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Ion-Molecule Reaction Studies. Possible mechanisms for the formation of the [M-H]+ ions upon APCI
were investigated in more detail by performing ion-molecule reactions under controlled conditions within
the ion trap of LQIT. Two volatile hydrocarbons were introduced individually into the ion trap via a pulsed
valve.  The  compounds  were  hexane  (used  as  a  solvent  in  all  APCI  studies  discussed  above)  and  n-
butylcyclohexane. The latter compound was selected because it resembles alkylnaphthenes and is volatile
enough to be introduced into the ion trap via the pulsed valve. Reagent ions, [O2]+● (m/z 32), [C6H13]+

(m/z 85), [C6H11]+ (m/z 83), [C5H11]+ (m/z 71), [C4H9]+ (m/z 57), and [C6H14] (m/z 141), generated upon
APCI from oxygen or hexane, were introduced into the ion trap, isolated and allowed to react with the
hydrocarbons for 500 ms.
Reactions of [O2]+● with  hexane  at  low  pressure  within  the  ion  trap  resulted  in  generation  of  some
molecular and pseudo-molecular ions as well as a significant amount of fragment ions (Figure S1a). In
contrast, direct infusion of hexane into the APCI source using oxygen as the ion source gas (Figure S1b)
yielded predominantly [C6H13]+ ([M-H]+)  ions with a small  amount of [C4H9]+ (m/z 57), [C5H11]+ (m/z
71) and [C6H11]+ (m/z 83) fragment ions and [C4H7+C6H14]+ (m/z 141) adduct ions. These results suggest
that either 1) the fragment ions of hexane are consumed quicker than [M-H]+ ions at the atmospheric
pressure than at low pressure, or 2) the conditions at atmospheric pressure favor formation of [M-H] + ions
over the fragment ions.

Figure S1. a) A mass spectrum measured after reactions of [O2]+● (generated upon APCI) with hexane
(MW 86) within the ion trap for 500 ms. Both even-electron carbocations and radical cations derived from
hexane were observed. b) Positive ion mode APCI mass spectrum of hexane with O2 as the ion source
gas. Only even-electron carbocations derived from hexane were observed.
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Reactions of [O2]+● with butylcyclohexane (M) in the ion trap formed [M]+●, [M-2H]+● and [M-H]+ ions
as well as abundant fragment ions (Figure S2a). However, reactions of carbocations of m/z 57 (derived
from hexane) with butylcyclohexane within the ion trap produced only [M-H]+ ions via hydride
abstraction with no fragmentation (Figure S2b). The rest of the reagent ions, [C5H11]+ (m/z 71), [C6H11]+

(m/z 83), and [C6H13]+ (m/z 85), provided the same results as the reagent ion [C4H9]+ (m/z 57, Figure S2b).
Above results demonstrate that large saturated hydrocarbons  can be ionized by hydride abstraction
without fragmentation in the ion trap if the reagent ion is one of the above carbocations derived from
hexane. However,  if  the reagent ion is  [O2]+●, this is not the case. The same may be true for APCI. A
possible pathway for the formation of [M-H]+ ions from a hydrocarbon (M) in hexane upon atmospheric
pressure chemical ionization with oxygen ion source gas is shown in Scheme S1. Oxygen was selected
for Scheme S1 instead of nitrogen because oxygen was used as the ion source gas in the final APCI
method in this study.

Figure S2. Mass  spectra  measured  after  reactions  of  butylcyclohexane  (M;  MW  140)  with  a)  [O2]+●

(generated upon APCI) in the ion trap, and b) [C4H9]+ (m/z 57; generated upon APCI using oxygen as ion
source gas and hexane as reagent) in the ion trap.

Scheme S1. Possible pathways for the formation of [M-H]+ ions for saturated hydrocarbons (M) in hexane
upon APCI using oxygen as the ion source gas: a) ionization of oxygen, b) ionization of hexane, and c)
ionization of an analyte.  (CnHm-H)+ (n < 6, m < 14) indicates the carbocation fragments derived from
hexane.
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Figure S3. Direct infusion positive ion mode low-resolution APCI mass spectra of the low viscosity
lubricant base oil in hexane obtained using LQIT/Orbitrap and nitrogen (top) or oxygen (middle) as the
ion source gas, and a zoomed view of the mass region m/z 240 - 270 of a high-resolution mass spectrum
(bottom) measured by using the Orbitrap mass spectrometer with oxygen as the ion source gas.
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Figure S4. Three examples of positive ion mode FI mass spectra measured for the low viscosity lubricant
base oil. The spectra represent typical variation of ion distributions within and between days. Total ion
current as a function of acquisition time is shown on the left. Zoom view of the mass spectrum for a
selected mass range of m/z 285-330 is shown on the right.
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Figure S5. Three examples of positive ion mode FI mass spectra measured for the middle viscosity
lubricant base oil. The spectra represent typical variation of ion distributions within and between days.
Total ion current as a function of acquisition time is shown on the left. Variation of the hydrocarbon class
distribution (wt %) of the middle viscosity base oil, based on six measurement days, three replicates per
day, is shown on the right.
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Figure S6. Three examples of positive ion mode FI mass spectra measured for the high viscosity lubricant
base oil. The spectra represent typical variation of ion distributions within and between days.  Total ion
current as a function of acquisition time is shown on the left. Variation of the hydrocarbon class
distribution (wt %) of the high viscosity base oil, based on six measurement days, three replicates per day,
is shown on the right.
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Figure S7. Positive ion mode FI mass spectrum of squalane (MW 422) determined using a brand new FI
emitter. Zoomed view on the mass spectrum on the left corner shows the fragment ions and 13C isotope
ions. Percent number near fragment ion of m/z 420 refers to the abundance of the fragment ion relative to
the molecular ion (m/z 422).
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Figure S8. Hydrocarbon class distributions as a function of carbon number determined for low viscosity
base oil by using APCI-MS (top) and FI-MS (bottom).
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Figure S9. Hydrocarbon class distributions as a function of carbon number determined for middle
viscosity base oil by using APCI-MS (top) and FI-MS (bottom).
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Figure S10. Hydrocarbon class distributions as a function of carbon number determined for high viscosity
base oil by using APCI-MS (top) and FI-MS (bottom).
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Figure S11. Naphthenic structures, their total carbon numbers and relative contributions used to
calculate average number of naphthenic carbons.


