Synthesis of the core of the fungal metabolite benesudon - use of oxidative decarboxylation
 Derrick L. J. Clive,* Minaruzzaman, and Haikang Yang
 Chemistry Department, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
 e-mail: derrick.clive@ualberta.ca

 SUPPORTING INFORMATION

 SUPPORTING INFORMATION}

Index
Preparation of 17 and characterization data page s2

Characterization data for 14, 15, 16, 6, 18, 19 page S2
${ }^{13}$ C NMR spectra of 14 (less polar isomer),
14 (more polar isomer), 15-20, 5. page S6

3-Oxohexahydrofuro[2,3-b] pyran-7a-carboxylic Acid (17).

$$
\left(\mathrm{Bu}_{3} \mathrm{Sn}\right)_{2} \mathrm{O}(0.97 \mathrm{~mL}, 1.94 \mathrm{mmol}) \text { was added to a solution of } 16
$$ ($96 \mathrm{mg}, 0.48 \mathrm{mmol})$ in dry $\mathrm{PhH}(7.5 \mathrm{~mL})$, and the solution was refluxed under N_{2} for 5 h . The solvent was evaporated and EtOAc (10 mL) was added to the residue. The EtOAc solution was extracted with saturated aqueous NaHCO_{3} solution (2 x 10 mL), and the aqueous extract was acidified ($\mathrm{pH} 1, \mathrm{pH}$ paper) with ice-cold hydrochloric acid (2 N) and extracted with EtOAc (4 x 5 mL). The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The resulting crude acid (17) should be used immediately, without further purification. If hydrolysis is continued for 4-5 h more, then the acid becomes first pink and then dark, and the overall yield of 18 after the oxidation is low. The acid was an oil and had: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, cast) $3500-2500,1766 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) ~ \delta 1.43-1.54(\mathrm{~m}, ~ 2 \mathrm{H}), 1.90-2.01(\mathrm{~m}, 1 \mathrm{H}), 2.16-2.26(\mathrm{~m}, 1$ H), $2.89(\mathrm{dd}, J=6.3,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1 \mathrm{H}), 3.70-3.77(\mathrm{~m}, 1 \mathrm{H})$, 3.94-4.02 (m, 1 H$), 4.27\left(\mathrm{AB} q, \Delta v_{\mathrm{AB}}=25.2 \mathrm{~Hz}, J=16.6 \mathrm{~Hz}, 2\right.$ H), $5.75(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) \delta 19.9(\mathrm{t}), 21.0$ $(t), 47.0$ (d), $65.0(t), 70.5(t), 101.8(s), 169.5(s), 210.5$ (s); exact mass (HR electrospray) m / z calcd for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{O}_{5}$ (M + H) 187.0601, found 187.0603.

3-Bromo-2-(prop-2-ynyloxy) tetrahydropyran-2-carboxylic Acid Methyl Ester (14).

One isomer of 14 was an oil and had: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, cast) 3286, 2126, 1755, $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.68-1.76(\mathrm{~m}, 1$ H), 1.86-2.00 (m, 1 H), 2.10-2.18 (m, 1 H$)$, 2.36 (dq, J = 12.8, $4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{t}, \mathrm{J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.76-3.83$ [m, 4 H , including a singlet (3 H) at $\delta 3.80], 3.87(d q, \quad J=12.4,2.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.26(\mathrm{dd}, \mathrm{J}=12.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.45\left(\mathrm{~d} \mathrm{AB} q, \Delta v_{\mathrm{AB}}=\right.$ $108.4 \mathrm{~Hz}, \mathrm{~J}=15.6,2.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) \delta$ 26.9 (t), 29.2 (t), 48.4 (d), 52.2 (t), 52.9 (q), 61.9 (t), 74.3 (d), $79.6(s), 98.9(s), 167.3(s) ;$ exact mass (HR electrospray) m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{13}{ }^{79} \mathrm{BrNaO}_{4}(\mathrm{M}+\mathrm{Na}) 298.9889$, found 298.9886.

The other isomer of 14 was an oil and had: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, cast) 3282, 2124, $1761 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.38-1.44$ (m, 1 H), 1.97-2.05 (m, 1 H), 2.15-2.26 (m, 1 H), 2.44 (t, J = $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.45-2.54(\mathrm{~m}, 1 \mathrm{H}), 3.75-3.83$ [m, 4 H , including a $\mathrm{s}(3 \mathrm{H})$ at $\delta 3.80], 3.89-3.96(\mathrm{~m}, 1 \mathrm{H}), 4.13\left(\mathrm{~d} A B \mathrm{q}, \Delta \mathrm{v}_{\mathrm{AB}}=91.5\right.$ $\mathrm{Hz}, \mathrm{J}=15.4,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.38(\mathrm{t}, \mathrm{J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125.7 \mathrm{MHz}\right) \delta 18.9(\mathrm{t}), 26.9(\mathrm{t}), 48.9(\mathrm{~d}), 52.1$ (t), 52.7 (q), 62.2 (t), 74.7 (d), 78.4 (s), 98.0 (s), 167.2 (s); exact mass (HR electrospray) m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{13}{ }^{79} \mathrm{BrNaO}_{4}(\mathrm{M}+\mathrm{Na}$) 298.9889, found 298.9890.

3-Methylenehexahydrofuro [2,3-b] pyran-7a-carboxylic Acid Methyl Ester (15).

Compound 15 was an oil and had: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, cast) 1742 $\mathrm{cm}^{-1}{ }^{1}{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.29-1.41(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.76(\mathrm{~m}$, $1 \mathrm{H}), 1.93-2.07(\mathrm{~m}, 2 \mathrm{H}), 3.03-3.08(\mathrm{~m}, 1 \mathrm{H}), 3.59-3.66(\mathrm{~m}, 1 \mathrm{H})$, $3.80(\mathrm{~s}, 3 \mathrm{H}), 3.84-3.90(\mathrm{~m}, ~ 1 \mathrm{H}), 4.55-4.65(\mathrm{~m}, 2 \mathrm{H}), 4.97(\mathrm{q}, \mathrm{J}$ $=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{q}, \mathrm{J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125.7\right.$
$\mathrm{MHz}) \delta 19.7$ (t), $22.2(\mathrm{t}), 43.0(\mathrm{~d}), 52.6$ (q), 64.5 (t), 71.3 $(t), 103.3(s), 104.6(t), 146.4(s), 168.7(s) ;$ exact mass m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{4}$ 198.0892, found 198.0890.

3-Oxohexahydrofuro[2,3-b] pyran-7a-carboxylic Acid Methyl Ester (16).

Compound 16 was an oil and had: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, cast) 1765, $1742 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.40-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.86-$ $1.98(\mathrm{~m}, ~ 1 \mathrm{H}), 2.19-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.91(\mathrm{dd}, J=6.1,2.7 \mathrm{~Hz}, 1$ H), 1 H) , $3.54-3.65(\mathrm{~m}, ~ 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.90-3.98(\mathrm{~m}, 1 \mathrm{H})$, $4.23\left(\mathrm{AB} q, \Delta v_{\mathrm{AB}}=19.8 \mathrm{~Hz}, J=16.6 \mathrm{~Hz}, 2 \mathrm{H}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, $100.6 \mathrm{MHz}) \delta 19.9(\mathrm{t}), 21.0(\mathrm{t}), 47.6(\mathrm{~d}), 53.0(\mathrm{q}), 64.9(\mathrm{t})$, 70.4 (t), 102.4 (s), 167.6 (s), 211.1 (s); exact mass (HR electrospray) m / z calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{NaO}_{5}(\mathrm{M}+\mathrm{Na}$) 223.5770, found 223.0581 .

5,6-Dihydro-4H-furo[2,3-b] pyran-3-one (6).

Compound 6 had: mp 60-62 ${ }^{\circ} \mathrm{C}$; FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, cast) 1705, 1600 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.91-1.99(\mathrm{~m}, 2 \mathrm{H}), 2.33(\mathrm{t}, \mathrm{J}=$ $6.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.47$ (apparent $\mathrm{t}, \mathrm{J}=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 15.5(\mathrm{t}), 21.2(\mathrm{t}), 71.5(\mathrm{t}), 74.2$ (t), $88.9(s), 182.8(s), 194.1(s) ;$ exact mass m / z calcd for $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}_{3}$ 140.0474, found 140.0473.

2-Methyl-5,6-dihydro-4H-furo[2,3-b] pyran-3-one (18).

Compound 18 was an oil and had: FTIR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$, cast) 1699, $1598 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.49(\mathrm{~d}, ~ J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, 1.94 (apparent pentet, $J=6.3 \mathrm{~Hz}, 2 \mathrm{H}$), 2.32 (dt, $J=6.3$, 3.2 $\mathrm{Hz}, 2 \mathrm{H}), 4.45(\mathrm{dt}, \mathrm{J}=5.2,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.59(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}$, 1H) ; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 15.6$ (t), 16.3 (q), 21.3 (t), 71.4 (t), $82.5(d), 87.5(s), 181.4(s), 196.9$ (s); exact mass m / z calcd for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{3}$ 154.0630, found 154.0630.

2-Methyl-2-phenylselenyl-5,6-dihydro-4H-furo [2, 3-b] pyran-3one (19).

Compound 19 was a white solid and had: FTIR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$, cast) 1706, $1601 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.40-1.51(\mathrm{~m}, 1 \mathrm{H})$, 1.69-1.84 (m containing a singlet, 5H in all), 2.06-2.14 (m, 1H), 4.06-4.12 (m, 1H) , 4.24-4.20(m, 1H), 7.28 (t, J = 7.5 Hz, 2H), 7.37 (tt, J $=5.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.68(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 15.3(\mathrm{t}), 21.1(\mathrm{t}), 21.9(\mathrm{q}), 71.4$ (t), 88.0 (s), $91.9(s), 125.4(s), 128.7(d), 129.4(d), 137.5(d), 179.0(s)$, $194.1(s) ;$ exact mass m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{3}{ }^{80}$ Se 310.0108, found 310.0109.

acq.time[s]:2.0 relax. time[s]:0

Pulse Sequence: apt

seqriax.
relim
date:Feb 252005
acq.time[s]:2.0

Pulse Sequence: apt

