J. Org. Chem., 1996, 61(23), 8325-8328, DOI:10.1021/jo961277d

Terms \& Conditions

Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machinereadable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html

ACS Publications

Ei-ichi Negishi, Fang Liu, Danièle Choueiry, and Mohamud M. Mohamud tournal of Organic Chomistry A Convenient and General Synthesis of 1-Mono-organyl- and 1,2-Diorganylcyclobutenes via Cyclialkylation

Supplementary Data

(Z)-1,4-Diiodo-3-(n-butyl)-3-octene (1b). This compound was prepared in 71% isolated yield $(>97 \% \mathrm{Z})$ from 4-octyne as in the preparation of $1 \mathrm{a}:{ }^{1} \mathrm{H}$ NMR $\delta 0.8-1.0(\mathrm{~m}, 6 \mathrm{H}), 1.2-1.6(\mathrm{~m}, 8 \mathrm{H}), 2.0-$ $2.3(\mathrm{~m}, 2 \mathrm{H}), 2.50(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.7-2.9(\mathrm{~m}, 2 \mathrm{H}), 3.05-3.25(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\delta 1.39$, $13.89,14.00,21.58,22.57,30.92,31.54,31.81,40.97,46.81,107.75,143.02 \mathrm{ppm}$.
(E)-1,4-Diiodo-1,2-diphenyl-1-butene (1c). This compound was prepared in 50% isolated yield ($>97 \% E$) from diphenylethyne as in the preparation of $1 \mathrm{a}:{ }^{1} \mathrm{H}$ NMR $\delta 3.10(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$), $3.39(\mathrm{t}$, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.8-7.2(\mathrm{~m}, 10 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\delta 1.50,48.16,103.85,126.95,127.10,127.44$, $127.93,128.83,129.36,137.93,143.83,146.80 \mathrm{ppm}$.
(E)-1,4-Diiodo-2-(p-chlorophenyl)-1-phenyl-1-butene and (E)-1,4-Diiodo-1-(p-chlorophenyl)-2-phenyl-1-butene (1d). These two regioisomers were prepared from 1-(p-chlorophenyl)-2-phenylethyne as in the preparation of $\mathbf{1 a}$ as a roughly $1: 1$ mixture (by ${ }^{1} \mathrm{H}$ NMR) in quantitative isolated yield (based on unreacted starting material) as an orange oil: ${ }^{1} \mathrm{H}$ NMR (mixture of two isomers) $\delta 3.09(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H})$, $3.38(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 6.85-7.15(\mathrm{~m}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (mixture of two isomers) $\delta 1.30,47.83,48.12$, $100.75,103.30,127.26,127.42,127.74,128.19,128.80,129.30,130.26,130.83,132.84,136.38,137.67$, $142.39,143.65,145.54,147.67 \mathrm{ppm}$; \mathbb{R} (neat) (mixture of two isomers) $1486,1264 \mathrm{~cm}^{-1}$; MS (EI, 70 eV) (mixture of two isomers) m / z (relative intensity) $494\left(\mathrm{M}^{+}, 12\right), 367$ (100). The starting material $1-(p-$ chlorophenyl)-2-phenylethyne was prepared from 1-chloro-4-iodobenzene and phenyl acetylene in the presence of catalytic amount of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(1 \mathrm{~mol} \%)$ and $\mathrm{CuI}(0.5 \mathrm{~mol} \%)$ in $\mathrm{Et}_{2} \mathrm{NH}$ at $23{ }^{\circ} \mathrm{C}^{\mathrm{a}}$ in 98% isolated yield: white crystalline solid, mp $79.5-81.0{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.2-7.6(\mathrm{~m}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\delta 88.23$, $90.30,121.75,122.90,128.37,128.46,128.66,131.57,132.78,134.22 \mathrm{ppm}$; $\operatorname{IR}\left(\mathrm{CCl}_{4}\right) 1496,1266 \mathrm{~cm}^{-1}$.
(Z)-1,4-Diiodo-2-methyl-1-phenyl-1-butene (1e). This compound was prepared in 78% NMR yield ($>97 \% \mathrm{Z},>97 \%$ regioisomeric pure) from 1-phenyl-1-propyne as in the prepartion of $1 \mathrm{a}:{ }^{1} \mathrm{H}$ NMR $\delta 1.67(\mathrm{~s}, 3 \mathrm{H}), 2.95(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.25(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.1-7.35(\mathrm{~m}, 5 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\delta 1.51,18.94,47.17,97.81,127.37,127.91,128.24,141.22,143.86 \mathrm{ppm}$.
(E)-3,6-Diiodo-2-methyl-4-phenyl-1,3-hexadiene and (E)-2-(2-Iodoethyl)-3-methyl-1-phenyl-1,3butadiene (1f). These two compounds were prepared as in the preparation of $\mathbf{1 a}$ from 2-methyl-4-phenyl-1-buten-3-yne in 79% isolated yield (based on unreacted starting material) as a $5: 1$ mixture (by ${ }^{1} \mathrm{H}$ NMR) in which the former compound was the major isomer: ${ }^{1} \mathrm{H}$ NMR (major isomer) $\delta 2.02$ (d, $J=1.1$ $\mathrm{Hz}, 3 \mathrm{H}), 2.9-3.3(\mathrm{~m}, 4 \mathrm{H}), 5.0-5.05(\mathrm{~m}, 1 \mathrm{H}), 5.13(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.05-7.4(\mathrm{~m}, 5 \mathrm{H}) \mathrm{ppm}$ and (minor isomer) $\delta 1.76(\mathrm{~s}, 3 \mathrm{H}), 2.9-3.3(\mathrm{~m}, 4 \mathrm{H}), 4.6-4.7(\mathrm{~m}, 1 \mathrm{H}), 4.74(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.05-7.4(\mathrm{~m}, 5 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (major isomer) $\delta 3.23,22.48,38.59,105.55,115.02,127.70,128.31,128.39,143.44,144.57,146.65$ and (minor isomer) $\delta 3.23,22.59,47.45,106.76,116.92,127.35,128.12,128.18,138.67,144.46,146.97 \mathrm{ppm}$; IR (neat) (mixture of two isomers) $2968,1442 \mathrm{~cm}^{-1}$; MS (EI, 70 eV) (mixture of two isomers) m / z (relative intensity) $424\left(\mathrm{M}^{+}, 8\right), 297(12), 169(17), 155(41), 142(100)$. The required starting material 2-methyl-4-phenyl-1-buten-3-yne was prepared as a yellow oil, in the same manner as that of 1-(p-chlorophenyl)-2-phenylethyne, from 2-methyl-1-buten-3-yne and iodobenzene in quantitative yield: ${ }^{1} \mathrm{H}$ NMR $\delta 1.95-2.0(\mathrm{~m}, 3 \mathrm{H}), 5.25-5.45(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.5(\mathrm{~m}, 5 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\delta 23.51,88.42,90.58$, $121.95,123.29,126.87,128.14,128.29,131.58 \mathrm{ppm} ; \operatorname{IR}\left(\mathrm{CCl}_{4}\right) 3054,1490,1442 \mathrm{~cm}^{-1}$.
(Z)-3-(n-butyl)-1,4-diiodo-3-decen-5-yne (1g). This compound was prepared in 81% isolated yield from 5,7-dodecadiyne as in the preparation of $1 \mathrm{a}:{ }^{1} \mathrm{H} \operatorname{NMR} \delta 0.92(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.2-1.6(\mathrm{~m}, 8 \mathrm{H})$, $2.25-2.5(\mathrm{~m}, 4 \mathrm{H}), 2.83(\mathrm{t}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.15(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR} \delta-0.07,13.52$, $13.80,19.25,21.84,22.38,30.10,30.42,34.12,44.39,73.56,81.86,96.16,153.35 \mathrm{ppm}$.
(E)-1,4-Diiodo-3-phenyl-3-decen-5-yne and (E)-1-Iodo-1-phenyl-2-(2-iodoethyl)-1-octen-3-yne (1h). These two regioisomers were prepared as in the preparation of $\mathbf{1 a}$ from 1-phenyl-1,3-octadiyne as a 2:3 mixture in 18% combined yield along with (Z)-4-(n-butyl)-3,6-diiodo-1-phenyl-3-hexen-1-yne (72%)
which can be chromatographically separated: ${ }^{1} \mathrm{H}$ NMR (mixture of two isomers) $\delta 0.6-1.0(\mathrm{~m}, 3 \mathrm{H}), 1.0-$ $1.8(\mathrm{~m}, 4 \mathrm{H}), 2.05-2.75(\mathrm{~m}, 2 \mathrm{H}), 2.8-3.35(\mathrm{~m}, 4 \mathrm{H}), 7.1-7.6(\mathrm{~m}, 5 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (mixture of two isomers) $\delta 0.71,1.30,13.54,13.66,19.25,19.50,21.60,22.02,30.01,30.45,41.06,46.39,71.02,81.01$, $83.41,96.59,127.95,128.18,128.36,131.39,137.82,150.70,151.88,153.41 \mathrm{ppm}$. The required starting material 1-phenyl-1,3-octadiyne was prepared in 70% isolated yield as an orange oil from the reaction of bromophenylethyne (prepared from phenylacetylene and NBS (1.1 equiv.) in acetone catalyzed by AgNO_{3} $(20 \mathrm{~mol} \%))^{\mathrm{b}}$, and 1-hexyne (1.2 equiv.) in the presence of $\mathrm{CuI}(5 \mathrm{~mol} \%), \mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}(60 \mathrm{~mol} \%)$, and $\mathrm{EtNH}_{2}\left(70 \mathrm{wt} \%\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}, 6 \mathrm{~mL}\right)$ in $\mathrm{CH}_{3} \mathrm{OH}(6 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}^{\mathrm{c}}:{ }^{1} \mathrm{H}$ NMR $\delta 0.92(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.3-1.6$ $(\mathrm{m}, 4 \mathrm{H}), 2.36(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.2-7.5(\mathrm{~m}, 5 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR δ 13.54, 19.29, 22.06, 30.41, 66.20, $75.30,75.66,85.06,122.63,128.53,128.82,132.73 \mathrm{ppm}$; IR (neat) $2958,2246,1490 \mathrm{~cm}^{-1}$; MS (EI, 70 $\mathrm{eV}) \mathrm{m} / \mathrm{z}$ (relative intensity) $182\left(\mathrm{M}^{+}, 84\right), 167(51), 152(34), 139(100)$. The byproduct of this reaction was diphenylbutadiyne formed in 30% yield which was separated by chromatography (hexanes): ${ }^{1} \mathrm{H}$ NMR $\delta 7.2-7.6(\mathrm{~m}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\delta 73.92,81.55,121.77,128.44,129.20,132.49 \mathrm{ppm}$; IR (neat) 3054, $1266 \mathrm{~cm}^{-1}$.
(Z)-4-(n-Butyl)-3,6-diiodo-1-phenyl-3-hexen-1-yne (1i): ${ }^{1} \mathrm{H}$ NMR $\delta 0.94$ (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$), $1.2-1.65(\mathrm{~m}, 4 \mathrm{H}), 2.55(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.90(\mathrm{t}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.18(\mathrm{t}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.45$ (m, 5 H) ppm; ${ }^{13} \mathrm{C}$ NMR $\delta-0.33,13.89,22.45,30.23,34.55,44.50,72.29,90.00,93.92,122.50,127.81$, $128.34,131.34,155.56 \mathrm{ppm}$; \mathbb{R} (neat) $2956,1488,754 \mathrm{~cm}^{-1}$.

4-Iodo-2-methyl-1-butene. This compound was prepared from 3-methyl-3-buten-1-ol in 68% yield in the same manner as that of (Z)-1,4-diiodo-3-octene: ${ }^{1} \mathrm{H}$ NMR $\delta 1.73(\mathrm{~s}, 3 \mathrm{H}), 2.58(\mathrm{t}, J=7.5 \mathrm{~Hz}$, 2 H), $3.25\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}\right.$), $4.75(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.85(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR} \delta 3.50,21.63,41.80$, $112.23,143.79 \mathrm{ppm}$; IR (neat) $3078,1650,1234,894 \mathrm{~cm}^{-1}$.
(E)-1-Iodo-1-octene. This compound was prepared from 1-octyne in 74% yield according to the published procedure ${ }^{\mathrm{d}}: \mathrm{bp} 78-80^{\circ} \mathrm{C}(2 \mathrm{~mm} \mathrm{Hg}) ;{ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.2-1.6(\mathrm{~m}, 8 \mathrm{H})$, $2.05(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.97(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{dt}, J=14.3$ and $7.1 \mathrm{~Hz}, 1 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}$ NMR
$\delta 14.05,22.54,28.31,28.58,31.55,36.04,74.24,146.76 \mathrm{ppm}$; IR (neat) $2926,1466 \mathrm{~cm}^{-1}$.
1,2-Di(n-butyl)cyclobutene (2b). This compound was prepared from (Z)-1,4-diiodo-3-(n-butyl)-3octene in 83% NMR yield: ${ }^{1} \mathrm{H}$ NMR $\delta 0.89(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.1-1.5(\mathrm{~m}, 8 \mathrm{H}), 1.98(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $4 \mathrm{H}), 2.23$ (s, 4 H) ppm; ${ }^{13} \mathrm{C}$ NMR $\delta 13.95,22.62,27.42,27.96,29.81,140.44 \mathrm{ppm}$.

1,2-Diphenylcyclobutene (2c). This compound ${ }^{e}$ was prepared from (E)-1,4-diiodo-1,2-diphenyl-1butene in 73% yield (81% NMR yield): ${ }^{1} \mathrm{H}$ NMR $\delta 2.76\left(\mathrm{~s}, 4 \mathrm{H}\right.$), 7.15-7.6 ($\mathrm{m}, 10 \mathrm{H}$) ppm; ${ }^{13} \mathrm{C}$ NMR δ 26.76, 126.02, 127.43, 128.27, 136.14, $138.68 \mathrm{ppm} ;$ IR $\left(\mathrm{CCl}_{4}\right) 2916,1498 \mathrm{~cm}^{-1}$.

1-(p-Chlorophenyl)-2-phenylcyclobutene (2d). This compound was prepared from a 1:1 mixture of (E)-1,4-diiodo-2-(p-chlorophenyl)-1-phenyl-1-butene and (E)-1,4-diiodo-1-(p-chlorophenyl)-2-phenyl-1butene in 90% isolated yield (95% NMR yield) as a pale yellow oil (solidified while stored in refrigerator): ${ }^{1} \mathrm{H}$ NMR $\delta 2.6-2.75(\mathrm{~m}, 4 \mathrm{H}), 7.15-7.5(\mathrm{~m}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\delta 26.68,26.88,126.01$, 127.27, 127.66, 128.36, 128.45, 132.91, 134.49, 135.86, 137.32, 139.46 ppm ; IR (neat) $2914,1494 \mathrm{~cm}^{-1}$; MS (EI, 70 eV) m / z (relative intensity) $240\left(\mathrm{M}^{+}, 36\right), 205$ (100); HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{Cl} 240.0706$, found 240.0706 .

1-Phenyl-2-methylcyclobutene (2e). This compound was prepared from (Z)-1,4-diiodo-2-methyl-1-phenyl-1-butene in 75% NMR yield: ${ }^{1} \mathrm{H}$ NMR $\delta 1.99$ (s, 3 H), 2.25 (br s, 2 H), 2.55-2.7 (m, 2 H), 7.17.4 (m, 5 H) ppm; ${ }^{13} \mathrm{C}$ NMR $\delta 16.10,26.03,29.73,125.28,126.28,128.22,136.22,137.49,138.81 \mathrm{ppm} ;$ IR (neat) 2900, $1640 \mathrm{~cm}^{-1}$. Anal. calcd for $\mathrm{C}_{11} \mathrm{H}_{12}: \mathrm{C}, 91.60 ; \mathrm{H}, 8.39$. Found: C, $91.57 ; \mathrm{H}, 8.33$.

1-(1-Methylethenyl)-2-phenylcyclobutene (2f). This compound was prepared from a $1: 2$ mixture of (E)-3,6-diiodo-2-methyl-4-phenyl-1,3-hexadiene and (E)-2-(2-iodoethyl)-3-methyl-1-phenyl-1,3butadiene in 82% isolated yield (88% NMR yield) as a pale yellow oil: ${ }^{1} \mathrm{H}$ NMR $\delta 1.87(\mathrm{~s}, 3 \mathrm{H})$, 2.4-2.6 $(\mathrm{m}, 4 \mathrm{H}), 4.88(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.01(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.0-7.4(\mathrm{~m}, 5 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\delta 20.82,26.10,26.79$, $113.85,127.06,127.16,128.02,136.58,139.14,140.11,140.74 \mathrm{ppm}$; IR (neat) $2918,1446 \mathrm{~cm}^{-1}$; MS (EI, $70 \mathrm{eV}) \mathrm{m} / \mathrm{z}$ (relative intensity) $170\left(\mathrm{M}^{+}, 94\right), 155(100), 141$ (72); HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{14}$ 170.1096, found 170.1091.

1-(1-Hexynyl)-2-(n-butyl)cyclobutene (2 g). This compound was prepared from (Z)-3-(n-butyl)-1,4-diiodo-3-decen-5-yne in 80% isolated yield (90% NMR yield): ${ }^{1} \mathrm{H} \operatorname{NMR} \delta 0.91(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$), $0.92(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.15-1.85(\mathrm{~m}, 8 \mathrm{H}), 2.12(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.2-2.5(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\delta 13.57,13.84,18.85,19.18,21.94,22.58,28.90,29.73,30.22,30.95,75.94,91.55,119.74,154.24 \mathrm{ppm} ;$ IR (neat) 2958, 2218, $1466 \mathrm{~cm}^{-1}$; MS (EI, 70 eV) m / z (relative intensity) $190\left(\mathrm{M}^{+}, 66\right), 175$ (3), 161 (9), 147 (18), 133 (21), 119 (48), 105 (85), 91 (100); HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{22}$ 190.1722, found 190.1712.

1-Hexynyl-2-phenylcyclobutene ($\mathbf{2 h}$). This compound was prepared from a $1: 1$ mixture of (E) -1,4-diiodo-3-phenyl-3-dec-5-yne and (E)-1-iodo-1-phenyl-2-(2-iodoethyl)-1-octen-3-yne in 86% isolated yield (95% NMR yield) as an orange oil: ${ }^{1} \mathrm{H}$ NMR $\delta 0.95(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.35-1.7(\mathrm{~m}, 4 \mathrm{H}), 2.46$ $(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.66(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.2-7.65(\mathrm{~m}, 5 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\delta 13.63,19.51,22.02$, $26.55,29.75,30.84,77.53,95.65,119.43,124.99,127.77,128.20,134.97,147.38 \mathrm{ppm}$; IR (neat) 2924 , $1492 \mathrm{~cm}^{-1} ; \mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}) \mathrm{m} / \mathrm{z}$ (relative intensity) $210\left(\mathrm{M}^{+}, 100\right), 195$ (6), 181 (12), 167 (89); HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{18}$ 210.1409, found 210.1409.

1-(2-Phenylethynyl)-2-(n-butyl)cyclobutene (2i). This compound was prepared from (Z)-4-(n -butyl)-3,6-diiodo-1-phenyl-3-hexen-1-yne in 87% isolated yield (90% NMR yield) as an orange oil: ${ }^{1} \mathrm{H}$ NMR $\delta 0.92(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.1-1.7(\mathrm{~m}, 4 \mathrm{H}), 2.0-2.75(\mathrm{~m}, 6 \mathrm{H}), 7.15-7.6(\mathrm{~m}, 5 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\delta 13.88,22.58,28.85,29.44,29.68,30.56,84.77,90.47,119.22,123.58,127.81,128.18,131.35,156.79$ ppm; $\mathbb{I R}$ (neat) $2956,1638,1490 \mathrm{~cm}^{-1}$; MS (EI, 70 eV) m / z (relative intensity) $210\left(\mathrm{M}^{+}, 100\right), 195$ (13), 181 (29), 167 (84); HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{18}$ 210.1409, found 210.1407.

1-(n-Butyl)cyclobutene (2 j). This compound was prepared from (Z)-1,4-diiodo-3-octene in 45% isolated yield as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\delta 0.90(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.2-1.5(\mathrm{~m}, 4 \mathrm{H}), 1.9-2.1(\mathrm{~m}, 2 \mathrm{H})$, 2.3-2.45 (m, 4 H), $5.65(\mathrm{~d}, J=0.5 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR δ 13.95, 22.51, 26.46, 28.97, 30.82, 31.12, $126.42,150.97 \mathrm{ppm}$. Conversion of this compound to 4 -oxo-1-octanal using $\mathrm{OsO}_{4}(1 \mathrm{~mol} \%)$ and 4 methylmorphiline N-oxide (2 equiv) ${ }^{\text {f }}$ gave the following data which are consistent with those reported ${ }^{8}$: ${ }^{1} \mathrm{H}$ NMR $\delta 0.90(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.31(\operatorname{sex}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.56$ (quint. $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 2.46 (t,
$J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.6-2.9(\mathrm{~m}, 4 \mathrm{H}), 9.80(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\delta 13.79,22.25,25.90,34.56,37.42$, 42.42, $200.55,208.90 \mathrm{ppm}$.

1-Methylcyclobutene (2k). This compound ${ }^{\text {h }}$ was prepared from (Z)-1,4-diiodo-2-methyl-1-butene in 75% NMR yield: ${ }^{1} \mathrm{H}$ NMR $\delta 1.69$ (br s, 3 H), $2.25-2.35(\mathrm{~m}, 2 \mathrm{H}), 2.35-2.45(\mathrm{~m}, 2 \mathrm{H}), 5.66$ (br s, 1 H) $\mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\delta 16.89,26.46,33.00,127.76,152.20 \mathrm{ppm}$. Examination of the reaction of (E)-1,4-diiodo-2-methyl-1-butene by NMR spectroscopy indicated the formation of 2-methyl-1,3-butadiene ${ }^{i}$ in 60% yield and the title compound in 5-10\% yield.

1-(1-Octynyl)-2-methylcyclobutene (2n). To a solution of 1-octyne ($1.10 \mathrm{~g}, 10 \mathrm{mmol}$) in THF (10 mL) was added n-BuLi (2.6 M in hexane, $4.23 \mathrm{~mL}, 11 \mathrm{mmol}$) at $-78{ }^{\circ} \mathrm{C}$. Conversion of $1-$ octynyllithium to the corresponding Zn reagent, its Pd-catalyzed cross coupling reaction and the workup were performed on a 10 mmol scale as described in detail for 2 e . Distillation yielded $1.37 \mathrm{~g}(78 \%)$ of the title compound as a colorless oil ($\geq 98 \%$ pure by GLC): bp $132-134^{\circ} \mathrm{C}(31 \mathrm{~mm} \mathrm{Hg}) ; n^{27}{ }_{\mathrm{D}} 1.4864 ;{ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.35(\mathrm{br} \mathrm{s}, 10 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{br} \mathrm{s}, 4 \mathrm{H}) \mathrm{ppm}$; IR (neat) 2950, 2230, $1640 \mathrm{~cm}^{-1}$. Anal. calcd for $\mathrm{C}_{13} \mathrm{H}_{20}: \mathrm{C}, 88.63 ; \mathrm{H}, 11.36$. Found: $\mathrm{C}, 88.77 ; \mathrm{H}, 11.52$.
(E)-1-Hexenyl-2-allylcyclobutene (2p). This compound was prepared in 62% NMR yield by Pdcatalyzed cross coupling using 4 b generated in situ and (E)-1-iodo-1-octene. Its spectral data are as follows: ${ }^{1} \mathrm{H}$ NMR δ 0.85-1.0 (m, 3 H), 1.2-1.4 (m, 4 H$), 2.0-2.2(\mathrm{~m}, 2 \mathrm{H}), 2.3-2.45(\mathrm{~m}, 4 \mathrm{H}), 2.8-2.9(\mathrm{~m}$, $2 \mathrm{H}), 5.0-5.15(\mathrm{~m}, 2 \mathrm{H}), 5.5-5.7(\mathrm{~m}, 1 \mathrm{H}), 5.7-6.0(\mathrm{~m}, 1 \mathrm{H}), 6.13(\mathrm{~d}, J=15 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR δ $14.42,22.76,26.04,28.24,32.09,32.84,34.30,116.06,123.39,131.36,135.67,138.80,139.37 \mathrm{ppm} ;$ HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{20}$ 176.1566, found 176.1568.

This compound was also prepared in 95% yield by generating $\mathbf{4 b}$ via treatment of $\mathbf{5 b}$ with 2 equiv. of t-BuLi followed by addition of dry ZnBr_{2}.

1-(1-Hexynyl)-2-allylcyclobutene (2q). This compound was prepared in 68% NMR yield by Pdcatalyzed cross coupling using 4 b generated in situ and 1-iodo-1-hexyne. The title compound yielded the following data: ${ }^{1} \mathrm{H}$ NMR $\delta 0.85-0.95(\mathrm{~m}, 3 \mathrm{H}), 1.2-1.4(\mathrm{~m}, 4 \mathrm{H}), 1.95-2.05(\mathrm{~m}, 2 \mathrm{H}), 2.25(\mathrm{~s}, 4 \mathrm{H}), 2.76$
(d, $J=7 \mathrm{~Hz}, 2 \mathrm{H}), 4.95-5.1(\mathrm{~m}, 2 \mathrm{H}), 5.7-5.9(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\delta 13.62,19.20,21.96,28.91$, $30.04,30.88,35.27,75.63,92.27,116.07,120.88,134.20,150.81 \mathrm{ppm}$; IR (neat) $2210,1720,1680 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{18}$ 174.1409, found 174.1405.

References

(a) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 4467.
(b) Hofmeister, H.; Annen, K.; Laurent, H.; Weichert, R. Angew. Chem. Int. Ed. Engl. 1984, 23, 727.
(c) Grandjean, D. Tetrahedron, 1993, 49, 5225.
(d) Zweifel, G.; Whitney, C. C. J. Am. Chem. Soc. 1967, 89, 2753.
(e) (a) McMurry, J. E. Acc. Chem. Res. 1983, 16, 405. (b) Baumstark, A. L.; Bechara, E. J. H.; Semigran, M. J. Tetrahedron Lett. 1976, 3265. (c) McMurry, J. E.; Kees, K. L. J. Org. Chem. 1977, 42, 2655. (d) Baumstark, A. L.; McCloskey, C. J.; Witt, K. E. J. Org. Chem. 1978, 3609.
(f) VanRheenen, V.; Kelly, R. C.; Cha, D. Y. Tetrahedron Lett. 1976, 1973.
(g) Takeoka, G. R.; Buttery, R. G.; Perrino, C. T. J. Agric. Food Chem. 1995, 43, 22.
(h) (a) Rudolph, A.; Weedon, A. C. Can. J. Chem. 1990, 68, 1590. (b) Hill, E. A.; Nylen, P. A.; Fellinger, J. H. J. Organomet. Chem. 1982, 239, 279.
(i) Pouchert, C. J.; Behnke, J. The Aldrich Library of C and H FT NMR Spectra, Aldrich Chemical Company, Inc. Ed. 1, Vol. 1, 1993.

