3-[(2R)-Amino-2-phenylethyl]-1-(2,6-difluorobenzyl)-5-(2-fluoro-3-methoxyphenyl)- 6-methylpyrimidin-2,4-dione (NBI 42902) as A Potent and Orally Active Antagonist of the Human Gonadotropin-Releasing Hormone Receptor- Design, Synthesis and in vitro and in vivo Characterization

Fabio C. Tucci, ${ }^{1}$ Yun-Fei Zhu, ${ }^{1}$ R. Scott Struthers, ${ }^{2}$ Zhiqiang Guo, ${ }^{1}$ Timothy D. Gross, ${ }^{1}$ Martin W. Rowbottom, ${ }^{1}$ Oscar Acevedo, ${ }^{1}$ Yinghong Gao, ${ }^{1}$ John Saunders, ${ }^{1}$ Qiu Xie, ${ }^{2}$ Greg J. Reinhart, ${ }^{2}$ Xin-Jun Liu, ${ }^{2}$ Nicholas Ling, ${ }^{1}$ Anne K. L. Bonneville, ${ }^{3}$ Takung Chen, ${ }^{3}$ Haig Bozigian, ${ }^{3}$ and Chen Chen ${ }^{*, 1}$
${ }^{1}$ Department of Medicinal Chemistry, ${ }^{2}$ Department of Endocrinology and ${ }^{3}$ Department of Preclinical Development

Neurocrine Biosciences, Inc. 12790 El Camino Real, San Diego, CA 92130, USA

The following compounds 13a-e and 14a-b were synthesized in a manner similar to the procedure described for $R \mathbf{- 1 3 b}$ from 10 .
3-[(2S)-Amino-2-phenylpropyl]-1-(2,6-difluorobenzyl)-6-methyl-5-(2-fluoro-3-
methoxyphenyl)pyrimidin-2,4-dione hydrochloride (S-13a). white powder; ${ }^{1} \mathrm{H}$ NMR (DMSO$\left.d_{6}\right): 2.11 \& 2.12(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{~m}, 1 \mathrm{H}), 2.59(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.84$ \& $3.85(\mathrm{~s}, 3 \mathrm{H}), 5.22(\mathrm{~m}, 2 \mathrm{H}), 6.74(\mathrm{~m}, 1 \mathrm{H}), 7.15(\mathrm{~m}, 7 \mathrm{H}), 7.26(\mathrm{~m}, 2 \mathrm{H}), 7.41(\mathrm{~m}, 1 \mathrm{H}) .{ }^{19}$ F NMR: -115.9 (m, 2F), -136.1 \& -136.2 (dd, $J=5.6,7.5 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR (DMSO- $d 6$): 17.4, 38.6, 41.9, $47.0,50.4 \& 50.5,56.0,106.8,111.9(\mathrm{~m}, 2 \mathrm{C}), 112.3(\mathrm{t}, J=15.0 \mathrm{~Hz}), 113.4,122.6(\mathrm{~d}, J=$ $13.7 \mathrm{~Hz}), 123.7,124.0(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 125.8,128.1$ (s, 2C), 129.0 (s, 2C), 129.9 (t, $J=10.6 \mathrm{~Hz}$), $139.2 \& 139.3,147.3(\mathrm{~d}, J=10.6 \mathrm{~Hz}), 149.5(\mathrm{~d}, J=242 \mathrm{~Hz}), 150.42 \& 142.47(\mathrm{~s}), 151.13$ \&151.19 (s), 160.6 (dd, $J=8.3,245.7 \mathrm{~Hz}), 160.69 \& 160.73$ (s); MS: $510\left(\mathrm{MH}^{+}\right)$.

3-[(2S)-Amino-2-phenylethyl]-1-(2,6-difluorobenzyl)-6-methyl-5-(2-fluoro-3-
methoxyphenyl)pyrimidin-2,4-dione hydrochloride (S-13b). white powder. ${ }^{1} \mathrm{H}$ NMR: 2.05 \& $20.6(\mathrm{~s}, 3 \mathrm{H}), 3.83 \& 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.95 \& 4.20(\mathrm{~m}, 1 \mathrm{H}), 4.50(\mathrm{~m}, 2 \mathrm{H}), 4.72-5.48(\mathrm{~m}, 2 \mathrm{H}), 6.80-$ $7.60(\mathrm{~m}, 11 \mathrm{H}), 8.82$ (brs, 2H); MS: $496\left(\mathrm{MH}^{+}\right)$; Anal. for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{xHClxH}_{2} \mathrm{O}: \mathrm{C}, \mathrm{H}, \mathrm{N}$.
3-[(2R)-Amino-4-methylpentyl]-1-(2,6-difluorobenzyl)-6-methyl-5-(2-fluoro-3-methoxyphenyl)pyrimidin-2,4-dione hydrochloride (R - 13c). white powder. ${ }^{1} \mathrm{H}$ NMR: 0.82 (d, $J=5.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{t}, J=5.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.55(\mathrm{~m}, 1 \mathrm{H}), 1.61(\mathrm{~m}, 2 \mathrm{H}), 2.09 \& 2.12(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{~m}$, $1 \mathrm{H}), 3.83 \& 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.96-4.43(\mathrm{~m}, 2.5 \mathrm{H}), 5.20-5.52(\mathrm{~m}, 2.5 \mathrm{H}), 6.89(\mathrm{~m}, 3 \mathrm{H}), 7.09(\mathrm{~m}, 1 \mathrm{H})$, $7.17(\mathrm{~m}, 1 \mathrm{H}), 7.23(\mathrm{~m}, 1 \mathrm{H}), 8.25$ (brs, 3 H$)$; MS: $476\left(\mathrm{MH}^{+}\right)$.

3-[(2R)-Amino-2-cyclohexylethyl]-1-(2,6-difluorobenzyl)-6-methyl-5-(2-fluoro-3-
methoxyphenyl)pyrimidin-2,4-dione hydrochloride (R - $\mathbf{1 3 d}$). white powder. ${ }^{1} \mathrm{H}$ NMR (DMSO$\left.d_{6}\right): 1.11(\mathrm{~m}, 5 \mathrm{H}), 1.50-1.77(\mathrm{~m}, 6 \mathrm{H}), 2.20 \& 2.21(\mathrm{~s}, 3 \mathrm{H}), 3.17(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.93(\mathrm{~m}$, $1 \mathrm{H}), 4.02(\mathrm{~m}, 1 \mathrm{H}), 5.24(\mathrm{~m}, 2 \mathrm{H}), 6.78(\mathrm{~m}, 1 \mathrm{H}), 7.11(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{~m}$, 1H), 7.94 (br, 2H). ${ }^{13} \mathrm{C}$ NMR (DMSO-d6): $17.6 \& 17.7,25.5,25.6$ (2C), $27.2 \& 27.3$ (2C), 27.8 \& 27.9, $38.5 \& 38.6,41.2 \& 41.3,53.9 \& 54.0,55.9 \& 56.0,106.9 \& 107.0,111.8(m, 2 C)$, $112.1(\mathrm{t}, J=17.4 \mathrm{~Hz}), 113.4 \& 113.5,122.3(\mathrm{~d}, J=13.7 \mathrm{~Hz}), 123.6(\mathrm{~d}, J=17.4 \mathrm{~Hz}), 123.9 \&$ $124.0(\mathrm{~d}, J=6.8 \mathrm{~Hz}), 130.0(\mathrm{t}, J=10.6 \mathrm{~Hz}), 147.5 \& 147.6,149.5(\mathrm{~d}, J=242.7 \mathrm{~Hz}), 151.0 \&$ $151.1,151.2 \& 151.5,160.6(\mathrm{dd}, J=7.5,246.4 \mathrm{~Hz}, 2 \mathrm{C}), 160.8 \& 160.9$; MS: $502\left(\mathrm{MH}^{+}\right)$. Anal. for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{xHClx} 0.5 \mathrm{H}_{2} \mathrm{O}$.

3-[(2R)-Amino-3-methylbutyl]-1-(2,6-difluorobenzyl)-6-methyl-5-(2-fluoro-3-
methoxyphenyl)pyrimidin-2,4-dione TFA salt (R-13e). colorless oil, ${ }^{1} \mathrm{H}$ NMR: 0.98 ($\mathrm{d}, \mathrm{J}=$ $6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.09 \& 2.12(\mathrm{~s}, 3 \mathrm{H}), 3.17-3.22(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 4.04-$ $4.17(\mathrm{~m}, 2 \mathrm{H}), 4.25-4.33(\mathrm{~m}, 1 \mathrm{H}), 5.05 \& 5.16(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H})$, 6.81-7.13 (m, 6H), 8.10 (brs, 3H); MS m/z $462.2\left(\mathrm{MH}^{+}\right)$.

3-[(2S)-Methylamino-3-phenylpropyl]-1-(2,6-difluorobenzyl)-6-methyl-5-(2-fluoro-3-methoxyphenyl)pyrimidin-2,4-dione hydrochloride (S-14a). white powder. ${ }^{1} \mathrm{H}$ NMR (DMSO$d 6): 2.11 \& 2.12(\mathrm{~s}, 3 \mathrm{H}), 2.62 \& 2.63(\mathrm{~s}, 3 \mathrm{H}), 2.76(\mathrm{dd}, J=10.0,12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.16 \& 3.17(\mathrm{dd}, J$ $=3.6,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{dd}, J=5.2,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.13 \& 4.15(\mathrm{dd}, J$ $=8.0,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.11 \& 5.12(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.16 \& 5.17(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~m}$, $1 \mathrm{H}), 7.09(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~m}, 2 \mathrm{H}), 7.27(\mathrm{~m}, 5 \mathrm{H}), 7.40(\mathrm{~m}, 1 \mathrm{H}), 8.93$ (brs, 1H), 9.14 (brs, 1H). ${ }^{13} \mathrm{C}$ NMR (DMSO-d6): 17.5, $29.3 \& 29.4,34.1 \& 34.2,41.0 \& 41.1,56.0,56.1 \& 56.2$, $106.9,111.8(\mathrm{~m}, 2 \mathrm{C}), 112.1,112.2(\mathrm{t}, J=17.7 \mathrm{~Hz}), 113.4,122.2 \& 122.3(\mathrm{~d}, J=6.1 \mathrm{~Hz}), 123.6 \&$ 123.7, $123.9 \& 124.0(\mathrm{~d}, J=4.5 \mathrm{~Hz}), 126.7,128.4(2 \mathrm{C}), 128.9(2 \mathrm{C}), 130.0(\mathrm{t}, J=9.9 \mathrm{~Hz}), 136.0$ \& 136.1, $147.4(\mathrm{~d}, J=10.6 \mathrm{~Hz}), 149.5(\mathrm{~d}, J=239.7 \mathrm{~Hz}), 150.8 \& 150.9,151.1 \& 151.2,160.6(\mathrm{dd}$, $J=8.4,246.5 \mathrm{~Hz}, 2 \mathrm{C}), 160.7 \& 160.8$. Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{3} \times \mathrm{XClx} 0.5 \mathrm{H}_{2} \mathrm{O}$.

3-[(2R)-Methylamino-2-phenylethyl]-1-(2,6-difluorobenzyl)-6-methyl-5-(2-fluoro-3-

 methoxyphenyl)pyrimidin-2,4-dione hydrochloride (R - 14b). white powder. ${ }^{1} \mathrm{H}$ NMR: 2.10 (s, $3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 4.25(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~m}, 1 \mathrm{H}), 4.76(\mathrm{dd}, J=6.4,12.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.16(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~m}, 1 \mathrm{H}), 7.22(\mathrm{~m}, 1 \mathrm{H}), 7.34(\mathrm{~m}, 4 \mathrm{H}), 7.53(\mathrm{~m}, 2 \mathrm{H}), 9.26(\mathrm{brs}, 1 \mathrm{H}), 10.2$ (brs, $1 \mathrm{H}) ;{ }^{19}$ F NMR: -115.2 (t, $\left.J=5.6 \mathrm{~Hz}\right) ;{ }^{13} \mathrm{C}$ NMR: 17.08, 31.8, 39.3, 44.3, 55.3, 61.9, 111.8 (m, $2 \mathrm{C}), 112.1(\mathrm{t}, J=16.7 \mathrm{~Hz}), 113.4,114.6,116.6,123.4,128.5$ (2C), 129.2 (2C), 129.4, 129.5, $129.6(\mathrm{t}, J=10.7 \mathrm{~Hz}), 131.9,135.4,149.7,151.7,159.4,161.0(\mathrm{dd}, J=6.8 \mathrm{~Hz}, 248 \mathrm{~Hz}, 2 \mathrm{C})$, 162.6; MS: $510\left(\mathrm{MH}^{+}\right)$; Anal. for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{3} \times \mathrm{XHClx} 0.75 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, \mathrm{H}, \mathrm{N}$.The following compounds 15a-f were synthesized in a manner similar to the procedure described for $R-\mathbf{1 5 b}$ from 10.

3-[(2S)-Dimethylamino-2-phenylpropyl]-1-(2,6-difluorobenzyl)-6-methyl-5-(2-fluoro-3-methoxyphenyl)pyrimidin-2,4-dione (S-15a). ${ }^{1}$ H NMR: 2.05 (s, 3H), 2.33 (s, 6H), 2.50-2.58
(m, 2H), $2.92(\mathrm{dd}, J=5.2,14.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.97-4.16(\mathrm{~m}, 2 \mathrm{H}), 5.12 \& 5.15(\mathrm{~s}, 2 \mathrm{H})$, 6.72-6.80 (m, 1H), 6.85-6.98 (m, 3H), 7.06-7.26 (m, 7H). MS m/z $538.0\left(\mathrm{MH}^{+}\right)$.

3-[(2S)-Dimethylamino-2-phenylethyl]-1-(2,6-difluorobenzyl)-6-methyl-5-(2-fluoro-3-methoxyphenyl)pyrimidin-2,4-dione hydrochloride (S-15b). white powder. ${ }^{1} \mathrm{H}$ NMR: 2.18 (s, $3 \mathrm{H}), 2.74(\mathrm{~s}, 3 \mathrm{H}), 2.81(\mathrm{~s}, 3 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 4.35$ \& 4.52 (d, 1H), 4.82-5.58 (m, 4H), 6.84-7.48 (m, 11H); MS m/z: $524\left(\mathrm{MH}^{+}\right)$; Anal. for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{XHClx} 1.3 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, \mathrm{H}, \mathrm{N}$.

3-[(2S)-Dimethylamino-4-methylpentyl]-1-(2,6-difluorobenzyl)-6-methyl-5-(2-fluoro-3-methoxyphenyl)pyrimidin-2,4-dione ($\mathrm{S}-\mathbf{1 5 c}$). colorless oil, ${ }^{1} \mathrm{H}$ NMR: $1.02(\mathrm{~m}, 6 \mathrm{H}), 1.44$ (m, 2 H), $1.84(\mathrm{~m}, 1 \mathrm{H}), 2.09 \& 2.12(\mathrm{~s}, 3 \mathrm{H}), 2.36$ (brs, 2H), 2.83 (brs, 6 H), $3.88(\mathrm{~s}, 3 \mathrm{H}), 3.82-4.07(\mathrm{~m}$, $2 \mathrm{H}), 4.40(\mathrm{dd}, J=10.5,14.7 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.51(\mathrm{dd}, J=11.1,15.3 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.98(\mathrm{~d}, J=15.9 \mathrm{~Hz}$, $0.5 \mathrm{H}), 5.12(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.49 \& 5.54(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~m}, 4 \mathrm{H}), 7.13(\mathrm{~m}, 1 \mathrm{H})$, $7.24(\mathrm{~m}, 1 \mathrm{H})$; MS m/z $504.2\left(\mathrm{MH}^{+}\right)$.

3-[(2R)-Dimethylamino-3-methylbutyl]-1-(2,6-difluorobenzyl)-6-methyl-5-(2-fluoro-3-methoxyphenyl)pyrimidin-2,4-dione (R-15e) TFA Salt. colorless oil, ${ }^{1}$ H NMR: $1.11 \& 1.14$ (d, $J=3.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.22-1.26(\mathrm{~m}, 3 \mathrm{H}), 2.10 \& 2.13(\mathrm{~s}, 3 \mathrm{H}), 2.88(\mathrm{~s}, 6 \mathrm{H}), 3.76-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{~s}$, $3 \mathrm{H}), 3.95-4.08(\mathrm{~m}, 2 \mathrm{H}), 4.51-4.70(\mathrm{~m}, 1 \mathrm{H}), 4.98 \& 5.16(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.43 \& 5.55(\mathrm{~d}, J=$ $16.2 \mathrm{~Hz}, 1 \mathrm{H})$, 6.87-6.99 (m, 3H), 7.09-7.15 (m, 1H), 7.24-7.29 (m, 2H); MS m/z $490.2\left(\mathrm{MH}^{+}\right)$.

The following compounds 19b-h were synthesized in a manner similar to the procedure described for 19a from $R-11 \mathrm{~b}$.

3-[(2R)-Amino-2-phenylethyl]-1-(2,6-difluorobenzyl)-6-methyl-5-(3,4-ethylenedioxyphenyl)-pyrimidin-2,4-dione hydrochloride (19b). white powder. ${ }^{1} \mathrm{H}$ NMR (DMSO-d d_{6}): 2.19 (s, 3H), 4.20 (dd, J = 4.8, 10.2Hz, 1H), $4.25(\mathrm{~m}, 1 \mathrm{H}), 4.26(\mathrm{~s}, 4 \mathrm{H}), 4.49(\mathrm{~m}, 1 \mathrm{H} 0,5.16(\mathrm{~d}, J=12.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.18(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~m}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{~s}, 5 \mathrm{H})$, 7.42 (m, 1H), 8.68 (brs, 3 H); ${ }^{19}$ F NMR: -115.2 (t, $J=7.5 \mathrm{~Hz}$,); ${ }^{13} \mathrm{C}$ NMR: 17.7, 38.6, 44.1, 52.4, $64.0,64.1,111.8(\mathrm{~m}, 2 \mathrm{C}), 112.3(\mathrm{t}, \mathrm{J}=16.7 \mathrm{~Hz}), 112.5,116.7,119.4,123.7,127.1,127.3$ (2C), 128.6 (2C), 128.9, $130.0(\mathrm{t}, J=10.6 \mathrm{~Hz}), 134.9,142.8,142.9,149.7,150.9,160.6$ (dd, $J=8.3$, $241.1 \mathrm{~Hz}, 2 \mathrm{C}), 161.3$; MS: $506\left(\mathrm{MH}^{+}\right)$; Anal. for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{xHClx} 0.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, \mathrm{H}, \mathrm{N}$.

3-[(2R)-Amino-2-phenylethyl]-1-(2,6-difluorobenzyl)-6-methyl-5-(3-
methoxyphenyl)pyrimidin-2,4-dione hydrochloride (19c). white powder. ${ }^{1} \mathrm{H}$ NMR: 2.07 (s, 3 H), 3.68 (brs, 3H), $3.95(\mathrm{~m}, 1 \mathrm{H}), 4.35(\mathrm{~m}, 1 \mathrm{H}), 4.54(\mathrm{dd}, \mathrm{J}=10.4,14.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.17$ (brs, 2H),
$6.84(\mathrm{~m}, 4 \mathrm{H}), 7.21(\mathrm{~m}, 3 \mathrm{H}), 7.30(\mathrm{~m}, 4 \mathrm{H}), 7.55(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.69(\mathrm{brs}, 3 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR: 114.9 (s); ${ }^{13}$ C NMR: 17.7, 39.3, 46.0, 54.5, 55.2, 111.8 (m, 2C), 112.3 (m), 113.7, 114.6, 116.3, $123.5,127.2(2 \mathrm{C}), 128.6,128.8,128.9(2 \mathrm{C}), 129.6(\mathrm{t}, J=10.0 \mathrm{~Hz}), 134.5,135.3,150.0,152.0$, 159.4, 161.1 (dd, $J=7.6,248 \mathrm{~Hz}$), 161.8; MS: $478\left(\mathrm{MH}^{+}\right)$; Anal. for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{xHClx} 2 \mathrm{H}_{2} \mathrm{O}$: C, H, N.

3-[(2R)-Amino-2-phenylethyl]-1-(2,6-difluorobenzyl)-6-methyl-5-(4-

methylthiophenyl)pyrimidin-2,4-dione hydrochloride (19d). white powder. ${ }^{1}$ H NMR ($\mathrm{CD}_{3} \mathrm{OD}$): $2.23(\mathrm{~s}, 3 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 4.38(\mathrm{dd}, J=5.2,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{dd}, J=8.4,13.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.67(\mathrm{dd}, J=5.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{t}, J$ $=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~m}, 1 \mathrm{H}), 7.42(\mathrm{~s}, 5 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR: -117.3 (t, $J=7.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR: 15.5, 16.2, 40.3, 45.7, 55.2, 112.9 (m, 2C), 113.4 (t, $J=$ $16.7 \mathrm{~Hz}), 114.9,127.3(2 \mathrm{C}), 128.3(2 \mathrm{C}), 130.3,131.2(\mathrm{t}, J=10.6 \mathrm{~Hz}), 131.7,132.4,135.4,140.3$, 152. 3, 153.1, 162.7 (dd, $J=7.6,250 \mathrm{~Hz}, 2 \mathrm{C}), 164.0$; MS: $494\left(\mathrm{MH}^{+}\right)$; Anal. for
$\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{SxHClx} 1.2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, \mathrm{H}, \mathrm{N}$.

3-[(2R)-Amino-2-phenylethyl]-1-(2,6-difluorobenzyl)-6-methyl-5-(4-

 phenoxyphenyl)pyrimidin-2,4-dione hydrochloride (19e). white powder. ${ }^{1} \mathrm{H}$ NMR (DMSOd_{6}): $2.23(\mathrm{~s}, 3 \mathrm{H}), 4.19(\mathrm{dd}, J=4.8,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{dd}, J=6.0,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~m}, 1 \mathrm{H})$, 5.20 (brs, 2H), 7.02-7.20 (m, 7H), 7.32-7.46 (m, 6H), 8.61 (brs, 3 H); ${ }^{13}$ CNMR: 17.8, 44.2, 52.5, $111.8(\mathrm{~m}, 2 \mathrm{C}), 112.4(\mathrm{t}, J=21 \mathrm{~Hz}), 118.0,118.9,123.7,127.2,128.6,129.1,129.9(\mathrm{t}, J=6.3 \mathrm{~Hz})$, $130.1,132.5,134.9,149.8,151.0,156.1,156.3,160.6$ (dd, $J=7.6,245.7 \mathrm{~Hz}, 2 \mathrm{C}), 161.3$; MS: $540\left(\mathrm{MH}^{+}\right)$; Anal. for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{ClF}_{2} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{xHClx} 0.3 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, \mathrm{H}, \mathrm{N}$.3-[(2R)-Amino-2-phenylethyl]-1-(2,6-difluorobenzyl)-6-methyl-5-(2-chlorophenyl)pyrimidin-2,4-dione hydrochloride (19f). white powder. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}$): $2.12(\mathrm{~s}, 3 \mathrm{H}), 4.03(\mathrm{~m}, 1 \mathrm{H}), 4.57(\mathrm{~m}, 2 \mathrm{H}), 5.17$ (brs, 2H), 6.80-7.38(m, 11H), $7.56(\mathrm{~m}, 2 \mathrm{H}), 8.61$ (brs, 2 H); MS: $540\left(\mathrm{MH}^{+}\right)$; Anal. for $\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{xHClx} 0.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, \mathrm{H}, \mathrm{N}$.

3-[(2R)-Amino-2-phenylethyl]-1-(2,6-difluorobenzyl)-6-methyl-5-(2-
fluorophenyl)pyrimidin-2,4-dione hydrochloride (19g). white powder. ${ }^{1} \mathrm{H}$ NMR: 2.14 (s, 3H), $4.16(\mathrm{~m}, 1 \mathrm{H}), 4.62(\mathrm{~m}, 2 \mathrm{H}), 5.20(\mathrm{~m}, 2 \mathrm{H}), 5.60(\mathrm{brs}, 3 \mathrm{H}), 6.93(\mathrm{~m}, 3 \mathrm{H}), 7.16(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.40$ (m, 6H); MS: $466\left(\mathrm{MH}^{+}\right)$; Anal. for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{xHClx} 0.25 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, \mathrm{H}, \mathrm{N}$.

3-[(2R)-Amino-2-phenylethyl]-1-(2,6-difluorobenzyl)-6-methyl-5-(2-fluoro-3-
methylphenyl)-pyrimidin-2,4-dione hydrochloride (19h). white powder. ${ }^{1} \mathrm{H}$ NMR: 2.04 (s,
$1.5 \mathrm{H}) \& 2.08(\mathrm{~s}, 1.5 \mathrm{H}), 2.12(\mathrm{~s}, 1.5 \mathrm{H}) \& 2.24(\mathrm{~s}, 1.5 \mathrm{H}), 3.89(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 0.5 \mathrm{H}) \& 4.11(\mathrm{~d}, J$ $=12.4 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.42-4.78(\mathrm{~m}, 2 \mathrm{H}), 5.08-5.40(\mathrm{~m}, 2 \mathrm{H}), 6.80-7.56(\mathrm{~m}, 11 \mathrm{H}), 8.80(\mathrm{brs}, 3 \mathrm{H}) ;$ ${ }^{19}$ F NMR: - $114.9 \&-114.6(\mathrm{~s}, 2 \mathrm{~F}),-118.7 \&-118.6$ (s, 1F); ${ }^{13} \mathrm{C}$ NMR: $14.56 \& 14.57,17.63 \&$ $17.71,39.4,45.63 \& 46.11,54.33 \& 54.41,108.72 \& 108.88,111.7 \& 111.8$ (m, 2C), 111,98, $112.1 \& 112(\mathrm{t}, J=6.7 \mathrm{~Hz}), 121.0 \& 121.11,123.7,124.4 \& 124.8,125.0 \& 125.1,127.1,128.8$ \& 128.9, $129.6 \& 129.7(\mathrm{t}, \mathrm{J}=10.6 \mathrm{~Hz}), 130.5 \& 131.0,131.5 \& 131.7(\mathrm{~d}, \mathrm{~J}=5.3 \mathrm{~Hz}), 134.2 \&$ $134.4,151.0 \& 151.1,151.6 \& 152.5,160.7 \& 160.8(\mathrm{dd}, J=7.6,248 \mathrm{~Hz}), 161.65 \& 162.97$; MS: $480\left(\mathrm{MH}^{+}\right)$; Anal. for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{xHClx} 1.3 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, \mathrm{H}, \mathrm{N}$.

The following compounds 20 a and 20 c were synthesized in a manner similar to the procedure described for 20b from $R-\mathbf{1 2 b}$.

3-[(2R)-Methylamino-2-phenylethyl]-1-(2,6-difluorobenzyl)-6-methyl-5-(3-methoxyphenyl)-pyrimidin-2,4-dione hydrochloride (20a). white powder. ${ }^{1} \mathrm{H}$ NMR: $2.10(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H})$, 3.72 (s, 3H), 4.26 (d, $J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.55$ (brs, 1H), 4.76 (dd, $J=4.8,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~d}, J=$ $11.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.50-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.12-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.38(\mathrm{~m}, 4 \mathrm{H})$, 7.53 (m, 2H); ${ }^{19}$ F NMR: 115.2; ${ }^{13} \mathrm{C}$ NMR: 17.8, 31.8, 39.3, 44.3, 55.3, 61.9, 111.7, 111.9, 112.1 (t, $J=16.7 \mathrm{~Hz}$), 113.4, 114.6, 116.6, 128.5 (2C), 129.2 (2C), 129.4, 129.5, 129.7 (m), 131.9, $135.4,150.0,151.7,159.4,160.0(\mathrm{dd}, J=6.8,248.0 \mathrm{~Hz}, 2 \mathrm{C}), 162.6$; MS: $492\left(\mathrm{MH}^{+}\right)$; Anal. for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{xHClxH}_{2} \mathrm{O}: \mathrm{C}, \mathrm{H}, \mathrm{N}$.

3-[(2R)-Methylamino-2-phenylethyl]-1-(2,6-difluorobenzyl)-6-methyl-5-(3,4-
ethylenedioxyphenyl)-pyrimidin-2,4-dione hydrochloride (20c). white powder. ${ }^{1} \mathrm{H}$ NMR: 2.13 $(\mathrm{s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 4.18(\mathrm{~s}, 4 \mathrm{H}), 4.23(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~m}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.25 \mathrm{brs}, 2 \mathrm{H}), 6.75(\mathrm{~m}, 2 \mathrm{H}), 6.85(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~m}, 1 \mathrm{H}), 7.34(\mathrm{~m}, 4 \mathrm{H}), 7.53(\mathrm{~m}$, 2H), 9.22 (brs, 1H), 10.2 (brs, 1H); ${ }^{19}$ F NMR: -115.2; ${ }^{13}$ C NMR: 18.1, 29.7, 32.0, 39.5, 44.4, $62.0,64.2,64.3,111.8$ (m, 2C), 114.2, 117.2, 119.9, 124.2, 127.1, 128.4 (2C), 129.3 (2C), 129.5, 129.6 (m), 131.9, 141.1, 141.2, 149.9, 151.7, 161.0 (dd, $J=7.6,249.5 \mathrm{~Hz}, 2 \mathrm{C}), 162.9$; MS: 520 $\left(\mathrm{MH}^{+}\right)$; Anal. for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}_{4} \times \mathrm{HCx} 1.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, \mathrm{H}, \mathrm{N}$.

The following compounds $24 \mathrm{a}-\mathrm{q}$ and $24 \mathrm{~s}-\mathrm{u}$ were synthesized in a manner similar to the procedure described for $\mathbf{2 4 o}$ from 22.

3-[2(R)-Amino-2-phenylethyl]-6-methyl-5-(2-fluorophenyl)-1-(2-methoxyethyl)uracil trifluoro-acetic acid salt (24a). colorless oil, ${ }^{1} \mathrm{H}$ NMR: $2.11 \& 2.14$ (s, 3H), $3.25 \& 3.31$ (s, 3H), $3.50 \& 3.62(\mathrm{~m}, 2 \mathrm{H}), 3.78-4.14(\mathrm{~m}, 3 \mathrm{H}), 4.33-4.64(\mathrm{~m}, 2 \mathrm{H}), 6.96 \& 7.10(\mathrm{t}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-$ $7.48(\mathrm{~m}, 8 \mathrm{H}) ; \mathrm{MS} m / z 381\left(\mathrm{MH}^{+}-\mathrm{NH}_{3}\right)$.

3-[2(R)-Amino-2-phenylethyl]-6-methyl-5-(2-fluorophenyl)-1-(cyclopropanemethyl)uracil trifluoroacetate (24b). colorless oil, ${ }^{1}$ H NMR: 0.30-0.63 (m, 4H), $1.03(\mathrm{~m}, 1 \mathrm{H}), 2.12 \& 2.13(\mathrm{~s}$, $3 \mathrm{H}), 3.66 \& 3.77(\mathrm{dd}, J=6.3,14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.86 \& 3.88(\mathrm{dd}, J=14.7,16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.96 \& 4.06$ $(\mathrm{d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.40 \& 4.48(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.49 \& 4.60(\mathrm{dd}, J=10.5,13.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.97(\mathrm{t}, J=9.3 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.08-7.46(\mathrm{~m}, 7.5 \mathrm{H}) ; \mathrm{MS} m / z 377\left(\mathrm{MH}^{+}-\mathrm{NH}_{3}\right)$.

3-[2(R)-Amino-2-phenylethyl]-6-methyl-5-(2-fluorophenyl)-1-isobutyluracil trifluoroacetate (24c). colorless oil, ${ }^{1} \mathrm{H}$ NMR: $0.90 \& 0.91(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1.5 \mathrm{~Hz}), 0.98 \& 1.00(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, $1.5 \mathrm{H}), 2.06 \& 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.02 \& 2.10(\mathrm{~m}, 1 \mathrm{H}), 3.47(\mathrm{dd}, J=7.8,14.7 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.75(\mathrm{~d}, J=$ $6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J=7.8,14.7 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.97 \& 4.06(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.36 \& 4.43(\mathrm{~d}, J$ $=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.47 \& 4.57(\mathrm{dd}, J=10.5,14.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.95 \& 7.11(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.44$ (m, 8H); MS m/z $379\left(\mathrm{MH}^{+}-\mathrm{NH}_{3}\right)$.
3-[2(R)-Amino-2-phenylethyl]-6-methyl-5-(2-fluorophenyl)-1-cyclohexylmethyluracil trifluoro-acetate (24d). colorless oil, ${ }^{1} \mathrm{H}$ NMR: 0.88-1.30 (m, 4H), 1.58-1.81 (m, 6H), 2.06 \& 2.07 (s, 3H), $2.75(\mathrm{~m}, 2 \mathrm{H}), 3.96 \& 4.07(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.37 \& 4.45(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.46 \& 4.57(\mathrm{dd}, J=9.9,13.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.95 \& 7.11(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.43(\mathrm{~m}, 8 \mathrm{H})$; MS $m / z 436\left(\mathrm{MH}^{+}\right)$.

3-[2(R)-Amino-2-phenylethyl]-6-methyl-5-(2-fluorophenyl)-1-phenethyluracil

trifluoroacetate (24e). colorless oil, ${ }^{1} \mathrm{H}$ NMR: $1.87 \& 1.93(\mathrm{~s}, 3 \mathrm{H}), 2.91(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}) \&$ $3.01(\mathrm{t}, \mathrm{J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80-4.16(\mathrm{~m}, 3 \mathrm{H}), 4.35-4.62(\mathrm{~m}, 2 \mathrm{H}), 6.97 \& 7.11(\mathrm{t}, \mathrm{J}=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.12-7.44 (m, 13H); MS m/z $427\left(\mathrm{MH}^{+}-\mathrm{NH}_{3}\right)$.

3-[2(R)-Amino-2-phenylethyl]-6-methyl-5-(2-fluorophenyl)-1-(pyridine-2-yl)methyluracil trifluoroacetate (24f). colorless oil, ${ }^{1} \mathrm{H}$ NMR: $2.12(\mathrm{~s}, 3 \mathrm{H}), 4.03 \& 4.05(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.45 \& 4.47(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.54 \& 4.57(\mathrm{dd}, J=9.9,12.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.22 \& 5.30(\mathrm{~d}, \mathrm{~J}=$ $16.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{t}, J=8.4 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.07-7.48(\mathrm{~m}, 9.5 \mathrm{H}), 7.70(\mathrm{~m}, 1 \mathrm{H}), 8.33 \& 8.47(\mathrm{~d}, J=$ $3.9 \mathrm{~Hz}, 1 \mathrm{H}) ; \mathrm{MS} m / z 414\left(\mathrm{MH}^{+}-\mathrm{NH}_{3}\right)$.
3-[2(R)-Amino-2-phenylethyl]-6-methyl-5-(2-fluorophenyl)-1-(pyridine-3-yl)methyluracil trifluoroacetate (24g). colorless oil, ${ }^{1} \mathrm{H}$ NMR: $2.04(\mathrm{~s}, 3 \mathrm{H}), 4.03 \& 4.09(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H})$,
$4.51 \& 4.54(\mathrm{~d}, J=10.2,14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.64 \& 4.70(\mathrm{dd}, J=10.2,14.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~d}, J=$ $17.1 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.20(\mathrm{~s}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 0.5 \mathrm{H}), 6.91(\mathrm{t}, J=9.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.03-7.42(\mathrm{~m}$, $7.5 \mathrm{H}), 7.49 \& 7.51(\mathrm{~s}, 1 \mathrm{H}), 7.66 \& 7.72(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.11 \& 8.49(\mathrm{~m}, 1 \mathrm{H}), 8.62 \& 8.67(\mathrm{~s}$, $1 \mathrm{H})$; MS m/z $414\left(\mathrm{MH}^{+}-\mathrm{NH}_{3}\right)$.

3-[2(R)-Amino-2-phenylethyl]-6-methyl-5-(2-fluorophenyl)-1-benzyluracil trifluoroacetate (24h). colorless oil, ${ }^{1} \mathrm{H}$ NMR: $2.01 \& 2.02(\mathrm{~s}, 3 \mathrm{H}), 3.99 \& 4.03(\mathrm{~d}, \mathrm{~J}=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.31 \& 4.40$ $(\mathrm{d}, \mathrm{J}=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.56 \& 4.61(\mathrm{dd}, \mathrm{J}=10.2,14.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.82 \& 5.18(\mathrm{~d}, \mathrm{~J}=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.16$ \& $5.20(\mathrm{~d}, \mathrm{~J}=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{t}, \mathrm{J}=8.7 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.05-7.42(\mathrm{~m}, 13.5 \mathrm{H}) ; \mathrm{MS} m / z 430.0$ $\left(\mathrm{MH}^{+}\right)$.

3-[2(R)-Amino-2-phenylethyl]-6-methyl-5-(2-fluorophenyl)-1-(4-fluorophenyl)methyluracil trifluoroacetate (24i). colorless oil, ${ }^{1} \mathrm{H}$ NMR: 2.07 (s, 3H), $4.15 \& 4.20$ (dd, $J=5.1,9.9 \mathrm{~Hz}, 1 \mathrm{H}$), $4.29(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.35(\mathrm{dd}, J=10.2,12.9 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.47(\mathrm{~m}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=15.9 \mathrm{~Hz}$, $0.5 \mathrm{H}), 5.17(\mathrm{~s}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.01-7.45(\mathrm{~m}, 13 \mathrm{H}) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 448\left(\mathrm{MH}^{+}\right)$.

3-[2(R)-Amino-2-phenylethyl]-6-methyl-5-(2-fluorophenyl)-1-(3-fluorophenyl)methyluracil trifluoroacetate (24j). colorless oil, ${ }^{1} \mathrm{H}$ NMR: $1.98 \& 2.01(\mathrm{~s}, 3 \mathrm{H}), 3.97 \& 4.03(\mathrm{~d}, J=12.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.26 \& 4.37(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.44 \& 4.57(\mathrm{dd}, J=10.5,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~d}, J=$ $17.1 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.11(\mathrm{~d}, J=17 ., 1 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.14(\mathrm{~s}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 0.5 \mathrm{H}), 6.92-7.42(\mathrm{~m}$, 12.5H); MS m/z $431\left(\mathrm{MH}^{+}-\mathrm{NH}_{3}\right)$.

3-[2(R)-Amino-2-phenylethyl]-6-methyl-5-(2-fluorophenyl)-1-(2-fluorophenyl)methyluracil trifluoroacetate (24k). colorless oil, ${ }^{1} \mathrm{H}$ NMR: $2.00 \& 2.03(\mathrm{~s}, 3 \mathrm{H}), 3.97 \& 4.06(\mathrm{~d}, J=14.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.35 \& 4.38(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.52 \& 4.60(\mathrm{dd}, J=10.5,14.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.90 \& 5.21(\mathrm{~d}, J$ $=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.14 \& 5.25(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{t}, J=8.7 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.02-7.42(\mathrm{~m}, 12.5 \mathrm{H})$; MS $m / z 448.0\left(\mathrm{MH}^{+}\right)$.

3-[2(R)-Amino-2-phenylethyl]-6-methyl-5-(2-fluorophenyl)-1-(2-chlorophenyl)methyluracil trifluoroacetate (24I). colorless oil, ${ }^{1} \mathrm{H}$ NMR: $2.01(\mathrm{~s}, 3 \mathrm{H}), 4.20(\mathrm{~m}, 1 \mathrm{H}), 4.70(\mathrm{~m}, 2 \mathrm{H}), 5.25(\mathrm{~m}$, 2 H), 6.90-7.45 (m, 13H), 8.20 (brs, 3H); MS: $464\left(\mathrm{MH}^{+}\right)$.
3-[2(R)-Amino-2-phenylethyl]-6-methyl-5-(2-fluorophenyl)-1-(2-bromophenyl)methyluracil trifluoroacetate (24m). colorless oil, ${ }^{1} \mathrm{H}$ NMR: $1.95 \& 1.97(\mathrm{~s}, 3 \mathrm{H}), 3.94 \& 4.09(\mathrm{~d}, \mathrm{~J}=13.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.33-4.36(\mathrm{~m}, 1 \mathrm{H}), 4.54-4.62(\mathrm{~m}, 1 \mathrm{H}), 5.12 \& 5.23(\mathrm{~d}, J=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.92-7.35(\mathrm{~m}, 12 \mathrm{H})$, $7.57(\mathrm{dd}, J=8.4,9.9 \mathrm{~Hz}, 1 \mathrm{H})$; MS $m / z 508.0\left(\mathrm{M}^{+}+\mathrm{H}^{+}\right)$; HRMS $\left(\mathrm{CI}-\mathrm{CH}_{4}\right)$ calcd. for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{BrFN}_{3} \mathrm{O}_{2}\left(\mathrm{MH}^{+}\right): 508.10359$; observed: 508.10427.

3-[2(R)-Amino-2-phenylethyl]-6-methyl-5-(2-fluorophenyl)-1-(2-methylphenyl)methyluracil trifluoroacetate (24n). colorless oil, ${ }^{1} \mathrm{H}$ NMR: $2.00(\mathrm{~s}, 3 \mathrm{H}), 2.27$ \& 2.34 (s, 3H), 4.15 (m, 4H), $4.62(\mathrm{~m}, 2 \mathrm{H}), 5.15(\mathrm{~m}, 2 \mathrm{H}), 6.80-7.40(\mathrm{~m}, 13 \mathrm{H})$; MS m/z $444\left(\mathrm{MH}^{+}\right)$.
3-[2(R)-Amino-2-phenylethyl]-6-methyl-5-(2-fluorophenyl)-1-(2-
trifluoromethylthiophenyl)-methyl-uracil trifluoroacetate (24p). colorless oil, ${ }^{1} \mathrm{H}$ NMR: 1.92 \& $1.94(\mathrm{~s}, 3 \mathrm{H}), 3.94 \& 4.08(\mathrm{~d}, \mathrm{~J}=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.29-4.32(\mathrm{~m}, 1 \mathrm{H}), 4.54(\mathrm{dd}, J=10.8,14.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.42 \& 5.48(\mathrm{~d}, J=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.93-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.41(\mathrm{~m}, 8 \mathrm{H}), 7.44-7.77(\mathrm{~m}, 3 \mathrm{H}) ;$ MS $m / z 530.0\left(\mathrm{MH}^{+}\right)$; HRMS $\left(\mathrm{CI}-\mathrm{CH}_{4}\right)$ calcd. for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{~F}_{4} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}\left(\mathrm{MH}^{+}\right)$: 530.15254; observed: 530.15313.
3-[2(R)-Amino-2-phenylethyl]-6-methyl-5-(2-fluorophenyl)-1-(2-trifluoromethylphenyl)methyl-uracil trifluoroacetate (24q). colorless oil, ${ }^{1}$ H NMR: 1.92 \& $1.94(\mathrm{~s}, 3 \mathrm{H}), 3.94 \& 4.09(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{dd}, J=10.2,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.50-4.60(\mathrm{~m}$, $1 \mathrm{H}), 5.15-5.54(\mathrm{~m}, 2 \mathrm{H}), 6.93-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.44(\mathrm{~m}, 9 \mathrm{H}), 7.51-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.70(\mathrm{t}, J=9.0$ $\mathrm{Hz}, 1 \mathrm{H})$; MS $m / z 498.0\left(\mathrm{MH}^{+}\right)$. HRMS $\left(\mathrm{CI}-\mathrm{CH}_{4}\right)$ calcd. for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{~F}_{4} \mathrm{~N}_{3} \mathrm{O}_{2}: 498.1805\left(\mathrm{MH}^{+}\right)$; observed: 498.1789.

3-[2(R)-Amino-2-phenylethyl]-6-methyl-5-(2-fluorophenyl)-1-(2-trifluoromethyl-5-

 fluorophenyl)-methyl-uracil trifluoroacetate (24r) oil, ${ }^{1} \mathrm{H}$ NMR: $1.94 \& 1.96$ ($\mathrm{s}, 3 \mathrm{H}$), $3.94 \&$ $4.10(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.34-4.38(\mathrm{~m}, 1 \mathrm{H}), 4.51-4.59(\mathrm{~m}, 1 \mathrm{H}), 5.29 \& 5.27(\mathrm{~d}, \mathrm{~J}=17.7 \mathrm{~Hz}, 1 \mathrm{H})$, 6.91-7.01 (m, 1H), 7.06-7.12 (m, 3H), 7.14-7.34 (m, 7H), 7.68-7.76 (m, 1H); MS m/z 516.0 $\left(\mathrm{MH}^{+}\right)$; HRMS $\left(\mathrm{CI}-\mathrm{CH}_{4}\right)$ calcd. for $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{~F}_{5} \mathrm{~N}_{3} \mathrm{O}_{2}\left(\mathrm{MH}^{+}\right)$: 516.17104; observed: 516.17209. 3-[2(R)-Amino-2-phenylethyl]-6-methyl-5-(2-fluoro-6-chlorophenyl)-1-(2-chloro-6-fluorophenyl)-methyluracil trifluoroacetate (24s). colorless oil, ${ }^{1} \mathrm{H}$ NMR: 6.91-7.37 (m, 12H), $5.47 \& 5.35(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.24 \& 5.14(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.44-4.65(\mathrm{~m}, 2 \mathrm{H}), 4.07(\mathrm{~m}$, 1H), $2.06(\mathrm{~s}, 3 \mathrm{H})$; HRMS calcd. for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{ClF}_{2} \mathrm{~N}_{3} \mathrm{O}_{2} 482.1447\left(\mathrm{MH}^{+}\right)$; observed: 482.1435.
3-[2(R)-Amino-2-phenylethyl]-6-methyl-5-(2-fluoro-4-chlorophenyl)-1-(2-chloro-4-

 fluorophenyl)-methyluracil trifluoroacetate (24t). colorless oil, ${ }^{1} \mathrm{H}$ NMR: $1.95 \& 1.97$ (s, 3H), $3.95 \& 4.06(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.32 \& 4.35(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{dd}, J=10.5,13.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.95 \& 5.11(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.21 \& 5.31(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.90-7.40(\mathrm{~m}, 12 \mathrm{H}) ; \mathrm{MS}$ $m / z 444\left(\mathrm{MH}^{+}\right)$.
Competitive Radioligand Binding Assay.

The affinity of compounds for the human GnRH receptor was determined by a competitive displacement of the GnRH receptor radioligand, $\left[{ }^{125} \mathrm{I}-\mathrm{Tyr}^{5}\right.$, DLeu^{6}, NMeLeu^{7}, Pro^{9}-NEt]GnRH. HEK293 cells stably transfected with the full-length human GnRH receptor (REF) were harvested, resuspended in 5% sucrose and homogenized using a polytron homogenizer (2×15 sec). ${ }^{8}$ Nuclei were removed by centrifugation (3000 xg for 5 min .), and the supernatant centrifuged ($20,000 \mathrm{xg}$ for $30 \mathrm{~min}, 4^{\circ} \mathrm{C}$) to collect the membrane fraction. The final membrane preparation was resuspended in binding buffer (10 mM Hepes (pH 7.5), 150 mM NaCl , and 0.1% BSA) and stored at $-70^{\circ} \mathrm{C}$. Binding reactions were performed in a Millipore MultiScreen 96-well filtration plate assembly with polyethylenimine coated GF/C membranes. The reaction were initiated by adding membranes (25 ug protein in 130 ul binding buffer) to 50 ul of $\left[{ }^{125}\right]$-labeled GnRH peptide ($\sim 100,000 \mathrm{cpm}$), and 20 ul of competitor at varying concentrations. The reaction was terminated after 90 minutes by filtration and washing (2X) with phosphate buffered saline. Bound radioactivity was measured by removing the filters from the plate and direct gamma counting. K_{i} values were calculated from competition binding data using non-linear least squares regression by use of the Prism software package (GraphPad Software) with the Cheng Prusoff equation. ${ }^{1}$

Inhibition of GnRH-stimulated Ca^{++}Flux.

Functional activity of compounds for the human GnRH receptor was determined by inhibition of GnRH stimulated Ca^{++}flux. RBL cells stably expressing the full-length human GnRH receptor were seeded into 96-well, black wall clear bottom plates (Corning) at a density of 50,000 cells/well and the cells allowed to attach overnight. Cells were then loaded with the Ca^{++} sensitive dye, Fluo-4 (Molecular Probes), by incubation in loading medium [(DMEM with 20 mM Hepes, $10 \% \mathrm{FBS}, 2 \mu \mathrm{M}$ Fluo-4, 0.02% pluronic acid (Molecular Probes) and 2.5 mM probenecid (Sigma)] for 1 hour at $37^{\circ} \mathrm{C}$. Cells were then washed 3 times with assay buffer (Hanks balanced salt, 20 mM Hepes, 2.5 mM probenecid). Compounds at varying concentrations in assay buffer were pre-incubated with cells for 1 minute prior to stimulation with GnRH (5 $\mathrm{nM})$. Measurement of fluorescence due to GnRH stimulated Ca^{++}flux was performed according to the manufacturer's instructions on the FLIPR system (Molecular Devices, FLIPR ${ }^{384}$ system). IC_{50} values for the inhibition of GnRH -stimulated Ca^{++}flux were calculated using the Prism
software package (GraphPad Software) with a "sigmoidal dose-response (variable slope)" option for curve fitting.

Microanalyses and High Resolution Mass Spectra of Key Compounds

	Found			Calculation for				
Compd	C	H	N	Formula	Addict	C	H	N
R-13b	58.67	4.55	7.35	$\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{3}$	$1 \mathrm{HCl}+\mathrm{H}_{2} \mathrm{O}$	58.97	4.74	7.90
R-13d	59.67	5.86	7.46	$\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{3}$	$1 \mathrm{HCl}+0.5 \mathrm{H} 2 \mathrm{O}$	59.28	5.90	7.68
S-14a	60.94	5.28	7.28	$\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Cl}$	$1 \mathrm{HCl}+0.5 \mathrm{H} 2 \mathrm{O}$	61.21	5.31	7.38
$R-14 \mathrm{~b}$	60.34	5.23	6.88	$\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{3}$	$1 \mathrm{HCl}+0.75 \mathrm{H}_{2} \mathrm{O}$	60.11	5.13	7.51
R-15b	59.97	5.77	6.60	$\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{3}$	$1 \mathrm{HCl}+1.3 \mathrm{H}_{2} \mathrm{O}$	59.70	5.46	7.20
S-16a	58.76	5.75	7.78	$\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{3}$	$1 \mathrm{HCl}+0.5 \mathrm{H}_{2} \mathrm{O}$	58.59	5.67	7.88
19a	59.88	5.06	7.71	$\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}_{3}$	$1 \mathrm{HCl}+1.4 \mathrm{H}_{2} \mathrm{O}$	60.15	5.38	7.79
19b	60.25	4.71	7.73	$\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}_{4}$	$1 \mathrm{HCl}+0.5 \mathrm{H}_{2} \mathrm{O}$	60.39	4.69	7.83
19c	58.16	5.28	6.89	$\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}_{4}$	$1 \mathrm{HCl}+2 \mathrm{H}_{2} \mathrm{O}$	58.18	5.23	7.27
19d	58.73	5.00	7.48	$\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$	$1 \mathrm{HCl}+1.2 \mathrm{H}_{2} \mathrm{O}$	58.79	5.19	7.62
19e	66.22	5.16	7.18	$\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}_{3}$	$1 \mathrm{HCl}+0.3 \mathrm{H} 2 \mathrm{O}$	66.03	4.96	7.22
19f	59.20	4.83	7.64	$\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{ClF}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}$	$1 \mathrm{HCl}+0.5 \mathrm{H} 2 \mathrm{O}$	59.21	4.59	7.97
19g	61.56	4.63	8.25	$\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{2}$	$1 \mathrm{HCl}+0.25 \mathrm{H}_{2} \mathrm{O}$	61.66	4.68	8.30
19h	60.62	5.51	7.74	$\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{2}$	$1 \mathrm{HCl}+1.3 \mathrm{H}_{2} \mathrm{O}$	60.12	5.16	7.79
20a	61.89	5.72	7.32	$\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}_{3}$	$1 \mathrm{HCl}+\mathrm{H}_{2} \mathrm{O}$	61.59	5.54	7.70
20b	59.24	4.84	6.81	$\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}_{4}$	$1 \mathrm{HCl}+1.5 \mathrm{H}_{2} \mathrm{O}$	59.10	5.14	7.38
20c	59.69	4.97	6.67	$\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}_{4}$	$1 \mathrm{HCl}+1.5 \mathrm{H} 2 \mathrm{O}$	59.74	5.36	7.21
24m	508.10359			$\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{BrFN}_{3} \mathrm{O}_{2}$		508.10427.		
240	460.20210			$\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{FN}_{3} \mathrm{O}_{3}$		460.20365		
24p	530.15313			$\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{~F}_{4} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$		530.15254		
24q	498.1789			$\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{~F}_{4} \mathrm{~N}_{3} \mathrm{O}_{2}$:		498.1805		
24s	482.1435			$\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{ClF}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}$		482.1447		
25	64.99	4.95	7.67	$\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}_{5}$	none	65.29	4.72	7.88

[^0]
[^0]: ${ }^{1}$ Cheng, Y. and. Prusoff, W. H Relationship between the inhibition constant $\left(\mathrm{K}_{\mathrm{i}}\right)$ and the concentration of inhibitor which causes 50 per cent inhibition $\left(\mathrm{IC}_{50}\right)$ of an enzymatic reaction. Biochem. Pharmacol. 1973, 22, 3099-3108.

