Discovery of Selective Inhibitors Targeting Acetylcholinesterase 1 from Disease-Transmitting Mosquitoes

Cecilia Engdahl, ${ }^{\dagger, \$}$ Sofie Knutsson, ${ }^{\dagger, \$}$ Fredrik Ekström, ${ }^{7^{*}}$ and Anna Linusson ${ }^{\dagger^{*}}$
${ }^{\dagger}$ Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
${ }^{\text {TS }}$ Swedish Defense Research Agency, CBRN Defense and Security, SE-906 21 Umeå, Sweden
*Corresponding author
${ }^{\$}$ These authors contributed equally
E-mail address: anna.linusson@umu.se; fredrik.ekstrom@foi.se

Table of contents

Inhibition data from the HTS campaigns against $A g A C h E 1, A a A C h E 1$, and $h \mathrm{AChE}$ 3
Statistics of HTS results 5
Reference compounds 6
Reference plate statistics 6
Z'-factors 7
Examples of raw measurements of reference compounds 8
Reference plate - Estimation of false positives and false negatives 12
Overview of the PCA models describing the AChE1 hits 13
Chemical space of AChE1 hits 15
Selection of compounds for IC_{50} determination 17
Complete inhibition results for all the re-tested compounds. 25
Dose-response analyses for IC_{50} determinations 28
NMR spectrum of compounds 3-10. 32
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum of synthesized compounds 36
Multiple sequence alignment AgAChE 1 42
Multiple sequence alignment $A a \mathrm{AChE} 1$ 43
Selection of template for homology modeling 44
Angles of Tyr337 in homology models of AgAChE1 and AaAChE1 45
Evaluation of $A g A C h E 1$ and $A a \mathrm{AChE} 1$ homology models 45
Compounds $\mathbf{1}$ and $\mathbf{2}$ modelled into the active site of $A g A C h E 1 ~ a n d ~ A a A C h E 1 ~$ 46
Data collection and refinement statistics for 5FUM 48
References 49

Inhibition data from the HTS campaigns against $A g A C h E 1, A a A C h E 1, ~$ and $h \mathrm{AChE}$

Figure S1. Histogram showing the distribution of the HTS inhibition data for AgAChE 1 used in the differential HTS study.

Figure S2. Histogram showing the distribution of the HTS inhibition data for AaAChE1 used in the differential HTS study.

Figure S3. Histogram showing the distribution of the HTS inhibition data for $h \mathrm{AChE}$ used in the differential HTS study. ${ }^{1}$

Statistics of HTS results

Data was normalized as $\%$ of control according to the following equation:

$$
\frac{x_{i}}{\bar{c}_{+}} \times 100
$$

Where

x_{i}	raw measurement
\bar{c}_{+}	mean of eight positive controls within plate (maximum activity)

Table S1. AChE1 HTS statistics based on the screened compounds’ inhibition of activity in relation to positive controls.

	$\boldsymbol{A g A C h E} 1$	AaAChE1
Mean (\%)	3	3
Median (\%)	2	2
Standard deviation (\%)	10	9
Cut-off (\%)	33	31
No. of hits	235	286
Hit-rate (\%)	1.3	1.6
No. of unique hits of $\boldsymbol{A g A C h E}$ and/or $\boldsymbol{A a A C h E}$		

Reference compounds

AL045

AL053

AL056

1

Eserine
Figure S4. Chemical structures of compounds on reference plate. At $50 \mu \mathrm{M}$, these compounds exhibited mean inhibition values ranging from $0-95 \%$ for both enzymes, and all but one compound had a standard deviation of $3-8 \%$. The higher standard deviation of the mean observed for compound 1 (17-18\%) was probably due to a handling error whereby no compound was added to in total six and three wells of the $A g A C h E 1$ and $A a \mathrm{AChE} 1$ experiments, respectively.

Reference plate statistics

Table S2. Reference plate statistics.

		AL045	AL053	AL056	AL057	AL129	1	AL145	Eserine
IC_{50}	AgAChE1	1000	62	1000	1000	46	0.26	100	0.005
	AaAChE1	1000	38	1000	1000	37	0.44	100	0.007
mean (\%)	AgAChE1 ${ }^{\text {a }}$	2	18	0	-3	25	90	7	95
	AaAChE1 ${ }^{\text {b }}$	1	26	0	-3	24	89	11	94
median (\%)	AgAChE1 ${ }^{\text {a }}$	2	19	0	-4	25	93	8	96
	AaAChE1 ${ }^{\text {b }}$	1	26	0	-4	24	92	10	94
SD	$A g A C h E 1{ }^{\text {a }}$	7	7	8	7	8	18	8	8
	AaAChE1 ${ }^{\text {b }}$	5	6	6	7	7	17	7	3
total no. of replicates	AgAChE1 $^{\text {a }}$	216	216	216	216	216	216	216	216
	AaAChE1 ${ }^{\text {b }}$	96	96	96	96	96	96	96	96
no. scored as hits	AgAChE1 $^{\text {a }}$	0	7	1	0	19	210	0	215
	AaAChE1 ${ }^{\text {b }}$	0	14	0	0	9	93	0	96
no. scored as inactive	AgAChE1 ${ }^{\text {a }}$	216	209	215	216	197	6	216	1
	AaAChE1 ${ }^{\text {b }}$	96	82	96	96	87	3	96	0

${ }^{\text {a }}$ Based on $\%$ inhibition from 27 plates with eight replicates/plate ${ }^{\text {b }}$ based on $\%$ inhibition from 12 plates with eight replicates/plate

Z'-factors

a) Z'-factor $A g A C h E 1$ screen

b)

Z'-factor AaAChE1 screen

Figure S5. Z'-factors based on eserine and AL045 for each of the reference plate run during the
 one measurement for eserine being an extreme outlier, probably due to a handling error whereby no compound was added to the well (see Figure S5c). Excluding this one measurement resulted in Z'-factor of 0.64 for this plate.

Examples of raw measurements of reference compounds

a)

AL045 AgAChE1 HTS

b)

c)
eserine AgAChE1 HTS

d)

Figure S6. Examples of the change in absorbance over time ($\mathrm{dA} / \mathrm{min}$) of four compounds from the reference plate run 27 times during the AgAChE 1 screen. Each compound was present in eight replicates on the reference plate. a) Positive control AL045 used for determination of Z'-factor. b) Positive control AL056. C) Negative control eserine used for determination of Z'-factor, one visible outliers (plate $12 ; \mathrm{dA} / \mathrm{min}>0.45$) probably due to a handling error whereby no compound was added to that well. d) Negative control 1, six visible outliers (plate 9 and 12; dA/min >0.35) probably due to a handling error whereby no compound was added to those wells.

SUPPORTING INFORMATION
a)

b)

c)

d)

Figure S7. Examples of the change in absorbance over time ($\mathrm{dA} / \mathrm{min}$) of four compounds from the reference plate run 12 times during the $A a \mathrm{AChE} 1$ screen. Each compound was present in eight replicates on the reference plate. a) Positive control AL045 used for determination of Z'-factor. b) Positive control AL056. C) Negative control eserine used for determination of Z'-factor. d) Negative control 1, three visible outliers (plate 9 and $12 ; \mathrm{dA} / \mathrm{min}>0.45$) probably due to no compound being added to those wells.

Reference plate - Estimation of false positives and false negatives

Table S3. Estimation of false positives and false negatives based on reference plate data for the eight compounds loaded on the reference plate (Figure S3 and Table S2).

AgAChE1 AaAChE1

No. false positives (wells)	$27(6 \%)$	$23(11 \%)$
No. true positives (wells)	425	189
No. false negatives (wells)	$7(0.5 \%)$	$3(0.5 \%)$
No. true negatives (wells)	1269	553

${ }^{\text {a }}$ Definition of false positive: a measurement (well) for which reference compound r_{i} exhibited $\%$ inhibition \geq hit cut-off; where $\bar{r}_{i}<$ hit cut-off. ${ }^{\text {b }}$ Definition of false negative: a measurement (well) for which reference compound r_{i} exhibited $\%$ inhibition \leq hit cut-off; where $\bar{r}_{i}>$ hit cut-off.

SUPPORTING INFORMATION

Overview of the PCA models describing the AChE1 hits

Table S4. Model statistics of principal component analysis (PCA) used to describe and visualize the chemical diversity of the AChE1 hits and selection of compounds for IC_{50} determinations. PCA is an unsupervised regression method used here to extract the main variation in the 2D-descriptor data (i.e. principal components). The PCA models were calculated on mean-centered data scaled to unit variance using software SIMCA-P $+{ }^{2}$ and the number of significant components for each model were determined using scree-plots.

Model	No of hits	No of descriptors	No of components	Eigenvalue of last component	$\mathbf{R}^{2 \mathbf{X}}$ (cum)	$\mathbf{Q}^{2} \mathbf{X}$ (cum)
1 all AChE1 hits	338	73	4	3.72	0.85	0.82
hits $\geq 70 \%$ inhibition	55	73	4	3.42	0.83	0.74
hits 69-31\% inhibition	248	73	4	3.61	0.86	0.83
hits $\geq 30 \%$ difference between Aa- and AgAChE1	35	73	3	3.88	0.84	0.78
hit sets A and B	47	73	3	7	0.83	0.74

SUPPORTING INFORMATION

Table S5. Physicochemical descriptors used to describe the chemical space spanned by the AChE1 hits. The 2D-descriptors were calculated using MOE^{3} on structures prepared as described in the Experimental section.

No.	Descriptor	No.	Descriptor	No.	Descriptor
1	apol	26	chi0_C	51	PEOE_VSA_NEG
2	a_acc	27	chi1	52	PEOE_VSA_PNEG
3	a_aro	28	chi1v	53	PEOE_VSA_POL
4	a_count	29	chi1v_C	54	PEOE_VSA_POS
5	a_donacc	30	chi1_C	55	PEOE_VSA_PPOS
6	a_heavy	31	density	56	radius
7	a_hyd	32	diameter	57	rings
8	a_IC	33	Kier1	58	SlogP
9	a_ICM	34	Kier2	59	SMR
10	a_nC	35	Kier3	60	TPSA
11	a_nH	36	KierA1	61	VAdjEq
12	a_nO	37	KierA2	62	VAdjMa
13	balabanJ	38	KierA3	63	VDistEq
14	bpol	39	KierFlex	64	VDistMa
15	b_1rotN	40	logS	65	vdw_area
16	b_1rotR	41	PEOE_PC+	66	vdw_Vol
17	b_ar	42	PEOE_PC-	67	vsa_hyd
18	b_count	43	PEOE_RPC-	68	vsa_other
19	b_heavy	44	PEOE_VSA_FHYD	69	vsa_pol
20	b_rotN	45	PEOE_VSA_FNEG	70	Weight
21	b_rotR	46	PEOE_VSA_FPNEG	71	weinerPath
22	b_single	47	PEOE_VSA_FPOL	72	weinerPol
23	chi0	48	PEOE_VSA_FPOS	73	zagreb
24	chiOv	49	PEOE_VSA_FPPOS		
25	chiOv_C	50	PEOE_VSA_HYD		

Chemical space of AChE1 hits

Figure S8. Chemical space of AChE1 hits. Score plots from PCA of the physicochemical properties of the identified hits colored according to their inhibition in the HTS. Hits with $\geq 70 \%$ inhibition in blue, 31-69\% inhibition in yellow, and hits with $\geq 30 \%$ difference inhibition between $A a$ - and $A g A C h E 1$ in purple. The first and second components describe the size and hydrophobicity of the hits (a) and the third and fourth components show diversity relating to flexibility and charge (b).

SUPPORTING INFORMATION

Figure S9. Chemical space of AChE1 hits. PCA loading plots of (a) p1 versus p2 and (b) p3 versus p4. The physicochemical descriptors included in the model are labeled with the numbers assigned in Table S5.

SUPPORTING INFORMATION

Selection of compounds for IC_{50} determination

a)

b)

Figure S10. Chemical space of AChE1 hits showing $\geq 70 \%$ inhibition. Score plots from PCA of the physicochemical properties of the 55 hits showing at least 70% inhibition in the HTS, hits manually selected for IC_{50} determination colored in blue (set A). The first and second components describe the size and hydrophobicity of the hits (a) and the third and fourth components show diversity relating to flexibility and charge (b).

SUPPORTING INFORMATION

a)

b)

Figure S11. Chemical space of AChE1 hits showing $\geq 70 \%$ inhibition. PCA loading plots of (a) p 1 versus p 2 and (b) p3 versus p4. The physicochemical descriptors included in the model are labeled with the numbers assigned in Table S5.

SUPPORTING INFORMATION

a)

b)

Figure S12. Chemical space of AChE1 hits showing 31-69\% inhibition. Score plots from PCA of the physicochemical properties of the 248 hits showing at least $31-69 \%$ inhibition in the HTS, hits manually selected for IC_{50} determination colored in yellow (set B). The first and second components describe the size and hydrophobicity of the hits (a) and the third and fourth components show diversity relating to flexibility and charge (b).

SUPPORTING INFORMATION

Figure S13. Chemical space of AChE1 hits showing 31-69\% inhibition. PCA loading plots of (a) p 1 versus p 2 and (b) p3 versus p4. The physicochemical descriptors included in the model are labeled with the numbers assigned in Table S5.

SUPPORTING INFORMATION

Figure S14. Chemical space of AChE1 hits showing $\geq 30 \%$ difference in inhibition between $A g-$ and $A a A C h E 1$. PCA of the physicochemical properties of the 35 hits showing at least 30% difference in inhibition between $A a$ - and $A g A C h E 1$ in the HTS, hits manually selected for IC_{50} determination colored in purple (set D1 and D2). The first and second components describe the size and hydrophobicity of the hits (a) and the third component shows diversity relating to flexibility (b).

SUPPORTING INFORMATION

Figure S15. Chemical space of AChE1 hits showing $\geq 30 \%$ difference in inhibition between $A g$ and $A a A C h E 1$. PCA loading plots of (a) p1 versus p 2 and (b) p3. The physicochemical descriptors included in the model are labeled with the numbers assigned in Table S5.
a)

b)

Figure S16. Chemical space of AChE1 hits in sets A and B. Score plots from PCA of the physicochemical properties of the 47 hits in sets A (blue) and B (yellow) selected for IC_{50} determinations. Compounds of set $\mathrm{C}(\leq 30 \%$ inhibition; red) were manually selected from compounds with similar structures and physicochemical properties as the compounds in set A and B and have here been projected into the chemical space. The first and second components describe the size and flexibility of the hits (a) and the third component shows diversity relating to polarity and charge (b).

SUPPORTING INFORMATION

Figure S17. Chemical space of AChE1 hits in sets A and B. PCA loading plots of (a) p1 versus p2 and (b) p3. The physicochemical descriptors included in the model are labeled with the numbers assigned in Table S5.

SUPPORTING INFORMATION

Complete inhibition results for all the re-tested compounds
Table S6. The complete inhibition results for all the re-tested compounds.

		HTS (\%)			$\mathrm{IC}_{50}(\mu \mathrm{M})^{\text {a }}$			\% activity at $200 \mu \mathrm{M}^{\text {b }}$			S.R.	
ID	set	AgAChE1	AaAChE1	hAChE ${ }^{\text {c }}$	AgAChE1	AaAChE1	hAChE	AgAChE1	AaAChE1	hAChE	HTS ${ }^{\text {d }}$	$\mathrm{IC}_{50}{ }^{\text {e }}$
2	A	92	76	12	0.21	0.22	31				6.3	141
3	A	86	90	33	>100	>100	>200	50	49	71	2.6	
4	A	94	93	56	8	9	5				1.7	0.6
5	A	76	82	-12	>1000	>1000	>1000	84	91	78	76	
C0076	A	81	78	-14	>1000	>1000	>1000	87	96	92	78	
C0147	A	94	95	2	0.7	0.8	>200			45	47	>250
C0656	A	69	79	-1	2	2	80				69	40
C0710	A	88	88	57	0.7	0.7	7				1.5	10
C1457	A	87	89	66	0.4	0.3	5				1.3	13
C2681	A	86	88	-11	1	1	>1000			88	86	>1000
C2810	A	89	93	6	1	2	>200			58	14.8	>100
C3029	A	74	78	-16	3	3	>1000			80	74	>333
C4127	A	92	96	85	0.4	0.4	3				1.1	7.5
C4514	A	92	78	-9	10	9	>200			56	67	>20
C4584	A	76	72	7	16	6	>1000			91	10.3	>63
C5063	A	91	81	-11	2	1	72				81	36
C5651	A	96	95	83	5	4	3				1.1	0.6
C6233	A	86	82	28	86	66	>1000			83	2.9	>12
C6483	A	86	89	9	4	4	>300			84	9.6	>75
C7066	A	74	78	-17	6	3	>1000			80	74	>167
C8319	A	80	78	81	5	5	2				1	0.4
C8405	A	92	88	-3	1	1	>200			65	88	>200
C9464	A	86	90	-1	4	3	>300			71	86	>75
C9940	A	61	72	17	2	2	10				3.6	5
6	B	23	38	-7	>500	>500	>500	80	86	81	23	
7	B	32	33	3	17	12	>200			58	11	>12
C0269	B	48	49	-4	9	9	>1000			86	48	>111
C1687	B	13	36	57	>200	>200	19	54	49		0.2	<0.1
C1815	B	22	48	70	n.d.	n.d.	n.d.				0.3	
C1844	B	34	37	31	7	6	13				1.1	2
C2599	B	46	58	-5	22	19	>400			58	46	>18
C2972	B	66	63	-2	9	9	>1000			68	63	>111
C3732	B	24	43	3	11	12	129				8	11
C3922	B	56	0	15	>300	>300	>300	72	54	63	3.7	
C4233	B	47	30	37	>1000	>1000	>1000	70	79	63	0.8	
C4790	B	44	50	1	n.d.	n.d.	n.d.				44	

SUPPORTING INFORMATION

Table S6. Continued.

		HTS (\%)			$\mathrm{IC}_{50}(\mu \mathrm{M})^{\text {a }}$			\% activity at $200 \mu \mathrm{M}^{\text {b }}$			S.R.	
ID	set	AgAChE1	AaAChE1	$h A C h E{ }^{\text {c }}$	AgAChE1	AaAChE1	hAChE	AgAChE1	AaAChE1	hAChE	HTS ${ }^{\text {d }}$	IC $\mathrm{Co}^{\text {e }}$
C5737	B	65	67	0	5	6	>100			48	65	>17
C6103	B	46	51	22	6	5	>100			45	2.1	>17
C6176	B	57	66	81	8	10	12				0.7	1
C6727	B	53	53	-5	7	4	>100			40	53	>14
C7129	B	47	56	6	11	11	>500			80	7.8	>45
C7786	B	39	45	18	5	6	>300			55	2.2	>50
C7920	B	37	41	6	>400	>400	>400	62	59	79	6.2	
C7951	B	58	53	32	n.d.	n.d.	n.d.				1.7	
C8584	B	34	25	10	n.d.	n.d.	n.d.				2.5	
C8678	B	41	57	19	>1000	>1000	>1000	91	83	98	2.2	
C9503	B	57	69	12	2	2	47				4.8	24
8	C	24	18	2	21	19	43				9	2
C0459	C	3	8	-33	>1000	>500	>500	94	61	73	3	
C0890	C	5	-5	90	>1000	>1000	>1000	109	101	96	0	
C1234	C	1	8	84	>1000	>1000	>100	97	114	45	0	
C1409	C	4	13	-28	69	54	>1000	41	37	81	4	14
C3666	C	10	5	0	>1000	>1000	>200	86	76	54	5	
C4098	C	-10	-11	84	>1000	>1000	>100	62	94	44	0	
C5156	C	-21	-10	95	11	12	0.6				0	0.05
C5504	C	2	-3	-20	n.d.	n.d.	n.d.				1	
C7422	C	16	25	-3	73	128	>600			70	16	>5
C8086	C	6	13	20	>100	>100	>500	47	43	79	0.3	
C9083	C	-1	-1	-6	n.d.	n.d.	n.d.				1	
C9395	C	0	-9	-15	>1000	>1000	>1000	102	98	93	1	
C9657	C	2	2	3	>1000	>1000	>200	85	86	58	0.7	
9	D1	63	1	-14	>1000	>1000	>1000	92	105	86	1	
C0273	D1	45	-1	-11	>1000	>1000	>1000	88	87	77	1	
C1183	D1	52	-4	43	>1000	>1000	>1000	97	97	70	0	
C1301	D1	48	0	11	>1000	>1000	>1000	103	100	86	0.1	
C1647	D1	58	2	-23	>1000	>1000	>1000	86	91	89	2	
C2956	D1	53	-5	-1	>1000	>1000	>1000	102	116	99	1	
C5320	D1	42	-3	11	>1000	>1000	>1000	103	106	97	0.1	
C7765	D1	40	2	8	>1000	>1000	>1000	99	94	65	0.3	
C9077	D1	37	0	35	>1000	>1000	>1000	101	116	103	0	
10	D2	41	80	15	3	3	>200			55	2.7	>67
C0552	D2	-27	77	2	3	2	>100			41	0.5	>33
C0576	D2	-2	54	12	>1000	>1000	>1000	104	115	94	0.1	

SUPPORTING INFORMATION

Table S6. Continued.

		HTS (\%)			$\mathrm{IC}_{50}(\mu \mathrm{M})^{\text {a }}$			\% activity at $200 \mu \mathrm{M}^{\text {b }}$			S.R.	
ID	set	AgAChE1	AaAChE1	hAChE ${ }^{\text {c }}$	AgAChE1	AaAChE1	hAChE	AgAChE1	AaAChE1	hAChE	HTS ${ }^{\text {d }}$	$\mathrm{IC}_{50}{ }^{\text {e }}$
C4073	D2	-5	80	40	n.d.	n.d.	n.d.				0	
C6303	D2	17	47	-16	>200	>200	>500	69	58	87	17	
C9270	D2	-40	69	15	n.d.	n.d.	n.d.				0.1	
1		93	91	99	0.26	0.44	0.030				0.9	0.07

${ }^{\text {a }}$ Compounds denoted n.d. could not be determined due to poor solubility. ${ }^{\mathrm{b}}$ If the IC_{50} value could not be determined from the used concentration range the enzyme activity at a compound concentration of $200 \mu \mathrm{M}$ is given for comparison. ${ }^{\mathrm{c}}$ Previously published. ${ }^{1 \mathrm{~d}}$ If a compound inhibited an enzyme by $\leq 0 \%$ in a HTS the inhibition was set to 1% prior to calculation. The selectivity ratios were computed by taking the lower of the compound's inhibition (\%) values against $A g A C h E 1 ~ a n d ~$ $A a \mathrm{AChE} 1$, and dividing by its inhibition (\%) value against $h \mathrm{AChE}$. ${ }^{\mathrm{e} \text { Selectivity ratios were }}$ computed by taking the compound's IC_{50} value against $h \mathrm{AChE}$ and dividing by the higher of its IC_{50} values against $A g \mathrm{AChE} 1$ and $A a \mathrm{AChE}$.

Dose-response analyses for IC_{50} determinations

Figure S18. Graphs showing $I C_{50}$-determinations of compounds 3-10 in Table 2.

SUPPORTING INFORMATION

OPLS-DA model of AChE1- and h AChE selective hits

Table S7. Model statistics of the refined OPLS-DA model used to separate variation in the physicochemical properties related to the difference between the $\mathrm{AChE} 1-$ and $h \mathrm{AChE}$ selective hits.

No of hits	157
No of descriptors	58
No of components	$1+4$
Eigenvalue of predictive component	8.89
Eigenvalue of last orthogonal component	3.71
$\mathrm{R}^{2} \mathrm{X}$ (cum)	0.83
$\mathrm{R}^{2} \mathrm{Y}$ (cum)	0.52
Q^{2} (cum)	0.38

Table S8. Physicochemical descriptors included in the refined OPLS-DA model.

| No. | Descriptor | Equal
 variance | | | | |
| :---: | :--- | :---: | ---: | :--- | :--- | :--- | ---: |
| 1 | a_aro | p-value | no. | Descriptor | Equal
 variance | p-value ${ }^{\text {b }}$ |

${ }^{2}$ According to F-test for sample variance based on the sets of $h \mathrm{AChE}$ - and the AChE1 selective hits in the model $(\alpha=0.05) .{ }^{\text {b }}$ According to Student's T-test (two-tailed with $\alpha=0.05$) assuming equal or unequal variance as decided by the F-test.

SUPPORTING INFORMATION

Figure S19. Score- and loading plot from the OPLS-DA model. a) Plot showing the score vectors of the predictive component ($\mathrm{t}[1]$) vs. the first orthogonal component (to[1]). Hits showing potential selectivity for AChE 1 and $h \mathrm{AChE}$ are shown as orange and grey dots, respectively. b) Plot showing the loading vectors of the predictive component ($\mathrm{p}[1]$) vs. the first orthogonal component (po[1]). The predictive component mainly show separation due to size and flexibility.

NMR spectrum of compounds 3-10.
1-[3-(benzyloxy)-4-methoxybenzyl]-4-(4-fluorophenyl)-1,2,3,6-tetrahydropyridine (3). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$); LC-MS (ES) calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{FNO}_{2}(\mathrm{M}+\mathrm{H})+404$, found 404

7-benzyl-2-(ethylthio)-3-phenyl-5,6,7,8-tetrahydropyrido[4',3':4,5]thieno[2,3-d]pyrimidin-4(3H)-one (4). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$); LC-MS (ES) calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{OS}_{2}(\mathrm{M}+\mathrm{H})+$ 435 , found 435

\mathbf{N}-(2-\{[5-(2-furyl)-4-phenyl-4H-1,2,4-triazol-3-yl]thio\}ethyl)benzenesulfonamide (5). ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$; LC-MS calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}_{2}(\mathrm{M}+\mathrm{H})+428$, found 428

\mathbf{N}-\{2-[(2-fluorobenzyl)oxy]benzyl\}-2-(4-morpholinyl)ethanamine dihydrochloride (6). ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$; LC-MS calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{FN}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})+345$, found 345

SUPPORTING INFORMATION

1-(1-benzyl-4-piperidinyl)-4-(2-fluorobenzoyl)piperazine (7). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$, $328 \mathrm{~K})$; LC-MS calcd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{FN}_{3} \mathrm{O}(\mathrm{M}+\mathrm{H})+382$, found 382

5-(\{[4-(4-ethoxyphenyl)-5-phenyl-4H-1,2,4-triazol-3-yl]thio\}methyl)-3-(2-methylphenyl)-1,2,4-oxadiazole (9). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$); LC-MS calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S}(\mathrm{M}+\mathrm{H})+$ 471 , found 471

2-[4-(benzyloxy)benzyl]-1,2,3,4-tetrahydroisoquinoline (10). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$; LC-MS calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{NO}(\mathrm{M}+\mathrm{H})+330$, found 330

SUPPORTING INFORMATION

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum of synthesized compounds

SUPPORTING INFORMATION

SUPPORTING INFORMATION

SUPPORTING INFORMATION

SUPPORTING INFORMATION

15

SUPPORTING INFORMATION

Multiple sequence alignment AgAChE 1

AgAChE1 (accession no: XP_321792; UNIPROT code: ACES_ANOGA) after multiple alignment ${ }^{3-4}$ with Torpedo californica (TcAChE, PDB code: 1EA5, UNIPROT code: ACES_TORCA), Homo sapiens (hAChE, PDB code: 4EY4, UNIPROT code: ACES_HUMAN), Mus musculus (mAChE, PDB code: 1J06, UNIPROT code: ACES_MOUSE), and Drosophila melanogaster (DmAChE, PDB code: 1QO9, UNIPROT code: ACES_DROME). Amino acids defined as 'loop one' and 'loop two' are highlighted in yellow and blue, respectively.
AgAChE1 DANDNDPLVVNTDKGRIRGITVDAPSGKKVDVWLGIPYAQPPVGPLRFRHPRPAEK-WTG hAChE EGREDAELLVTVRGGRLRGIRLKTPGG-PVSAFLGIPFAEPPMGPRRFLPPEP-KQPWSG mAChE EGREDPQLLVRVRGGQLRGIRLKAPGG-PVSAFLGIPFAEPPVGSRRFMPPEP-KRPWSG Dmache VCGVIDRLVVQTSSGPVRGRSVTVQG-REVHVYTGIPYAKPPVEDLRFRKPVPAE-PWHG TCAChE QADDHSELLVNTKSGKVMGTRVPVLSS-HISAFLGIPFAEPPVGNMRFRRPEP-KKPWSG

AgAChE1 VLNTTTPPNSCVQIVDTVFGDFPGATMWNPNTPLSEDCLYINVVAPRPRPKNAA-VMLWI hAChE VVDATTFQSVCYQYVDTLYPGFEGTEMWNPNRELSEDCLYLNVWTPYPRPTSPTPVLVWI mAChE VLDATTFQNVCYQYVDTLYPGFEGTEMWNPNRELSEDCLYLNVWTPYPRPASPTPVLIWI Dmache VLDATGLSATCVQERYEYFPGFSGEEIWNPNTNVSEDCLYINVWAPAKNTTNGLPILIWI TCAChE VWNASTYPNNCQQYVDEQFPGFSGSEMWNPNREMSEDCLYLNIWVPSPRPKSTT-VMVWI

AgAChE1 FGGGFYSGTATLDVYDHRALAS-EENVIVVSLQYRVASLGFLFL-------GTPEAPGNA hAChE YGGGFYSGASSLDVYDGRFLVQAE-RTVLVSMNYRVGAFGFLALP-----GSREAPGNV mAChE YGGGFYSGAASLDVYDGRFLAQVEGA-VLVSMNYRVGTFGFLALP------GSREAPGNV DmAChE YGGGFMTGSATLDIYNADIMAAV-GNVIVASFQYRVGAFGFLHLAPEMPSEFAEEAPGNV TCAChE YGGGFYSGSSTLDVYNGKYLAYTEE-VVLVSLSYRVGAFGFLALH------GSQEAPGNV

AgAChE1 GLFDQNLALRWVRDNIHRFGGDPSRVTLFGESAGAVSVSLHLLSALSRDLFQRAILQSGS hAChE GLLDQRLALQWVQENVAAFGGDPTSVTLFGESAGAASVGMHLLSPPSRGLFHRAVLQSGA mAChE GLLDQRLALQWVQENIAAFGGDPMSVTLFGESAGAASVGMHILSLPSRSLFHRAVLQSGT DmAChE GLWDQALAIRWLKDNAHAFGGNPEWMTLFGESAGSSSVNAQLMSPVTRGLVKRGMMQSGT TCAChE GLLDQRMALQWVHDNIQFFGGDPKTVTIFGESAGGASVGMHILSPGSRDLFRRAILQSGS

AgAChE1 PTAPWALVSREEATLR-ALRLAEAVGCP--HEPSKLSDAVECLRGKDP-HVLVNNEWGTL hAChE PNGPWATVGMGEARRR-ATQLAHLVGCPPGGTGGNDTELVACLRTR-PAQVLVNHEWHVL mAChE PNGPWATVSAGEARRR-ATLLARLVGCPPGGAGGNDTELIACLRTR-PAQDLVDHEWHVL DmAChE MNAPWSHMTSEKAVEIGKALINDC-NCNASMLKTNPAHVMSCMRSVD-AKTISVQQWNSY TCAChE PNCPWASVSVAEGRRR-AVELGRNLNCN----LNSDEELIHCLREKKP-QELIDVEWNVL

AgAChE1 G---ICEFPFVPVVDGAFLDETPQRSLASGRFKKTEILTGSNTEEGYYFIIYYLTELLRK hache PQESVFRFSFVPVVDGDFLSDTPEALINAGDFHGLQVLVGVVKDEGSYFLVY-GAPGFSK mAChE PQESIFRFSFVPVVDGDFLSDTPEALINTGDFQDLQVLVGVVKDEGSYFLVY-GVPGFSK DmAChE S--GILSFPSAPTIDGAFLPADPMTLMKTADLKDYDILMGNVRDEGTYFLLYDFIDYFDK TCAChE PFDSIFRFSFVPVIDGEFFPTSLESMLNSGNFKKTQILLGVNKDEGSFFLLY-GAPGFSK

AgAChE1 EEGVTVTREEFLQAVRELNPYVNGAARQAIVFEYTDWTEPDNPNSNRDALDKMVGDYHFT hAChE DNESLISRAEFLAGVRVGVPQVSDLAAEAVVLHYTDWLHPEDPARLREALSDVVGDHNVV mAChE DNESLISRAQFLAGVRIGVPQASDLAAEAVVLHYTDWLHPEDPTHLRDAMSAVVGDHNVV DmAChE DDATALPRDKYLEIMNNIFGKATQAEREAIIFQYTSWEG-NPGYQNQQQIGRAVGDHFFT TCAChE DSESKISREDFMSGVKLSVPHANDLGLDAVTLQYTDWMDDNNGIKNRDGLDDIVGDHNVI

AgAChE1 CNVNEFAQRYAEEGNNVYMYLYTHRSKGNPWPRWTGVMHGDEINYVFGEPLNPTLGYTED hAChE CPVAQLAGRLAAQGARVYAYVFEHRASTLSWPLWMGVPHGYEIEFIFGIPLDPSRNYTAE mAChE CPVAQLAGRLAAQGARVYAYIFEHRASTLTWPLWMGVPHGYEIEFIFGLPLDPSLNYTTE DmAChE CPTNEYAQALAERGASVHYYYFTHRTSTSLWGEWMGVLHGDEIEYFFGQPLNNSLQYRPV TCAChE CPLMHFVNKYTKFGNGTYLYFFNHRASNLVWPEWMGVIHGYEIEFVFGLPLVKELNYTAE

AgAChE1 EKDFSRKIMRYWSNFAKTGNPNPNTASSEFPEWPKHTAHGRHYLELGL--NTSFVGRGPR hAChE EKIFAQRLMRYWANFARTGDPN-EPRDPKAPQWPPYTAGAQQYVSLDL--RPLEVRRGLR mAChE ERIFAQRLMKYWTNFARTGDPN-DPRDSKSPQWPPYTTAAQQYVSLNL--KPLEVRRGLR Dmache ERELGKRMLSAVIEFAKTGNPAQD-----GEEWPNFSKEDPVYYIFSTDDKIEKLARGPL
TCAChE EEALSRRIMHYWATFAKTGNPN-EPHSQESK-WPLFTTKEQKFIDLNT--EPMKVHQRLR
AgAChE1 LRQCAFWKKYLPQLVAAT
hAChE AQACAFWNRFLPKLLSAT
mAChE AQTCAFWNRFLPKLLSAT
DmAChE AARCSFWNDYLPKVRSWA
TCAChE VQMCVFWNQFLPKLLNAT

Multiple sequence alignment Aa AChE 1

AaAChE1 (accession no: ABN09910) after multiple alignment ${ }^{3-4}$ with Torpedo californica (TcAChE, PDB code: 1EA5, UNIPROT code: ACES_TORCA), Homo sapiens (hAChE, PDB code: 4EY4, UNIPROT code: ACES_HUMAN), Mus musculus (mAChE, PDB code: 1J06, UNIPROT code: ACES_MOUSE), and Drosophila melanogaster (DmAChE, PDB code: 1QO9, UNIPROT code: ACES_DROME). Amino acids defined as 'loop one' and 'loop two' are highlighted in yellow and blue, respectively.
AaAChE1 DGTDNDPLLITTDKGKVRGLTLEAPSGKKVDAWLGIPYAQPPLGPLRFRHPRPVEK-WTG hAChe EGREDAELLVTVRGGRLRGIRLKTPGG-PVSAFLGIPFAEPPMGPRRFLPPEP-KQPWSG mAChe EGREDPQLLVRVRGGQLRGIRLKAPGG-PVSAFLGIPFAEPPVGSRRFMPPEP-KRPWSG DmAChE VCGVIDRLVVQTSSGPVRGRSVTVQG-REVHVYTGIPYAKPPVEDLRFRKPVPAE-PWHG TCAChE QADDHSELLVNTKSGKVMGTRVPVLSS-HISAFLGIPFAEPPVGNMRFRRPEP-KKPWSG

AaAChE1 VLNATTPPNSCVQIVDTVFGDFPGATMWNPNTPLSEDCLYINVVVPHPRPKNSA-VMLWI hAChe VVDATTFQSVCYQYVDTLYPGFEGTEMWNPNRELSEDCLYLNVWTPYPRPTSPTPVLVWI mAChE VLDATTFQNVCYQYVDTLYPGFEGTEMWNPNRELSEDCLYLNVWTPYPRPASPTPVLIWI DmAChE VLDATGLSATCVQERYEYFPGFSGEEIWNPNTNVSEDCLYINVWAPAKNTTNGLPILIWI TCAChE VWNASTYPNNCQQYVDEQFPGFSGSEMWNPNREMSEDCLYLNIWVPSPRPKSTT-VMVWI

AaAChE1 FGGGFYSGTATLDVYDHRTLAS-EENVIVVSLQYRVASLGFLFL-------GTPEAPGNA hAChE YGGGFYSGASSLDVYDGRFLVQAE-RTVLVSMNYRVGAFGFLALP------GSREAPGNV mAChE YGGGFYSGAASLDVYDGRFLAQVEGA-VLVSMNYRVGTFGFLALP------GSREAPGNV DmAChE YGGGFMTGSATLDIYNADIMAAV-GNVIVASFQYRVGAFGFLHLAPEMPSEFAEEAPGNV TCAChE YGGGFYSGSSTLDVYNGKYLAYTEE-VVLVSLSYRVGAFGFLALH------GSQEAPGNV

AaAChE1 GLFDQNLALRWVRDNIHKFGGDPSRVTLFGESAGAVSVSLHLLSALSRDLFQRAILQSGS hAChe GLLDQRLALQWVQENVAAFGGDPTSVTLFGESAGAASVGMHLLSPPSRGLFHRAVLQSGA mAChE GLLDQRLALQWVQENIAAFGGDPMSVTLFGESAGAASVGMHILSLPSRSLFHRAVLQSGT DmAChE GLWDQALAIRWLKDNAHAFGGNPEWMTLFGESAGSSSVNAQLMSPVTRGLVKRGMMQSGT
TCAChE GLLDQRMALQWVHDNIQFFGGDPKTVTIFGESAGGASVGMHILSPGSRDLFRRAILQSGS
AaAChE1 PTAPWALVSREEATLR-ALRLAEAVNCP--HDATKLTDTVECLRTKDP-NVLVDNEWGTL hAChE PNGPWATVGMGEARRR-ATQLAHLVGCPPGGTGGNDTELVACLRTR-PAQVLVNHEWHVL mAChE PNGPWATVSAGEARRR-ATLLARLVGCPPGGAGGNDTELIACLRTR-PAQDLVDHEWHVL DmAChE MNAPWSHMTSEKAVEIGKALINDC-NCNASMLKTNPAHVMSCMRSVD-AKTISVQQWNSY TCAChE PNCPWASVSVAEGRRR-AVELGRNLNCN----LNSDEELIHCLREKKP-QELIDVEWNVL

AaAChE1 G---ICEFPFVPVVDGAFLDETPQRSLASGRFKKTDILTGSNTEEGYYFIIYYLTELLRK hAChE PQESVFRFSFVPVVDGDFLSDTPEALINAGDFHGLQVLVGVVKDEGSYFLVY-GAPGFSK mAChE PQESIFRFSFVPVVDGDFLSDTPEALINTGDFQDLQVLVGVVKDEGSYFLVY-GVPGFSK DmAChE S--GILSFPSAPTIDGAFLPADPMTLMKTADLKDYDILMGNVRDEGTYFLLYDFIDYFDK TCAChE PFDSIFRFSFVPVIDGEFFPTSLESMLNSGNFKKTQILLGVNKDEGSFFLLY-GAPGFSK

AaAChE1 EEGVTVSREEFLQAVRELNPYVNGAARQAIVFEYTDWTEPENPNSNRDALDKMVGDYHFT hAChe DNESLISRAEFLAGVRVGVPQVSDLAAEAVVLHYTDWLHPEDPARLREALSDVVGDHNVV mAChE DNESLISRAQFLAGVRIGVPQASDLAAEAVVLHYTDWLHPEDPTHLRDAMSAVVGDHNVV DmAChE DDATALPRDKYLEIMNNIFGKATQAEREAIIFQYTSWEG-NPGYQNQQQIGRAVGDHFFT TCAChE DSESKISREDFMSGVKLSVPHANDLGLDAVTLQYTDWMDDNNGIKNRDGLDDIVGDHNVI

AaAChE1 CNVNEFAQRYAEEGNNVYMYLYTHRSKGNPWPRWTGVMHGDEINYVFGEPLNSDLGYMED hAChE CPVAQLAGRLAAQGARVYAYVFEHRASTLSWPLWMGVPHGYEIEFIFGIPLDPSRNYTAE mAChE CPVAQLAGRLAAQGARVYAYIFEHRASTLTWPLWMGVPHGYEIEFIFGLPLDPSLNYTTE DmAChE CPTNEYAQALAERGASVHYYYFTHRTSTSLWGEWMGVLHGDEIEYFFGQPLNNSLQYRPV TCAChE CPLMHFVNKYTKFGNGTYLYFFNHRASNLVWPEWMGVIHGYEIEFVFGLPLVKELNYTAE

AaAChE1 EKDFSRKIMRYWSNFAKTGNPNPSPPNSDFPEWPKHTAHGRHYLELGL--NTTYVGRGPR hAChE EKIFAQRLMRYWANFARTGDPN-EPRDPKAPQWPPYTAGAQQYVSLDL--RPLEVRRGLR mAChE ERIFAQRLMKYWTNFARTGDPN-DPRDSKSPQWPPYTTAAQQYVSLNL--KPLEVRRGLR DmAChE ERELGKRMLSAVIEFAKTGNPAQD-----GEEWPNFSKEDPVYYIFSTDDKIEKLARGPL
TCAChE EEALSRRIMHYWATFAKTGNPN-EPHSQESK-WPLFTTKEQKFIDLNT--EPMKVHQRLR
AaAChE1 LRQCAFWKKYLPQLVAAT
hAChE AQACAFWNRFLPKLLSAT
mAChE AQTCAFWNRFLPKLLSAT
DmAChE AARCSFWNDYLPKVRSWA
TCAChE VQMCVFWNQFLPKLLNAT

Selection of template for homology modeling

Figure S20. Superposition of $m \mathrm{AChE}$ (pdb code $5 \mathrm{FOQ}^{5}$; ribbon in orange), $h \mathrm{AChE}$ (pdb code $4 E Y 4{ }^{6}$; ribbon in cyan), or DmAChE (pdb code $1 \mathrm{DX} 4^{7}$; ribbon in magenta). The side chains of the amino acids in the catalytic triad are shown as sticks. AChE from three species were considered as template for the homology modeling, $m \mathrm{AChE}, h \mathrm{AChE}$, or DmAChE . After the multiple alignments, the identity of the possible templates $m \mathrm{AChE}, h \mathrm{AChE}$, and DmAChE and the sequences to be modelled were $48 \%, 48 \%$, and 39% for $A g A C h E 1$, respectively, and $48 \%, 48 \%$, and 38% for $A a \mathrm{AChE} 1$, respectively based on residues 1-543 in $h \mathrm{AChE}$. One crystal structure from each species were superposed and visually analyzed. The analysis showed that both the general fold and the amino acids lining the active site are highly conserved among the different species. It could however be seen that the two loops at the entrance of the active site differs between DmAChE and the vertebrate AChEs. In more details, 'loop 1' is one residue longer and 'loop 2' is two residues shorter. The multiple sequence alignment showed that for Ag AChE 1 and Aa AChE 1 'loop 2' contains the same number of residues as $D m A C h E$, but that 'loop 1' is one residue shorter (i.e. three residues shorter than vertebrate AChE). Although showing a lower sequence identity, DmAChE (pdb 1DX4 ${ }^{7}$) was selected as the main template, due to the higher similarity of 'loop 1 ' and 'loop 2'. This template was used to model all residues with the exception of three loops: 102112, 487-499, and 512-520 ($h \mathrm{AChE}$ numbering). It was found that in 1DX4 these loops were either
 code 5 FOQ$)^{5}$ being considered as a more suitable template for modelling of these residues.

Angles of Tyr337 in homology models of AgAChE1 and AaAChE1

Figure S21. $\chi_{1}\left(\mathrm{C}_{\alpha}-\mathrm{C}_{\beta}\right)$ and $\chi_{2}\left(\mathrm{C}_{\beta} \mathrm{C}_{1}\right)$ dihedral angles for the side chain of Tyr337 (hAChE numbering) were adjusted to -157.0 and -157.1 degrees and $\chi_{2}\left(\mathrm{C}_{\beta} \mathrm{C}_{1}\right)-26.4$ and -26.3 degrees for $A g A C h E 1$ and $A a A C h E 1$, respectively. These angles resemble those in $\mathbf{2 \bullet m A C h E}$ and have been observed in previously reported protein-ligand complexes of $m \mathrm{AChE}$ and $h \mathrm{AChE}$ (for examples see complexes with pdb codes $4 \mathrm{ARB}^{8}$ and $4 E Y 7^{6}$).

Evaluation of $A g A C h E 1$ and $A a A C h E 1 ~ h o m o l o g y ~ m o d e l s ~$

Table S9. Statistics of the stereochemical quality of the generated homology models according to PROCHECK. ${ }^{9}$

Ramachandran plot no. of residues $(\%)$	$\boldsymbol{A g} \boldsymbol{g} \mathbf{C h E 1}$	$\boldsymbol{A} \boldsymbol{a} \mathbf{A C h E 1}$
Most favoured regions	$364(81.3)$	$368(81.8)$
Additional allowed regions	$73(16.3)$	$73(16.2)$
Generously allowed regions	$7(1.6)$	$4(0.9)$
Residues in disallowed regions	$4(0.9)$	$5(1.1)$

Compounds $\mathbf{1}$ and $\mathbf{2}$ modelled into the active site of $A g A C h E 1$ and AaAChE1.

Figure S22. Superposition of the homology model of AgAChE 1 (cyan ribbon) and $m \mathrm{AChE}$ (gray ribbon) in complex with $\mathbf{1}$ (dark gray). The differing loops (loop 1 and loop 2) at the entrance of the gorge of AgAChE 1 are marked in magenta.

Figure S23. Homology model of $A g A C h E 1$ in cyan (a) and $A a A C h E 1$ in pink (b) showing a close up of active site with 1 (purple) modelled with the positively charged piperidine projecting down into the catalytic site (based on $1 \bullet m A C h E)$.

 showing a close up of active site with 2 (green) modelled with the positively charged piperazine projecting down into the catalytic site (based on $\mathbf{2}$ aligned on $\mathbf{1} \bullet \mathrm{mAChE}$).

Data collection and refinement statistics for 5FUM

Table S10. Data collection and refinement statistics for 5FUM. Statistics for the highest-resolution shell are shown in parentheses.

pdb entry code	5FUM
Resolution range (A)	$29.08-2.5(2.59-2.5)$
Space group	P 212121
Unit cell (A)	$78.7 \times 110.8 \times 227.6$
Total reflections	$520714(51599)$
Unique reflections	$69320(6799)$
Multiplicity	$7.5(7.6)$
Completeness (\%)	$99.60(99.28)$
Mean I/sigma(I)	$14.69(2.35)$
Wilson B-factor $\left(\AA^{2}\right)$	51.2
R-merge	$0.124(1.584)$
R-meas	$0.1333(0.724)$
CC1/2	$0.998(0.885)$
CC $*$	$0.999(0.969)$
R-work	$0.196(0.3103)$
R-free	$0.227(0.3888)$
Number of non-hydrogen atoms	8602
macromolecules	8350
ligands	123
water	129
Protein residues	1068
RMSD from ideal values	
bond lengths (\AA)	0.004
bond angles $\left({ }^{\circ}\right)$	0.89
Ramachandran favored $(\%)$	95
Ramachandran outliers $(\%)$	0.28
Clashscore	0.72
Average B-factor $\left(\AA{ }^{2}\right)$	62.00
macromolecules	61.60
ligands	87.50
solvent	58.90

${ }^{\text {a }}$ These include compound 2 (modelled in both the A and the B chain) and fragments of six PEG750MME molecules modelled in the structure.

References

1. Berg, L.; Andersson, C. D.; Artursson, E.; Hörnberg, A.; Tunemalm, A.-K.; Linusson, A.; Ekström, F. Targeting acetylcholinesterase: Identification of chemical leads by high throughput screening, structure determination and molecular modeling. PLoS One 2011, 6, e26039.
2. SIMCA-P+, version 13.0.3; Umetrics AB: Box 7960, Umeå, Sweden, 2013.
3. Molecular Operating Environment (MOE), version 2012.10; Chemical Computing Group Inc.: 1010 Sherbooke St. West, Suite \#910, Montreal, QC, Canada, H3A 2R7, 2012.
4. Larkin, M. A.; Blackshields, G.; Brown, N. P.; Chenna, R.; McGettigan, P. A.; McWilliam, H.; Valentin, F.; Wallace, I. M.; Wilm, A.; Lopez, R.; Thompson, J. D.; Gibson, T. J.; Higgins, D. G. Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23, 2947-2948.
5. Berg, L.; Mishra, B. K.; Andersson, C. D.; Ekström, F.; Linusson, A. The nature of activated non-classical hydrogen bonds: A case study on acetylcholinesterase-ligand complexes. Chemistry 2016, 22, 2672-2681.
6. Cheung, J.; Rudolph, M. J.; Burshteyn, F.; Cassidy, M. S.; Gary, E. N.; Love, J.; Franklin, M. C.; Height, J. J. Structures of human acetylcholinesterase in complex with pharmacologically important ligands. J. Med. Chem. 2012, 55, 10282-10286.
7. Harel, M.; Kryger, G.; Rosenberry, T. L.; Mallender, W. D.; Lewis, T.; Fletcher, R. J.; Guss, J. M.; Silman, I.; Sussman, J. L. Three-dimensional structures of Drosophila melanogaster acetylcholinesterase and of its complexes with two potent inhibitors. Protein Sci. 2000, 9, 10631072.
8. Berg, L.; Niemiec, M. S.; Qian, W.; Andersson, C. D.; Wittung-Stafshede, P.; Ekström, F.; Linusson, A. Similar but different: thermodynamic and structural characterization of a pair of enantiomers binding to acetylcholinesterase. Angew. Chem., Int. Ed. 2012, 51, 12716-12720.
9. Laskowski, R. A.; Macarthur, M. W.; Moss, D. S.; Thornton, J. M. PROCHECK: A program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 1993, 26, 283-291.
