
 1 

 
Supporting Information 

Hybrid Multilayered Plasmonic Nanostars for Coherent Random Lasing 

Battulga Munkhbat1, Johannes Ziegler1, Hannes Pöhl1, Christian Wörister,1 Dmitry Sivun1, 

Markus C. Scharber2, Thomas A. Klar1, and Calin Hrelescu1* 

1. Institute of Applied Physics, Johannes Kepler University Linz, 4040 Linz, Austria 

2. Linz Institute for Organic Solar Cells / Institute of Physical Chemistry, Johannes Kepler 

University Linz, 4040 Linz, Austria 

e-mail: calin.hrelescu@jku.at 

 
 
 
 
Characterization of Hybrid Multilayered Plasmonic Nanostars 
 
 
 

 
 
Figure S1. Zoomed-out SEM images of representative gold nanostars (AuNSts) stemming from 

three different synthesis batches. 
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Figure S2. SEM images of representative silver-enhanced gold nanostars (AuAgNSts) stemming 

from three different synthesis batches. 

 

 

 

 

 

 

 

Scanning TEM (STEM) was performed with a bright field (BF) and a high angle annular dark 

field (HAADF) detectors. Elemental line and mapping analysis were carried out using energy 

dispersive X-ray spectroscopy (EDX). The samples were investigated with a JEOL JEM-2200FS 

transmission electron microscope in STEM mode operated at 200kV, equipped with an Oxford 

SDD X-maxN (80 mm²) EDX-system. (see Figure S3) 
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Figure S3. (a) STEM image of a representative AuAgNSt, (b) HAADF-STEM image of the 

same AuAgNSt, (c-d) STEM-EDX individual elemental maps of (c) Au and (d) Ag distribution. 

(e) Superposition of the individual elemental maps for Au (red) and Ag (green) in the AuAgNSt. 

(f) Elemental line analysis of the Au and Ag content in the AuAgNSt. The trace for the line 

analysis is illustrated as white line in (a). The AuAgNSts are layered nanostructures, with a star 

shaped gold core and a star shaped silver shell. 
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Figure S4. Reproducibility of the AuNSts and AuAgNSts synthesis: Extinction spectra of three 

different synthesis batches (a) of AuNSts and (b) of AuAgNSts. Negligible batch to batch 

variations in the optical ensemble spectra are achieved for the AuNSts. After the silver-

enhancement of the respective nanostars, nearly no batch to batch variations in the optical 

ensemble spectra could be observed for the AuAgNSts dispersed in ethanol. 

 

Figure S5. Zoomed-in TEM images of representative silica coated gold nanostars 

(AuNSts@SiO2) stemming from three different synthesis batches. 

 

 
 
Figure S6. TEM images of representative silica coated silver-enhanced gold nanostars 

(AuAgNSts@SiO2) stemming from three different synthesis batches. 
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Figure S7. Histogram of the silica shell thickness. 70 particles were analyzed manually with the 

free software Gwyddion.1 For each particle, the silica shell thickness was measured at 4 - 5 

different locations to analyze the homogeneity of the silica shell. 

 
 
 

 

In the random lasing experiments the position of the cuvette containing the gain-nanostars 

solutions is fixed, and the solutions are not stirred. Typically, the experiments for each sample 

are completed in less than an half an hour. Precipitation and aggregation of the nanostars in the 

gain-nanostar solutions is avoided by the silica shell or with thiolated mPEG functionalization of 

the nanostars. In Figure S8, extinction spectra of AuAgNSts with and without silica shell 

dispersed in ethanol are shown. The spectra were recorded every hour. The AuAgNSts and 

AuAgNSts@SiO2 dispersed in ethanol did not show any significant change in optical density 

(OD) during the period of 10 hours. Furthermore, there was no significant change in the shape of 

extinction spectra of both multilayered nanostars. This implies that no significant precipitation or 

aggregation of the AuAgNSts with and without silica shell occurs over a monitoring period of 

ten hours without stirring, which is substantially longer than the time needed to complete the 

random lasing experiments for one sample.  
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Figure S8. Extinction spectra of a) AuAgNSts and b) AuAgNSts@SiO2 in ethanol recorded 

every hour for a period of 10 hours. The solutions containing nanostars are not stirred or shaken 

during the period of 10 hours. c) The optical densities (OD) at the extinction maximum of both 

AuAgNSts and AuAgNSts@SiO2 dispersions do not show any significant change during the 10 

hours without stirring. 

 
Figure S9. Histograms of the tip-to-tip diameters of a) AuNSts, b) AuNSts@SiO2, c) AuAgNSts 

and d) AuAgNSts@SiO2. For each type of the nanostars, the tip-to-tip diameters were measured 

manually with Gwyddion1 for 30 particles. For each particle 3 - 4 tip-to-tip distances between 

different tips were considered. 
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Figure S10. SEM images of the citrate-capped spherical gold nanoparticles (125 nm in diameter) 

were purchased from Nanopartz (left and middle) and TEM image of representative silica coated 

spherical gold nanoparticles (right). 

 

 

Figure S11. (a) Extinction spectra of AuNSts and AuNSts@SiO2 in ethanol. The concentration 

of AuNSts and AuNSts@SiO2 was adjusted in such a way that both dispersions have the same 

optical density at 405 nm. (b) Extinction spectra of AuAgNSts and AuAgNSts@SiO2 in ethanol. 

The AuAgNSts and AuAgNSts@SiO2 were directly synthesized out of a part of the AuNSts, so 

that the concentrations are considered to be similar. Due to the silver enhancement the 

AuAgNSts and AuAgNSts@SiO2 in ethanol exhibit a ~4 times higher extinction as the AuNSts. 

(c) Extinction spectra of AuNSts@SiO2, AuAgNSts@SiO2 and AuNPs@SiO2 in chlorobenzene. 
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Figure S12. The emission spectrum of the reference R6G solution shows amplified spontaneous 

emission (ASE) with a substantially reduced spectral bandwidth (continuous red curve with  full 

width half maxima of FWHM@0.33=8.20 nm) for fluences above 0.30 mJ cm-2 compared to PL 

(dashed curve with a FWHMPL=16.53 nm). 

  

Figure S13. Emission (random lasing or ASE) spectra at an excitation fluence of 0.45 mJ cm-2 

for nanostars/R6G mixtures. Surprisingly, no pronounced ASE background is detected even at 

low pumping fluences in contrast to the previously mentioned samples. 

Combined dark-field and random lasing experiments supported by accurate theoretical modeling 

might allow deeper insights in the ASE-suppression mechanism.2,3 
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Numerical Modelling of hybrid multilayered plasmonic nanostars 

In order to underline our experimental findings on the optical properties of the hybrid 
multilayered nanostars, three-dimensional finite difference time domain (FDTD) calculations 
were performed. We used the commercially available FDTD solver (version 8.9.269) from 
Lumerical Solutions Inc. to calculate the field enhancement distributions and scattering cross 
sections of hybrid multilayered nanostars. Since the investigation of the exact properties of 
specific hybrid multilayered nanostars and their individual plasmonic resonances includes vast 
numerical calculations and lots of detailed numerical modelling as well as detailed analysis and 
experiments at the single particle level, which are beyond the scope of this manuscript, we 
restricted ourselves to a simpler model in order to mimic the key plasmonic properties of the 
hybrid multilayered nanostars for coherent random lasing best as possible, namely their 
scattering cross-section and the field enhancement distributions. The gold nanostars were 
emulated as gold-spheres (80 nm in diameter) as the nanostar’s core, from which five tips are 
protruding in the same plane, but pointing in arbitrary directions, avoiding the formation of any 
symmetry. The tips are modeled as rounded cones with a tip curvature of 8 nm. The individual 
tip length was chosen between 20 and 30 nm so that the maximal apex-to-apex distance is 120 
nm, similar to the real nanostars. The cone opening angle was set to 40°, since for these 
modelling parameters the spectral position of calculated plasmon resonances agrees reasonably 
good with the spectral position of the observed main extinction maxima. The silver shell 
(thickness SCore) and the silica shell (with a fixed thickness of 10 nm) around the gold core were 
modeled by concentric spheres of the corresponding material with bigger diameter. The silver 
shell (with a variable thickness STip) and the silica shell ( with a fixed thickness of 10 nm) 
around the tips were modeled by adding symmetrically enlarged rounded cones around the 
corresponding tips in order to achieve core-shell-shell tips with a common symmetry axis. In the 
modeling, the permittivity of gold and silver was obtained by a generalized multi-coefficient fit 
of the permittivity of bulk gold and silver according to Johnson and Christy.4 

 The calculations were performed for nanostars dispersed in ethanol (refractive index of 1.36). 

For the silica shell, a refractive index of 1.39 was used, which is typical for a TEOS thin layer in 

ethanol.5 The Total Field/Scattered Field (TFSF) source implemented in the software was used as 

excitation source, emitting a plane wave with the same spectral bandwidth as in the extinction 

experiments. The excitation direction was vertical to the common plane of the five tips. 

Figure S14 shows the calculated scattering cross sections for a single AuNSt (black), for the 

same AuNSt coated with a homogenous 10 nm Silica (TEOS) layer as model for the 

AuNSt@SiO2, for the AuAgNSt (same AuNSt covered with Ag with a thicknesses of STip= 8 nm 

and Score= 20 nm, typical for the AuAgNSts in the experiments) and the model AuAgNSt@SiO2, 

which is the same AuAgNSt, additionally covered with a 10 nm silica shell.  

The experimental findings are qualitatively reproduced by the simulations. Upon silica-

coating, the calculated plasmon resonances of the AuNSts redshift due to the introduction of a 
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higher refractive index medium around the AuNSts compared to the background refractive 

index. Additionally, besides the spectral redshift, the silica shell induces a spectral broadening of 

the plasmon resonances. It should be pointed out that the experimental extinction spectra, which 

were measured on an ensemble, are the superposition of all extinction spectra of individual 

nanostars. Since every individual nanostar possesses a nearly unique morphology, which 

determines the number and spectral position of the multiple plasmon resonances, it is nearly 

impossible to achieve a perfect quantitative agreement between calculated spectra of individual 

nanostars and the experimental ensemble extinction. 

 

Figure S14. Calculated scattering cross sections for the same single gold nanostar with different 

coatings, pure AuNSt, AuNSt@SiO2, AuAgNSt and AuAgNSt@SiO2. 
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Figure S15. Calculated intensity enhancement distribution �
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2

 at the pump excitation 

wavelength (532 nm). The incident excitation polarization is indicated by the white double 

arrow. (a) for a spherical AuNP, and the nanostars with scattering cross sections displayed in 

Figure S14, (b) AuNSt, (c) AuNSt@SiO2 (white curve indicates the SiO2 shell), (d) AuAgNSt 

and (e) AuAgNSt@SiO2 (black curve indicates the SiO2 shell). 

An example of the influence of the silver shell thickness on the plasmon resonances of single 

AuNSt, i.e. the scattering cross section, is illustrated in Figure S16. In all calculations, the 

AuNSt, the excitation polarization and the surrounding medium of the AuNSt are kept constant. 
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The growth of the silver shell is modeled assuming that the Ag shell thickness around the core 

Score increases from 8 to 20 nm, while the Ag shell on the tips of the AuNSt remains constant at 

STip= 8 nm.  Already with an 8 nm thick silver shell on the core and tips of the AuNSt, the 

scattering cross section of the AuAgNSt (red curve) is blue shifted and increased with respect to 

the scattering cross section of a AuNSt (black curve). With increasing Score, the plasmon 

resonances of the AuAgNSts blue shift further and the scattering cross section increases, as was 

also observed experimentally and was calculated by Fales et al.6 

 

 

Figure S16. Calculated scattering cross section for a AuNSt (black) and AuAgNSt with different 

Ag shell thickness Score (8 nm, 16 nm, and 20 nm) around the gold core, but a constant Ag shell 

thickness of 8 nm on the tips gold tips. 
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Random lasing of MEH-PPV 

 

Figure S17. The emission spectrum of the reference MEH-PPV solution shows amplified 

spontaneous emission (ASE) with a reduced spectral bandwidth (continuous red curve with full 

width half maxima of FWHM@0.39=9.18 nm) for fluences above 0.30 mJ cm-2 compared to PL 

(dashed curve with a FWHMPL=15.02 nm). 

 

Figure S18. Detail of random lasing emission spectra of MEH-PPV with AuAgNSts@SiO2. 
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