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I. Additional Spectroscopic Data
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Figure S1. CDCl; 'H NMR spectrum of (*Tpy)Co(OAc), at 23 °C.
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Figure S2. CDCl; 'H NMR spectrum of (*Tpy)Co(OAc),-d6 at 23 °C.
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Figure S3. CsD¢ '"H NMR spectrum of (*'Tpy)CoCH,SiMe; at 23 °C.
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Figure S4. CDCl; 'H NMR spectrum of “"Tpy™ at 23 °C.
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Figure S5. CDCl; 'H NMR spectrum of (*Tpy™*)Co(OAc), at 23 °C.
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Figure S6. CsD¢ 'H NMR spectrum of Co[PinB(OAc),], at 23 °C. Peaks at 6-8 ppm correspond
to free “"Tpy™ ligand. Peaks at 0-2 ppm correspond to residual solvent.
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Table S1. Reaction conditions: toluene (5.7 mmol), B,Pin, (0.38 mmol), catalyst (0.019 mmol, 5 mol%),
80 °C. Percent yields based on GC-FID using cyclooctane as an internal standard.
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Y 5mol% (ATpy)Co(OAc), N
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Alkoxide % yield

1
10 mol% LiOMe 80
100 mol% LiOMe 90
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Figure S7. X-band EPR spectrum of (*Tpy)Co(OAc), recorded in toluene glass at 10K.
Microwave frequency = 9.378 GHz, power = 0.63 mW, modulation amplitude = 1 mT/100 kHz.;
Spectroscopic parameters; g, = 5.66, g, = 5.59, g« = 1.99, Hyin = (100, 10, 10), Zerain = (1.71,
1.30, 0.37).
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Figure S8. X-band EPR spectrum of (*Tpy)Co(OAc), plus x equivalents of HBPin recorded in
toluene glass at 10K. Microwave frequency = 9.380 GHz, power = 2.0 mW, modulation
amplitude = 1 mT/100 kHz.
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Figure S9. X-band EPR spectrum of Co[PinB(OAc);] generated from addition of 2 equivalents
HBPin to (“Tpy™*)Co(OAc), in toluene at room temperature. Spectra collected at 10 K in
toluene glass. Microwave frequency = 9.380 GHz, power = 2.0 mW, modulation amplitude = 1
mT/100 kHz. Simulation parameters for complex A: g, =1.99, g, = 2.66, g, = 2.04, gguain = (0.19,
0.01,0.17), A, =225 MHz, Ay = 1 MHz, A, = 1 MHz, Apin = (58, 0, 0).

II. Characterization Data for Borylation Products

Me (1a): A mixture of isomers was isolated as an off-white solid (0.061 g, 80%)
following removal of excess solvent under reduced pressure, redissolving in CDCl;, and filtration
of the crude reaction mixture through a plug of silica in a Pasteur pipette. The meta: para ratio
was determined to be 70:30 by integration of the characteristic peaks in the quantitative *C NMR

spectrum. {'H}'3C NMR (chloroform-d 23 °C): § 137.12, 135.34, 132.05, 131.78, 127.69, 83.14,
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24.07, 21.27 (meta); & 141.55, 134.81, 128.51, 83.77, 24.84, 21.73 (para). The '"H NMR and "C

NMR spectrum agree with previously reported data.'

BPin
©/ (1b): The excess solvent was removed under reduced pressure. The crude reaction
mixture was dissolved in CDCl;, passed through a plug of silica gel in a Pasteur pipette and then
analyzed by 'H and *C NMR spectroscopy without additional purification. The compound was
isolated as a white solid (0.060 g, 84% yield) upon removal of solvent in vacuo. 'H NMR
(chloroform-d, 23 °C): 6 7.82 (d, Avy, = 7.31 Hz, 2H), 7.45 — 7.36 (m, 3H), 1.35 (s, 12H).
{'"H}"C NMR (chloroform-d 23 °C): & 134.87, 131.39, 127.84, 83.91, 25.02. 'H and °C NMR

data agree with previously reported data.”
BPin

X

F (1c): The excess solvent was removed under reduced pressure. The crude reaction
mixture was dissolved in CDCl;, passed through a plug of silica gel in a Pasteur pipette and then
analyzed by 'H and "C NMR spectroscopy without additional purification. The mixture of
isomers were isolated as a white solid (0.055 g, 65% yield) upon removal of solvent in vacuo.
The 'H NMR was not assigned since the proton resonances of the meta and para isomers overlap
with each other. The ortho: meta ratio was determined to be 80:20 by integration of the
characteristic peaks in the quantitative °C NMR spectrum. {'H}'"°C NMR (chloroform-d 23 °C):
6 168.17, 166.18, 137.02, 136.79, 133.32, 133.25, 123.58, 123.50, 115.34 115.15, 84.12, 24.50
(ortho).; 6 163.46, 161.50, 131.26, 130.30, 129.50, 129.44, 121.03, 120.88, 118.25, 118.09,

83.91, 24.84 (meta). >C NMR data agree with previously reported data.’

J /BPin

F F (1d): The crude reaction mixture was exposed to air to quench the catalyst and

filtered through a plug of silica gel in a Pasteur pipette and then analyzed by 'H and “C NMR

spectroscopy without additional purification. NMR yield of the crude mixture was determined by
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YF NMR using fluorobenzene as an external standard (70% yield). The 'H NMR was not
assigned since the proton resonances of the 3- and 4- borylated isomers overlap with each other.
The 3:4 ratio was determined to be 70:30 by integration of the characteristic peaks in the '’F
NMR spectrum. A trace amount of ortho borylated fluorobenzene was observed in the '’F NMR ,
likely due to defluorination-borylation. {'"H}"C NMR (chloroform-d 23 °C): & 154.5, 150.4,
131.1, 124.0, 120.78, 119.27, 117.83, 117.21, 83.72, 25.12 (3).; 8 153.65, 153.57, 151.98, 151.90,
151.18, 151.10, 149.53, 149.45, 131.53, 123.96, 123.82, 116.84, 116.41, 84.19, 25.42. (4). °C

NMR data agree with previously reported data.*”

o

)

o)
BPin  (1e): The crude reaction mixture was exposed to air to quench the catalyst and filtered

through a plug of silica gel in a Pasteur pipette and then analyzed by 'H and “C NMR
spectroscopy without additional purification. NMR yield of the crude mixture was determined
using cyclooctane as an external standard (90% yield). 'H NMR (chloroform-d, 23 °C): & 7.21
(dd, J = 7.31 Hz, J = 1.5 Hz, 1H), 6.92 (dd, /= 7.31 Hz, J = 1.1 Hz 1H), 6.82 (t, /= 7.31 Hz,
1H), 6.02 (s, 2H), 1.36 (s, 12H). {'H}"°C NMR (chloroform-d 23 °C): 8 152.54, 146.87, 127.82,

121.06, 111.16, 100.72, 83.91, 24.80. 'H and *C NMR data agree with previously reported data.®

Me

B

PinB Z e (1f): The compound was isolated (0.029 g, 32% yield) upon removal of solvent in
vacuo. 'H NMR (chloroform-d, 23 °C): § 7.31 (s, 2H), 2.52 (s, 6H), 1.35 (s, 12H). {'"H}"*C NMR
(chloroform-d 23 °C): & 156.92, 125.16, 84.25, 24.74. '"H and C NMR data agree with
previously reported data.’
- BPIn
()
MeO (1g): The crude reaction mixture was exposed to air to quench the catalyst and

filtered through a plug of silica gel in a Pasteur pipette and then analyzed by 'H and “C NMR
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spectroscopy without additional purification. NMR yield of the crude mixture was determined
using cyclooctane as an external standard (60% yield). The 'H NMR was not assigned since the
proton resonances of the meta and para isomers overlap with each other. The meta: para ratio
was determined to be 75:25 by integration of the characteristic peaks in the quantitative *C NMR
spectrum. {'H}'">C NMR (chloroform-d 23 °C): § 159.20, 129.06, 128.61, 118.48, 117.42, 83.39,
54.46, 24.41 (meta).; 6 161.85, 136.54, 113.46, 83.39, 54.46, 24.41 (para). 6 164.19, 136.87,
132.54, 120.21, 110.06, 82.26, 59.91, 24.63 (ortho). BC NMR data agree with previously
reported data.>>'?
BPin
MezN—:\j
Z (1h): The crude reaction mixture was exposed to air to quench the catalyst and
filtered through a plug of silica gel in a Pasteur pipette and then analyzed by 'H and *C NMR
spectroscopy without additional purification. NMR yield of the crude mixture was determined
using cyclooctane as an external standard (67%yield). The 'H NMR was not assigned since the
proton resonances of the meta, para and ortho isomers overlap with each other. The meta: para:
ortho ratio was determined to be 75:25:trace by integration of the characteristic peaks in the
quantitative °C NMR spectrum. {'H}"C NMR (chloroform-d 23 °C): & 150.0, 128.94, 127.19,
118.65, 117.94, 83.18, 55.10, 24.54 (meta).; & 159.01, 136.51, 113.3, 83.85, 55.26.1, 24.86

(para). “C NMR data agree with previously reported data.'""?

Me

WT\C;%BPM . ) o )

(1i): A 0.01 M solution of ("' Tpy)Co(OAc), in 2-methylfuran was prepared. To a
10 mL reaction vial, 0.36 mL of the 0.01 M solution of (*'Tpy)Co(OAc), (0.003 mmol catalyst)’
was added. The vial was also charged with a magnetic stir bar and 0.014 g (0.359 mmol) of
LiOMe, and 0.091 g (0.359 mmol) of B,Pin,. The resulting mixture was heated in an oil bath at
80 °C for 36 hours. The crude reaction mixture was dissolved in hexane and the resulting solution

was passed through a plug of silica gel in a Pasteur pipette to remove the catalyst. The title
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compound was isolated as a colorless oil (0.074 g, 98% yield) upon removal of solvent in vacuo.
'H NMR (chloroform-d, 23 °C): § 6.94 (d, Avy;, = 3.07 Hz, 1H), 5.99 (d, Av,, = 3.07 Hz, 1H),
2.30 (s, 3H), 1.29 (s, 12H). {'H}"*C NMR (chloroform-d 23 °C): § 157.58, 124.80, 106.87, 83.90,

24.66, 13.83.'H and ">C NMR data agree with previously reported data."

X0
(j/\fspin

Z (1j): Isolated as a white solid (0.081 g, 88%). '"H NMR (chloroform-d, 23 °C): &
7.63 (d, Avis = 7.91 Hz, 1H), 7.57 (d, Avy, = 7.90 Hz, 1H), 7.40 (s, 1H), 7.34 (ddd, Av,, = 8.4,
7.2, 1.3 Hz, 1H), 7.25 — 7.21 (m, 1H), 1.39 (s, 12H). {'"H}"C NMR (chloroform-d 23 °C): &
157.54, 127.49, 125.95, 122.73, 121.90, 119.56, 111.99, 84.71, 24.81. 'H and >C NMR data

agree with previously reported data.'*

Me

I

N
©;)—Bpin
(1Kk): Isolated as a white solid (0.058 g, 60%). 'H NMR (chloroform-d, 23 °C): &
7.64 (d, Avy, = 8.05 Hz, 1H), 7.07 — 7.36 (m, 5H), 3.98 (s, 3H), 1.37 (s, 12H). {'"H}"*C NMR
(chloroform-d 23 °C): & 140.14, 127.84, 123.17, 121.60, 119.29, 114.24, 109.69, 83.70, 32.25,

24.86. 'H and °C NMR data agree with previously reported data.'
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Figure S10. H NMR spectrum of 1a in CDCl; at 23 °C.
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Figure S11. "C NMR spectrum of 1a in CDCl; at 23 °C.
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Figure S12. 'H NMR spectrum of 1b in CDCl; at 23 °C.
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Figure S13. °C NMR spectrum of 1b in CDCl; at 23 °C.
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Figure S14. '"H NMR spectrum of 1¢ in CDCl; at 23 °C.

NL-II-170_G.11fid reseg . P
in CDCI3 28883 i3 g 3%
Bt oot mepsosmormzs L3155 4 P8
| .
-~
|
‘
1
|
‘ ‘ “)\ d “
\
Ll Hh“m i mh
(pPM)

Figure S15. ">C NMR spectrum of 1¢ in CDCl; at 23 °C.
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Figure S16. °C NMR spectrum of crude reaction of 1d mixture in CDCl; at 23 °C.
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Figure S17. "’F NMR spectrum of crude reaction mixture of 1d in CDCl; at 23 °C
is ortho-borylated fluorobenzene, a result of defluorination-borylation.
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Figure S18. C NMR spectrum of crude reaction mixture of 1e in CDCl; at 23 °C.
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Figure S19. 'H NMR spectrum of 1f in CDCl; at 23 °C.
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Figure S20. "C NMR spectrum of 1f in CDCl; at 23 °C.
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Figure S21. °C NMR spectrum of crude reaction mixture of 1g in CDCl; at 23 °C.
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Figure S22. °C NMR spectrum of crude reaction mixture of 1h in CDCl; at 23 °C.
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Figure S23. "H NMR spectrum of 1i CDCl; at 23 °C.
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Figure S24. “C NMR in of 1i CDCl; at 23 °C.
in CDCI3 -
PPROTON.PU CDCI3 /opt/topspin3.0 nieonar ‘
"
JI I y
(@)
/ BPin
e
T
) ¥ y y y ! | y ‘D 3‘.5 G‘D 2‘.5 2‘0 I‘.S 1‘0 05 0.0 0.5

55 50 45
1 (ppm)

Figure S25. '"H NMR spectrum of 1j in CDCl; at 23 °C.
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Figure S26. "C NMR spectrum of 1j in CDCl; at 23 °C.
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Figure S27. "H NMR spectrum of 1k in CDCl; at 23
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Figure S28. C NMR spectrum of 1k in CDCl; at 23 °C.
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