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1 Deformation potential theory

The position of the conduction and valence bands can be expressed as a function of strain

as (for [100] uniaxial stress) as follows:S1
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where ac,dir, Ξd, Ξu, and b are deformation potentials, S11, S12 are the coefficient of the

mechanical compliance matrix for germanium and ∆0 is the spin-orbit splitting energy.
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2 Pointing the bandgap from electro-absorption signa-

tures

The applied electric field F modulates the complex dielectric function near the transition

between the conduction band and one of the valence bands of a semiconductor. The effect

can be understood from the Airy function theory of the Franz-Keldysh oscillations:S2
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and

G(ξ) = π(Ai′(ξ)Bi′(ξ)−ξAi(ξ)Bi(ξ))+
√
ξH(ξ)+ i[π(Ai′2(ξ)−ξAi2(ξ))−

√
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where E is the photon energy, Eg is the band gap of the material, e ·Pc,v is the momentum

matrix element, µ the reduced mass, Ai, Bi, Ai′, Bi′ are the Airy functions of first and second

kind and their derivatives and H is the unit step function. For an unstressed semiconductor

where the valence bands are degenerate, one has to sum over the light- and heavy-hole

contributions.

The criterion used to determine the energy of the band gap is to point the first zero of

the electro-absorption signal ∆T
T

= 0. Indeed, the transmission of the germanium layer can

be expressed as T = e−αd(1 − R) with d the thickness of the layer and R the reflectivity of

the air-germanium interface (since the reflectivity of the silicon-germanium interface can be

neglected). For small modulations of the transmission, we can thus write:
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Since the second term can be neglected for a thickness d of 0.8 µm, this criterion is

equivalent to:

|∆α| ≈
∣∣∣∣ 2π

n0λ
Im(∆ε)

∣∣∣∣ = 0 (10)

This corresponds to the first root of Im
[
G
(
Eg−E
h̄θ

)]
for E > Eg. If we define ξ = Eg−E

h̄θ
,

this zero corresponds to the solution of:

π(Ai′2(ξ)− ξAi2(ξ))−
√
−ξ = 0 (11)

Solving this equation with a numerical solver gives ξ = −0.054, thus Eg−E = −0.054 h̄θ.

The electric field F is necessarily lower than the breakdown field of germanium (about

105 V/cmS3), thus |Eg − E| < 3.1 meV. This gives an estimate for the maximum interpre-

tation bias of this criterion.
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3 Comparison between linear and quadratic fits

The measured relation between strain and direct band gap can be fitted with two different

models. The first one, called linear fit, is based on the standard deformation potential theory.

The second one, called quadratic model, is the model described in the main article. While

the quadratic model fits best our experimental data points, the linear model gives also a

reasonable description, as shown in figure S1. Table S1 displays the coefficient obtained with

these two different fits.

Figure S1: Comparison between the experimental data points, measured by electro-
absorption spectroscopy (in blue), and two types of least-square fit, linear (in green) and
quadratic (in red).

Table S1: Comparison of linear and quadratic fits

Fit ac − av (eV) a(2) (eV) b (eV) Variance (eV2)
Linear -11.0 – -2.41 2.2 10−5

Quadratic -9.1 -37 -2.32 1.1 10−5

However, as shown in figure S2, this linear model compares poorly with the tight-binding

simulations, especially at low strain. The linear coefficients from the quadratic fit actually

provide a much better description of the tight-binding simulations for ε < 2 %.
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As a matter of fact, the bandgap deformation ac−av = −11 eV extracted from the linear

fit does not match previous experimental data at low strain (notably ac − av = −8.97 eV

from from Liu et al. (2004)S4 and ac − av = −9.75 eV from El Kurdi et al. (2016)S5), while

the outcome of the quadratic fit, ac − av = −9.1 eV, is in much better agreement. The

quadratic fit is, therefore, more consistent with existing experimental data than the linear

fit.

Figure S2: Comparison between the tight-binding model (in solid red), the deformation
potential theory using the linear coefficients from the quadratic fit (black dotted line) and
from the linear fit (black dashed line), and the quadratic fit (in solid black).
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4 X-ray diffraction of strained micro-bridges

We have discussed the homogeneity and uniaxial character of strained micro-bridges in one

of our previous publications, showing that the strain state is purely tetragonal (i.e. no sheer

components) and homogeneous in the whole bridge.S6 To ensure neither the deposition of

gold nor the collapsing of the structure would induce a deviation from the ideal strain tensor,

we performed Laue x-ray micro-diffraction on one sample, following the same measurement

protocol as in ref.S6

The measured components of the strain tensor are displayed in table S2. As expected,

no deviation from the theoretical strain tensor under the hypothesis of uniaxial stress is

observed.

Table S2: Coefficient of the strain tensor extracted from XRD measurements and compared
to the theoretical value for a longitudinal strain of 2.72 %

εxx (%) εyy (%) εzz (%) α (◦) β (◦) γ (◦)
Experiment 2.72 −0.69 −0.71 90.04 90.01 90.04

Theory 2.72 −0.70 −0.70 90 90 90
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