meta*).; δ 159.01, 136.51, 113.3, 83.85, 55.26.1, 24.86 (*para*). ¹³C NMR data agree with previously reported data. ^{11,12}

(1i): A 0.01 M solution of (^{Ar}Tpy)Co(OAc)₂ in 2-methylfuran was prepared. To a 10 mL reaction vial, 0.36 mL of the 0.01 M solution of (^{Ar}Tpy)Co(OAc)₂ (0.003 mmol catalyst)¹ was added. The vial was also charged with a magnetic stir bar and 0.014 g (0.359 mmol) of LiOMe, and 0.091 g (0.359 mmol) of B₂Pin₂. The resulting mixture was heated in an oil bath at 80 °C for 36 hours. The crude reaction mixture was dissolved in hexane and the resulting solution was passed through a plug of silica gel in a Pasteur pipette to remove the catalyst. The title

compound was isolated as a colorless oil (0.074 g, 98% yield) upon removal of solvent in vacuo.
¹H NMR (chloroform-d, 23 °C): δ 6.94 (d, $\Delta v_{1/2} = 3.07$ Hz, 1H), 5.99 (d, $\Delta v_{1/2} = 3.07$ Hz, 1H), 2.30 (s, 3H), 1.29 (s, 12H). {¹H} ¹³C NMR (chloroform-d, 23 °C): δ 157.58, 124.80, 106.87, 83.90, 24.66, 13.83. ¹H and ¹³C NMR data agree with previously reported data. ¹³

(1j): Isolated as a white solid (0.081 g, 88%). ¹H NMR (chloroform-d, 23 °C): δ 7.63 (d, $\Delta v_{1/2} = 7.91$ Hz, 1H), 7.57 (d, $\Delta v_{1/2} = 7.90$ Hz, 1H), 7.40 (s, 1H), 7.34 (ddd, $\Delta v_{1/2} = 8.4$, 7.2, 1.3 Hz, 1H), 7.25 – 7.21 (m, 1H), 1.39 (s, 12H). {¹H} ¹³C NMR (chloroform-d, 23 °C): δ 157.54, 127.49, 125.95, 122.73, 121.90, 119.56, 111.99, 84.71, 24.81. ¹H and ¹³C NMR data agree with previously reported data. ¹⁴

(1k): Isolated as a white solid (0.058 g, 60%). ¹H NMR (chloroform-d, 23 °C): δ 7.64 (d, $\Delta v_{1/2} = 8.05$ Hz, 1H), 7.07 – 7.36 (m, 5H), 3.98 (s, 3H), 1.37 (s, 12H). {¹H} ¹³C NMR (chloroform-d, 23 °C): δ 140.14, 127.84, 123.17, 121.60, 119.29, 114.24, 109.69, 83.70, 32.25, 24.86. ¹H and ¹³C NMR data agree with previously reported data. ¹⁵

Figure S10. 1 H NMR spectrum of 1a in CDCl₃ at 23 $^{\circ}$ C.

Figure S11. ¹³C NMR spectrum of 1a in CDCl₃ at 23 °C.

Figure S12. ¹H NMR spectrum of 1b in CDCl₃ at 23 °C.

Figure S13. ¹³C NMR spectrum of 1b in CDCl₃ at 23 °C.

Figure S14. ¹H NMR spectrum of 1c in CDCl₃ at 23 °C.

Figure S15. ¹³C NMR spectrum of 1c in CDCl₃ at 23 °C.

Figure S16. ¹³C NMR spectrum of crude reaction of 1d mixture in CDCl₃ at 23 °C.

Figure S17. ¹⁹F NMR spectrum of crude reaction mixture of **1d** in CDCl₃ at 23 °C. Peak at -102 is *ortho*-borylated fluorobenzene, a result of defluorination-borylation.

Figure S18. ¹³C NMR spectrum of crude reaction mixture of 1e in CDCl₃ at 23 °C.

Figure S19. ¹H NMR spectrum of 1f in CDCl₃ at 23 °C.

Figure S20. ¹³C NMR spectrum of 1f in CDCl₃ at 23 °C.

Figure S21. ¹³C NMR spectrum of crude reaction mixture of 1g in CDCl₃ at 23 °C.

Figure S22. ¹³C NMR spectrum of crude reaction mixture of 1h in CDCl₃ at 23 °C.

Figure S23. ¹H NMR spectrum of 1i CDCl₃ at 23 °C.

Figure S24. ¹³C NMR in of 1i CDCl₃ at 23 °C.

Figure S25. ¹H NMR spectrum of 1j in CDCl₃ at 23 °C.

Figure S26. ¹³C NMR spectrum of 1j in CDCl₃ at 23 °C.

Figure S27. ¹H NMR spectrum of 1k in CDCl₃ at 23 °C.

Figure S28. ¹³C NMR spectrum of 1k in CDCl₃ at 23 °C.

III. References

- ¹ Chow, W. K.; Yuen, O. Y.; So, C. M.; Wong, W. T.; Kwong F. Y. J. Org. Chem. **2012**, 77, 3543.
- ² Murata, M.; Oyama, T.; Watanabe, S.; Masuda, Y. J. Org. Chem. 2000, 65, 164.
- ³ Qiu, D.; Jin, L.; Zheng, Z.; Meng, H.; Mo, F.; Wang, X.; Zhang, Y.; Wang, J. J. Org. Chem. **2013**, 78, 1923.
- ⁴ Zhou, J.; Kuntze-Fechner, M. W.; Bertermann, R.; Paul, U. S. D.; Berthel, J. H. J.; Friedrich, A.; Du, Z.; Marder, T. B.; Radius, U. J. Am. Chem. Soc. **2016**, *138*, 5250.
- ⁵ Guerrand, H. D. S.; Marciasini, L. D.; Jousseaume, M.; Vaultier, M.; Pucheault, M. *Chem. Eur. J.* **2014**, *20*, 5573.
- ⁶ Vanchura, II, B. A.; Preshlock, S. M.; Roosen, P. C.; Kallepalli, V. A.; Staples, R. J.; Maleczka, Jr., R. E.; Singleton, D. A.; Smith, III, *Chem. Commun.* **2010**, *46*, 7724.
- ⁷ Harrisson, P.; Morris, J.; Marder, T. B.; Steel, P. G. *Org. Lett.* **2009**, *11*, 3586.
- ⁸ Zhu, C.; Yamane, M. Org. Lett. **2012**, 14, 4560.
- ⁹ Mo, F.; Jiang, Y.; Qui, D.; Zhang, Y.; Wang, J. Angew. Chem. Int. Ed. 2010, 49, 1846.
- ¹⁰ Billingsley, K. L.; Buchwald, S. L. J. Org. Chem. **2008**, 73, 5589.
- ¹¹ Yao, W.; Fang, H.; Peng, S.; Wen, H.; Zhang, L.; Hu, A.; Huang, Z. *Organometallics* **2016**, *35*, 1559.
- ¹² Kinuta, H.; Tobisu, M.; Chatani, N. J. Am. Chem. Soc. **2015**, 137, 1593.
- ¹³ Obligacion, J. V; Semproni, S. P.; Chirik, P. J. J. Am. Chem. Soc. **2014**, 136, 4133.
- ¹⁴ Ishida K.; Ishiyama, T.; Miyaura, N. Tetrahedron 2001, 57, 9813.
- ¹⁵ Mertins, K.; Zapf, A.; Beller, M. J. Mol. Catal. **2004**, 207, 21.