Discovery of Selective Inhibitors Targeting Acetylcholinesterase 1 from Disease-Transmitting Mosquitoes

Cecilia Engdahl,^{†,[§] Sofie Knutsson,^{†,[§] Fredrik Ekström,^{\ddagger^*} and Anna Linusson^{$†^*$}}}

[†]Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden

[‡]Swedish Defense Research Agency, CBRN Defense and Security, SE-906 21 Umeå, Sweden ^{*}Corresponding author

^{\$}These authors contributed equally

E-mail address: anna.linusson@umu.se; fredrik.ekstrom@foi.se

Table of contents

Inhibition data from the HTS campaigns against AgAChE1, AaAChE1, and hAChE	3
Statistics of HTS results	5
Reference compounds	6
Reference plate statistics	6
Z'-factors	7
Examples of raw measurements of reference compounds	8
Reference plate - Estimation of false positives and false negatives	12
Overview of the PCA models describing the AChE1 hits	13
Chemical space of AChE1 hits	15
Selection of compounds for IC ₅₀ determination	17
Complete inhibition results for all the re-tested compounds	25
Dose-response analyses for IC ₅₀ determinations	28
NMR spectrum of compounds 3-10.	32
¹ H and ¹³ C NMR spectrum of synthesized compounds	36
Multiple sequence alignment AgAChE1	42

Multiple sequence alignment AaAChE1	43
Selection of template for homology modeling	44
Angles of Tyr337 in homology models of AgAChE1 and AaAChE1	45
Evaluation of AgAChE1 and AaAChE1 homology models	45
Compounds 1 and 2 modelled into the active site of <i>Ag</i> AChE1 and <i>Aa</i> AChE1	46
Data collection and refinement statistics for 5FUM	48
References	49

Inhibition data from the HTS campaigns against AgAChE1, AaAChE1, and hAChE

Figure S1. Histogram showing the distribution of the HTS inhibition data for AgAChE1 used in the differential HTS study.

Figure S2. Histogram showing the distribution of the HTS inhibition data for *Aa*AChE1 used in the differential HTS study.

Figure S3. Histogram showing the distribution of the HTS inhibition data for hAChE used in the differential HTS study.¹

Statistics of HTS results

Data was normalized as % of control according to the following equation:

$$\frac{x_i}{\bar{c}_+} \times 100$$

Where

x_i	raw measurement
\bar{c}_+	mean of eight positive controls within plate (maximum activity)

Table S1. AChE1 HTS statistics based on the screened compounds' inhibition of activity in relation to positive controls.

	AgAChE1	AaAChE1
Mean (%)	3	3
Median (%)	2	2
Standard deviation (%)	10	9
Cut-off (%)	33	31
No. of hits	235	286
Hit-rate (%)	1.3	1.6
No. of unique hits of <i>Ag</i> AChE1 and/or <i>Aa</i> AChE1	3.	38

Figure S4. Chemical structures of compounds on reference plate. At 50 μ M, these compounds exhibited mean inhibition values ranging from 0-95% for both enzymes, and all but one compound had a standard deviation of 3-8%. The higher standard deviation of the mean observed for compound **1** (17-18%) was probably due to a handling error whereby no compound was added to in total six and three wells of the *Ag*AChE1 and *Aa*AChE1 experiments, respectively.

Reference plate statistics

		AL045	AL053	AL056	AL057	AL129	1	AL145	Eserine
ю	AgAChE1	1000	62	1000	1000	46	0.26	100	0.005
IC50	AaAChE1	1000	38	1000	1000	37	0.44	100	0.007
magn(0/)	AgAChE1 ^a	2	18	0	-3	25	90	7	95
mean (%)	AaAChE1 ^b	1	26	0	-3	24	89	11	94
median (%)	AgAChE1 ^a	2	19	0	-4	25	93	8	96
meulan (%)	AaAChE1 ^b	1	26	0	-4	24	92	10	94
SD	AgAChE1 ^a	7	7	8	7	8	18	8	8
50	AaAChE1 ^b	5	6	6	7	7	17	7	3
total no. of	AgAChE1 ^a	216	216	216	216	216	216	216	216
replicates	AaAChE1 ^b	96	96	96	96	96	96	96	96
no. scored	AgAChE1 ^a	0	7	1	0	19	210	0	215
as hits	AaAChE1 ^b	0	14	0	0	9	93	0	96
no. scored	AgAChE1 ^a	216	209	215	216	197	6	216	1
as inactive	AaAChE1 ^b	96	82	96	96	87	3	96	0

^aBased on % inhibition from 27 plates with eight replicates/plate ^bbased on % inhibition from 12 plates with eight

replicates/plate

Figure S5. Z'-factors based on eserine and AL045 for each of the reference plate run during the screens against AgAChE1 (a) and AaAChE1 (b). *The negative Z'-factor for this plate was due to one measurement for eserine being an extreme outlier, probably due to a handling error whereby no compound was added to the well (see Figure S5c). Excluding this one measurement resulted in Z'-factor of 0.64 for this plate.

Examples of raw measurements of reference compounds

0.2 0.1 0

2

4

6

8

0

10 12

16 18

14

reference plate

20 22

24

26 28

Figure S6. Examples of the change in absorbance over time (dA/min) of four compounds from the reference plate run 27 times during the *Ag*AChE1 screen. Each compound was present in eight replicates on the reference plate. a) Positive control AL045 used for determination of Z'-factor. b) Positive control AL056. C) Negative control eserine used for determination of Z'-factor, one visible outliers (plate 12; dA/min > 0.45) probably due to a handling error whereby no compound was added to that well. d) Negative control **1**, six visible outliers (plate 9 and 12; dA/min > 0.35) probably due to a handling error whereby no compound was added to those wells.

eserine AaAChE1 HTS 0.8 0.7 0.6 0.5 dA/min 0.4 0.3 0.2 0.1 0 -0.1 0 1 2 5 6 7 8 9 3 4 10 12 13 11 reference plate

a)

c)

Figure S7. Examples of the change in absorbance over time (dA/min) of four compounds from the reference plate run 12 times during the *Aa*AChE1 screen. Each compound was present in eight replicates on the reference plate. a) Positive control AL045 used for determination of Z'-factor. b) Positive control AL056. C) Negative control eserine used for determination of Z'-factor. d) Negative control **1**, three visible outliers (plate 9 and 12; dA/min > 0.45) probably due to no compound being added to those wells.

Reference plate - Estimation of false positives and false negatives

Table S3. Estimation of false positives and false negatives based on reference plate data for the eight compounds loaded on the reference plate (Figure S3 and Table S2).

	AgAChE1	AaAChE1
No. false positives (wells) ^a	27 (6%)	23 (11%)
No. true positives (wells)	425	189
No. false negatives (wells) ^b	7 (0.5%)	3 (0.5%)
No. true negatives (wells)	1269	553

^aDefinition of false positive: a measurement (well) for which reference compound r_i exhibited % inhibition \geq hit cut-off; where $\bar{r}_i <$ hit cut-off. ^bDefinition of false negative: a measurement (well) for which reference compound r_i exhibited % inhibition \leq hit cut-off; where $\bar{r}_i >$ hit cut-off.

Overview of the PCA models describing the AChE1 hits

Table S4. Model statistics of principal component analysis (PCA) used to describe and visualize the chemical diversity of the AChE1 hits and selection of compounds for IC_{50} determinations. PCA is an unsupervised regression method used here to extract the main variation in the 2D-descriptor data (i.e. principal components). The PCA models were calculated on mean-centered data scaled to unit variance using software SIMCA-P+² and the number of significant components for each model were determined using scree-plots.

	Model	del No of No of hits descriptor		No of components	Eigenvalue of last component	R ² X (cum)	Q²X (cum)
1	all AChE1 hits	338	73	4	3.72	0.85	0.82
2	hits ≥ 70% inhibition	55	73	4	3.42	0.83	0.74
3	hits 69-31% inhibition	248	73	4	3.61	0.86	0.83
4	hits ≥ 30% difference between <i>Aa</i> - and <i>Ag</i> AChE1	35	73	3	3.88	0.84	0.78
5	hit sets A and B	47	73	3	7	0.83	0.74

Table S5. Physicochemical descriptors used to describe the chemical space spanned by the AChE1 hits. The 2D-descriptors were calculated using MOE^3 on structures prepared as described in the Experimental section.

No.	Descriptor	No.	Descriptor	No.	Descriptor
1	apol	26	chi0_C	51	PEOE_VSA_NEG
2	a_acc	27	chi1	52	PEOE_VSA_PNEG
3	a_aro	28	chi1v	53	PEOE_VSA_POL
4	a_count	29	chi1v_C	54	PEOE_VSA_POS
5	a_donacc	30	chi1_C	55	PEOE_VSA_PPOS
6	a_heavy	31	density	56	radius
7	a_hyd	32	diameter	57	rings
8	a_IC	33	Kier1	58	SlogP
9	a_ICM	34	Kier2	59	SMR
10	a_nC	35	Kier3	60	TPSA
11	a_nH	36	KierA1	61	VAdjEq
12	a_nO	37	KierA2	62	VAdjMa
13	balabanJ	38	KierA3	63	VDistEq
14	bpol	39	KierFlex	64	VDistMa
15	b_1rotN	40	logS	65	vdw_area
16	b_1rotR	41	PEOE_PC+	66	vdw_vol
17	b_ar	42	PEOE_PC-	67	vsa_hyd
18	b_count	43	PEOE_RPC-	68	vsa_other
19	b_heavy	44	PEOE_VSA_FHYD	69	vsa_pol
20	b_rotN	45	PEOE_VSA_FNEG	70	Weight
21	b_rotR	46	PEOE_VSA_FPNEG	71	weinerPath
22	b_single	47	PEOE_VSA_FPOL	72	weinerPol
23	chi0	48	PEOE_VSA_FPOS	73	zagreb
24	chi0v	49	PEOE_VSA_FPPOS		
25	chi0v_C	50	PEOE_VSA_HYD		

Figure S8. Chemical space of AChE1 hits. Score plots from PCA of the physicochemical properties of the identified hits colored according to their inhibition in the HTS. Hits with \geq 70% inhibition in blue, 31-69% inhibition in yellow, and hits with \geq 30% difference inhibition between *Aa*- and *Ag*AChE1 in purple. The first and second components describe the size and hydrophobicity of the hits (a) and the third and fourth components show diversity relating to flexibility and charge (b).

Figure S9. Chemical space of AChE1 hits. PCA loading plots of (a) p1 versus p2 and (b) p3 versus p4. The physicochemical descriptors included in the model are labeled with the numbers assigned in Table S5.

Selection of compounds for IC₅₀ determination

Figure S10. Chemical space of AChE1 hits showing \geq 70% inhibition. Score plots from PCA of the physicochemical properties of the 55 hits showing at least 70% inhibition in the HTS, hits manually selected for IC₅₀ determination colored in blue (set A). The first and second components describe the size and hydrophobicity of the hits (a) and the third and fourth components show diversity relating to flexibility and charge (b).

Figure S11. Chemical space of AChE1 hits showing \geq 70% inhibition. PCA loading plots of (a) p1 versus p2 and (b) p3 versus p4. The physicochemical descriptors included in the model are labeled with the numbers assigned in Table S5.

Figure S12. Chemical space of AChE1 hits showing 31-69% inhibition. Score plots from PCA of the physicochemical properties of the 248 hits showing at least 31-69% inhibition in the HTS, hits manually selected for IC_{50} determination colored in yellow (set B). The first and second components describe the size and hydrophobicity of the hits (a) and the third and fourth components show diversity relating to flexibility and charge (b).

Figure S13. Chemical space of AChE1 hits showing 31-69% inhibition. PCA loading plots of (a) p1 versus p2 and (b) p3 versus p4. The physicochemical descriptors included in the model are labeled with the numbers assigned in Table S5.

Figure S14. Chemical space of AChE1 hits showing \geq 30% difference in inhibition between *Ag*and *Aa*AChE1. PCA of the physicochemical properties of the 35 hits showing at least 30% difference in inhibition between *Aa*- and *Ag*AChE1 in the HTS, hits manually selected for IC₅₀ determination colored in purple (set D1 and D2). The first and second components describe the size and hydrophobicity of the hits (a) and the third component shows diversity relating to flexibility (b).

Figure S15. Chemical space of AChE1 hits showing \geq 30% difference in inhibition between *Ag*and *Aa*AChE1. PCA loading plots of (a) p1 versus p2 and (b) p3. The physicochemical descriptors included in the model are labeled with the numbers assigned in Table S5.

Figure S16. Chemical space of AChE1 hits in sets A and B. Score plots from PCA of the physicochemical properties of the 47 hits in sets A (blue) and B (yellow) selected for IC_{50} determinations. Compounds of set C (\leq 30% inhibition; red) were manually selected from compounds with similar structures and physicochemical properties as the compounds in set A and B and have here been projected into the chemical space. The first and second components describe the size and flexibility of the hits (a) and the third component shows diversity relating to polarity and charge (b).

Figure S17. Chemical space of AChE1 hits in sets A and B. PCA loading plots of (a) p1 versus p2 and (b) p3. The physicochemical descriptors included in the model are labeled with the numbers assigned in Table S5.

Complete inhibition results for all the re-tested compounds **Table S6.** The complete inhibition results for all the re-tested compounds.

Table S6. The complete inhibition results for all the re-tested compounds.HTS (%)IC ₅₀ (μ M) ^a % activity at 200 μ M ^b S.R.												
				[[1
ID	set	AgAChE1	AaAChE1	hAChE ^c	AgAChE1	AaAChE1	<i>h</i> AChE	AgAChE1	AaAChE1	<i>h</i> AChE	HTS₫	IC ₅₀ ^e
2	A	92	76	12	0.21	0.22	31				6.3	141
3	А	86	90	33	>100	>100	>200	50	49	71	2.6	
4	А	94	93	56	8	9	5				1.7	0.6
5	А	76	82	-12	>1000	>1000	>1000	84	91	78	76	
C0076	А	81	78	-14	>1000	>1000	>1000	87	96	92	78	
C0147	А	94	95	2	0.7	0.8	>200			45	47	>250
C0656	А	69	79	-1	2	2	80				69	40
C0710	А	88	88	57	0.7	0.7	7				1.5	10
C1457	А	87	89	66	0.4	0.3	5				1.3	13
C2681	А	86	88	-11	1	1	>1000			88	86	>1000
C2810	А	89	93	6	1	2	>200			58	14.8	>100
C3029	А	74	78	-16	3	3	>1000			80	74	>333
C4127	А	92	96	85	0.4	0.4	3				1.1	7.5
C4514	А	92	78	-9	10	9	>200			56	67	>20
C4584	А	76	72	7	16	6	>1000			91	10.3	>63
C5063	А	91	81	-11	2	1	72				81	36
C5651	А	96	95	83	5	4	3				1.1	0.6
C6233	А	86	82	28	86	66	>1000			83	2.9	>12
C6483	А	86	89	9	4	4	>300			84	9.6	>75
C7066	А	74	78	-17	6	3	>1000			80	74	>167
C8319	А	80	78	81	5	5	2				1	0.4
C8405	А	92	88	-3	1	1	>200			65	88	>200
C9464	А	86	90	-1	4	3	>300			71	86	>75
C9940	А	61	72	17	2	2	10				3.6	5
6	В	23	38	-7	>500	>500	>500	80	86	81	23	
7	В	32	33	3	17	12	>200			58	11	>12
C0269	В	48	49	-4	9	9	>1000			86	48	>111
C1687	В	13	36	57	>200	>200	19	54	49		0.2	<0.1
C1815	В	22	48	70	n.d.	n.d.	n.d.				0.3	
C1844	В	34	37	31	7	6	13				1.1	2
C2599	В	46	58	-5	22	19	>400			58	46	>18
C2972	В	66	63	-2	9	9	>1000			68	63	>111
C3732	В	24	43	3	11	12	129				8	11
C3922	В	56	0	15	>300	>300	>300	72	54	63	3.7	
C4233	В	47	30	37	>1000	>1000	>1000	70	79	63	0.8	
C4790	В	44	50	1	n.d.	n.d.	n.d.				44	

Table S6. Continued.

		HTS (%)				IC₅₀ (μM)ª		% act	tivity at 200 µ	ιM ^ь	S.R.	
ID	set	AgAChE1	AaAChE1	<i>h</i> AChE ^c	AgAChE1	AaAChE1	<i>h</i> AChE	AgAChE1	AaAChE1	<i>h</i> AChE	HTSd	IC ₅₀ e
C5737	В	65	67	0	5	6	>100			48	65	>17
C6103	В	46	51	22	6	5	>100			45	2.1	>17
C6176	В	57	66	81	8	10	12				0.7	1
C6727	В	53	53	-5	7	4	>100			40	53	>14
C7129	В	47	56	6	11	11	>500			80	7.8	>45
C7786	В	39	45	18	5	6	>300			55	2.2	>50
C7920	В	37	41	6	>400	>400	>400	62	59	79	6.2	
C7951	В	58	53	32	n.d.	n.d.	n.d.				1.7	
C8584	В	34	25	10	n.d.	n.d.	n.d.				2.5	
C8678	В	41	57	19	>1000	>1000	>1000	91	83	98	2.2	
C9503	В	57	69	12	2	2	47				4.8	24
8	С	24	18	2	21	19	43				9	2
C0459	С	3	8	-33	>1000	>500	>500	94	61	73	3	
C0890	С	5	-5	90	>1000	>1000	>1000	109	101	96	0	
C1234	С	1	8	84	>1000	>1000	>100	97	114	45	0	
C1409	С	4	13	-28	69	54	>1000	41	37	81	4	14
C3666	С	10	5	0	>1000	>1000	>200	86	76	54	5	
C4098	С	-10	-11	84	>1000	>1000	>100	62	94	44	0	
C5156	С	-21	-10	95	11	12	0.6				0	0.05
C5504	С	2	-3	-20	n.d.	n.d.	n.d.				1	
C7422	С	16	25	-3	73	128	>600			70	16	>5
C8086	С	6	13	20	>100	>100	>500	47	43	79	0.3	
C9083	С	-1	-1	-6	n.d.	n.d.	n.d.				1	
C9395	С	0	-9	-15	>1000	>1000	>1000	102	98	93	1	
C9657	С	2	2	3	>1000	>1000	>200	85	86	58	0.7	
9	D1	63	1	-14	>1000	>1000	>1000	92	105	86	1	
C0273	D1	45	-1	-11	>1000	>1000	>1000	88	87	77	1	
C1183	D1	52	-4	43	>1000	>1000	>1000	97	97	70	0	
C1301	D1	48	0	11	>1000	>1000	>1000	103	100	86	0.1	
C1647	D1	58	2	-23	>1000	>1000	>1000	86	91	89	2	
C2956	D1	53	-5	-1	>1000	>1000	>1000	102	116	99	1	
C5320	D1	42	-3	11	>1000	>1000	>1000	103	106	97	0.1	
C7765	D1	40	2	8	>1000	>1000	>1000	99	94	65	0.3	
C9077	D1	37	0	35	>1000	>1000	>1000	101	116	103	0	
10	D2	41	80	15	3	3	>200			55	2.7	>67
C0552	D2	-27	77	2	3	2	>100			41	0.5	>33
C0576	D2	-2	54	12	>1000	>1000	>1000	104	115	94	0.1	

		HTS (%)			IC₅₀ (μM)°			% activity at 200 μM ^b			S.R.	
ID	set	AgAChE1	AaAChE1	<i>h</i> AChE⁰	AgAChE1	AaAChE1	<i>h</i> AChE	AgAChE1	AaAChE1	<i>h</i> AChE	HTSd	IC 50 ^e
C4073	D2	-5	80	40	n.d.	n.d.	n.d.				0	
C6303	D2	17	47	-16	>200	>200	>500	69	58	87	17	
C9270	D2	-40	69	15	n.d.	n.d.	n.d.				0.1	
1		93	91	99	0.26	0.44	0.030				0.9	0.07

Table S6. Continued.

^aCompounds denoted n.d. could not be determined due to poor solubility. ^bIf the IC₅₀ value could not be determined from the used concentration range the enzyme activity at a compound concentration of 200 µM is given for comparison. ^cPreviously published.^{1 d}If a compound inhibited an enzyme by $\leq 0\%$ in a HTS the inhibition was set to 1% prior to calculation. The selectivity ratios were computed by taking the lower of the compound's inhibition (%) values against *Ag*AChE1 and *Aa*AChE1, and dividing by its inhibition (%) value against *h*AChE. ^eSelectivity ratios were computed by taking the compound's IC₅₀ value against *h*AChE and dividing by the higher of its IC₅₀ values against *Ag*AChE1 and *Aa*AChE1.

Dose-response analyses for IC₅₀ determinations

Figure S18. Graphs showing *IC*₅₀-determinations of compounds 3-10 in Table 2.

OPLS-DA model of AChE1- and *h*AChE selective hits

Table S7. Model statistics of the refined OPLS-DA model used to separate variation in the physicochemical properties related to the difference between the AChE1- and hAChE selective hits.

No of hits	157
No of descriptors	58
No of components	1+4
Eigenvalue of predictive component	8.89
Eigenvalue of last orthogonal component	3.71
R ² X (cum)	0.83
R ² Y (cum)	0.52
Q ² (cum)	0.38

		Equal				Equal	
No.	Descriptor	variance ^a	p-value ^b	No.	Descriptor	variance ^a	p-value ^ь
1	a_aro	no	0.0052	30	PEOE_PC-	yes	0.0033
2	a_heavy	yes	0.00017	31	PEOE_RPC+	yes	0.0027
3	a_IC	yes	0.026	32	PEOE_RPC-	no	4.6x10⁻⁵
4	a_ICM	yes	6.0x10⁻⁵	33	PEOE_VSA_FHYD	yes	7.3x10 ⁻⁶
5	a_nC	yes	0.037	34	PEOE_VSA_FNEG	yes	0.00033
6	a_nH	yes	0.0011	35	PEOE_VSA_FPNEG	yes	0.00019
7	a_nO	yes	0.00019	36	PEOE_VSA_FPOL	yes	7.3x10 ⁻⁶
8	a_nS	yes	0.028	37	PEOE_VSA_FPOS	yes	0.00033
9	bpol	yes	0.066	38	PEOE_VSA_FPPOS	yes	7.8x10-5
10	b_1rotN	yes	0.060	39	PEOE_VSA_NEG	yes	5.9x10 ⁻⁵
11	b_1rotR	yes	0.00012	40	PEOE_VSA_PNEG	yes	0.00017
12	b_ar	no	0.0044	41	PEOE_VSA_POL	yes	1.3x10 ⁻⁵
13	b_double	yes	3.0x10 ⁻⁸	42	PEOE_VSA_PPOS	yes	9.6x10⁻⁵
14	b_heavy	yes	0.00020	43	rings	yes	0.0027
15	b_max1len	yes	0.063	44	SlogP	yes	0.0024
16	b_rotR	yes	0.0023	45	SMR	yes	0.0032
17	b_single	yes	0.032	46	TPSA	yes	2.8x10⁻ ⁶
18	chi0	yes	4.5x10⁻⁵	47	VAdjEq	no	4.0x10⁻⁵
19	chi0v	yes	0.0017	48	VAdjMa	no	8.2x10⁻⁵
20	chi1	yes	0.00043	49	VDistMa	no	2.7x10⁻⁵
21	chi1v	yes	0.032	50	vdw_area	yes	0.041
22	chi1_C	yes	0.041	51	vdw_vol	yes	0.033
23	density	yes	6.1x10⁻ ⁶	52	vsa_acc	yes	6.5x10⁻⁵
24	Kier1	yes	0.00022	53	vsa_other	yes	1.5x10 ⁻⁹
25	KierA1	yes	0.066	54	vsa_pol	yes	0.00086
26	KierA3	no	0.011	55	Weight	yes	0.00016
27	KierFlex	yes	0.028	56	weinerPath	yes	0.021
28	logS	yes	3.2x10 ⁻¹³	57	weinerPol	yes	3.0x10 ⁻⁶
29	PEOE_PC+	yes	0.0033	58	zagreb	yes	3.6x10⁻⁵

Table S8. Physicochemical descriptors included in the refined OPLS-DA model.

^aAccording to F-test for sample variance based on the sets of *h*AChE- and the AChE1 selective hits in the model ($\alpha = 0.05$). ^bAccording to Student's T-test (two-tailed with $\alpha = 0.05$) assuming equal or unequal variance as decided by the F-test.

Figure S19. Score- and loading plot from the OPLS-DA model. a) Plot showing the score vectors of the predictive component (t[1]) vs. the first orthogonal component (to[1]). Hits showing potential selectivity for AChE1 and *h*AChE are shown as orange and grey dots, respectively. b) Plot showing the loading vectors of the predictive component (p[1]) vs. the first orthogonal component (p[1]). The predictive component mainly show separation due to size and flexibility.

NMR spectrum of compounds 3-10. 1-[3-(benzyloxy)-4-methoxybenzyl]-4-(4-fluorophenyl)-1,2,3,6-tetrahydropyridine (3). ¹H NMR (400 MHz, (CD₃)₂SO); LC-MS (ES) calcd for $C_{26}H_{27}FNO_2$ (M + H)+ 404, found 404

7-benzyl-2-(ethylthio)-3-phenyl-5,6,7,8-tetrahydropyrido[4',3':4,5]thieno[2,3-d]pyrimidin-4(3H)-one (4). ¹H NMR (400 MHz, (CD₃)₂SO); LC-MS (ES) calcd for C₂₄H₂₄N₃OS₂ (M + H)+ 435, found 435

N-{2-[(2-fluorobenzyl)oxy]benzyl}-2-(4-morpholinyl)ethanamine dihydrochloride (6). 1 H NMR (400 MHz, (CD₃)₂SO); LC-MS calcd for C₂₀H₂₆FN₂O₂ (M + H)+ 345, found 345

1-(1-benzyl-4-piperidinyl)-4-(2-fluorobenzoyl)piperazine (7). ¹H NMR (400 MHz, (CD₃)₂SO,

328 K); LC-MS calcd for $C_{23}H_{29}FN_3O\ (M+H)\!+$ 382, found 382

1-(1-benzyl-4-piperidinyl)-4-(phenoxyacetyl)piperazine (8). ¹H NMR (400 MHz, $(CD_3)_2SO$, 328 K); LC-MS calcd for $C_{24}H_{32}N_3O_2$ (M + H)+ 395, found 395

5-({[4-(4-ethoxyphenyl)-5-phenyl-4H-1,2,4-triazol-3-yl]thio}methyl)-3-(2-methylphenyl)-1,2,4-oxadiazole (9). ¹H NMR (400 MHz, (CD₃)₂SO); LC-MS calcd for $C_{26}H_{24}N_5O_2S$ (M + H)+ 471, found 471

2-[4-(benzyloxy)benzyl]-1,2,3,4-tetrahydroisoquinoline (10). ¹H NMR (400 MHz, $(CD_3)_2SO$); LC-MS calcd for $C_{23}H_{24}NO$ (M + H)+ 330, found 330

¹H and ¹³C NMR spectrum of synthesized compounds

SUPPORTING INFORMATION

S41

Multiple sequence alignment AgAChE1

A A ChE1 (accession no. VD 221702; UNIDDOT ac des ACES ANOCA) after multiple				
AgAChE1 (accession no: XP_321792; UNIPROT code: ACES_ANOGA) after multiple				
alignment ³⁻⁴ with <i>Torpedo californica</i> (<i>Tc</i> AChE, PDB code: 1EA5, UNIPROT code:				
ACES_TORCA), Homo sapiens (hAChE, PDB code: 4EY4, UNIPROT code: ACES_HUMAN),				
Mus musculus (mAChE, PDB code: 1J06, UNIPROT code: ACES_MOUSE), and Drosophila				
melanogaster (DmAChE, PDB code: 1QO9, UNIPROT code: ACES_DROME). Amino acids				
defined as 'loop one' and 'loop two' are highlighted in yellow and blue, respectively.				
AgAChE1 DANDNDPLVVNTDKGRIRGITVDAPSGKKVDVWLGIPYAQPPVGPLRFRHPRPAEK-WTG				
hĀChE EGREDAELLVTVRGGRLRGIRLKTPGG-PVSAFLGIPFAEPPMGPRRFLPPEP-KQPWSG				
mAChE EGREDPQLLVRVRGGQLRGIRLKAPGG-PVSAFLGIPFAEPPVGSRRFMPPEP-KRPW5G				
DMACHE VCGVIDRLVVQTSSGPVRGRSVTVQG-REVHVYTGIPYAKPPVEDLRFRKPVPAE-PWHG TCACHE QADDHSELLVNTKSGKVMGTRVPVLSS-HISAFLGIPFAEPPVGNMRFRRPEP-KKPWSG				
AgAChE1 VLNTTTPPNSCVQIVDTVFGDFPGATMWNPNTPLSEDCLYINVVAPRPRPKNAA-VMLWI				
hAChE VVDATTFQSVCYQYVDTLYPGFEGTEMWNPNRELSEDCLYLNVWTPYPRPTSPTPVLVWI				
mAChEVLDATTFQNVCYQYVDTLYPGFEGTEMWNPNRELSEDCLYLNVWTPYPRPASPTPVLIWI				
DMACHE VLDATGLSATCVQERYEYFPGFSGEEIWNPNTNVSEDCLYINVWAPAKNTTNGLPILIWI				
TCAChE VWNASTYPNNCQQYVDEQFPGFSGSEMWNPNREMSEDCLYLNIWVPSPRPKSTT-VMVWI				
AgAChE1 FGGGFYSGTATLDVYDHRALAS-EENVIVVSLQYRVASLGFLFLGTPEAPGNA				
hÁChE YGGGFYSGASSLDVYDGRFLVQAE-RTVLVSMNYRVGAFGFLALPGSREAPGNV				
mAChE YGGGFYSGAASLDVYDGRFLAQVEGA-VLVSMNYRVGTFGFLALPGSREAPGNV				
DMACHE YGGGFMTGSATLDIYNADIMAAV-GNVIVASFQYRVGAFGFLHLAPEMPSEFAEEAPGNV				
TCACHE YGGGFYSGSSTLDVYNGKYLAYTEE-VVLVSLSYRVGAFGFLALHGSQEAPGNV				
AgAChE1 GLFDQNLALRWVRDNIHRFGGDPSRVTLFGESAGAVSVSLHLLSALSRDLFQRAILQSGS				
hACHE GLLDQRLALQWVQENVAAFGGDPTSVTLFGESAGAASVGMHLLSPPSRGLFHRAVLQSGA				
mAChE GLLDQRLALQWVQENIAAFGGDPMSVTLFGESAGAASVGMHILSLPSRSLFHRAVLQSGT				
DmAChE GLWDQALAIRWLKDNAHAFGGNPEWMTLFGESAGSSSVNAQLMSPVTRGLVKRGMMQSGT				
TCACHE GLLDQRMALQWVHDNIQFFGGDPKTVTIFGESAGGASVGMHILSPGSRDLFRRAILQSGS				
AGACHE1 PTAPWALVSREEATLR-ALRLAEAVGCPHEPSKLSDAVECLRGKDP-HVLVNNEWGTL				
hAChE PNGPWATVGMGEARRR-ATQLAHLVGCPPGGTGGNDTELVACLRTR-PAQVLVNHEWHVL				
MAChE PNGPWATVSAGEARRR-ATLLARLVGCPPGGAGGNDTELIACLRTR-PAQDLVDHEWHVL				
DMACHE MNAPWSHMTSEKAVEIGKALINDC-NCNASMLKTNPAHVMSCMRSVD-AKTISVQQWNSY				
TCAChE PNCPWASVSVAEGRRR-AVELGRNLNCNLNSDEELIHCLREKKP-QELIDVEWNVL				
AgAChE1 GICEFPFVPVVDGAFLDETPQRSLASGRFKKTEILTGSNTEEGYYFIIYYLTELLRK				
hÁCHE PQESVFRFSFVPVVDGDFLSDTPEALINAGDFHGLQVLVGVVKDEGSYFLVY-GAPGFSK				
mAChE PQESIFRFSFVPVVDGDFLSDTPEALINTGDFQDLQVLVGVVKDEGSYFLVY-GVPGFSK				
DMACHE SGILSFPSAPTIDGAFLPADPMTLMKTADLKDYDILMGNVRDEGTYFLLYDFIDYFDK				
TCAChE PFDSIFRFSFVPVIDGEFFPTSLESMLNSGNFKKTQILLGVNKDEGSFFLLY-GAPGFSK				
AgAChE1 EEGVTVTREEFLQAVRELNPYVNGAARQAIVFEYTDWTEPDNPNSNRDALDKMVGDYHFT				
hÁCHE DNESLISRAEFLAGVRVGVPQVSDLAAEAVVLHYTDWLHPEDPARLREALSDVVGDHNVV				
mAChE DNESLISRAQFLAGVRIGVPQASDLAAEAVVLHYTDWLHPEDPTHLRDAMSAVVGDHNVV				
DMACHE DDATALPRDKYLEIMNNIFGKATQAEREAIIFQYTSWEG-NPGYQNQQQIGRAVGDHFFT				
TCACHE DSESKISREDFMSGVKLSVPHANDLGLDAVTLQYTDWMDDNNGIKNRDGLDDIVGDHNVI				
AgAChE1 CNVNEFAQRYAEEGNNVYMYLYTHRSKGNPWPRWTGVMHGDEINYVFGEPLNPTLGYTED				
hĀChE CPVAQLAGRLAAQGARVYAYVFEHRASTLSWPLWMGVPHGYEIEFIFGIPLDPSRNYTAE				
mAChE CPVAQLAGRLAAQGARVYAYIFEHRASTLTWPLWMGVPHGYEIEFIFGLPLDPSLNYTTE				
DMAChE CPTNEYAQALAERGASVHYYYFTHRTSTSLWGEWMGVLHGDEIEYFFGQPLNNSLQYRPV TCAChE CPLMHFVNKYTKFGNGTYLYFFNHRASNLVWPEWMGVIHGYEIEFVFGLPLVKELNYTAE				
AGACHE1 EKDFSRKIMRYWSNFAKTGNPNPNTASSEFPEWPKHTAHGRHYLELGLNTSFVGRGPR				
hACHE EKIFAQRLMRYWANFARTGDPN-EPRDPKAPQWPPYTAGAQQYVSLDLRPLEVRRGLR mACHE ERIFAORLMKYWTNFARTGDPN-DPRDSKSPOWPPYTTAAOOYVSLNLKPLEVRRGLR				
<pre>mAChE ERIFAQRLMKYWTNFARTGDPN-DPRDSKSPQWPPYTTAAQQYVSLNLKPLEVRRGLR DmAChE ERELGKRMLSAVIEFAKTGNPAQDGEEWPNFSKEDPVYYIFSTDDKIEKLARGPL</pre>				
TCACHE EEALSRRIMHYWATFAKTGNPN-EPHSQESK-WPLFTTKEQKFIDLNTEPMKVHQRLR				
AGACHE1 LRQCAFWKKYLPQLVAAT				
hAChE AQACAFWNRFLPKLLSAT mAChE AQTCAFWNRFLPKLLSAT				
DMACHE AQTCAFWNRFLPKLLSAT				
TCACHE VQMCVFWNQFLPKLLNAT				

Multiple sequence alignment AaAChE1

*Aa*AChE1 (accession no: ABN09910) after multiple alignment³⁻⁴ with *Torpedo californica* (*Tc*AChE, PDB code: 1EA5, UNIPROT code: ACES_TORCA), *Homo sapiens* (*h*AChE, PDB code: 4EY4, UNIPROT code: ACES_HUMAN), *Mus musculus* (*m*AChE, PDB code: 1J06, UNIPROT code: ACES_MOUSE), and *Drosophila melanogaster* (*Dm*AChE, PDB code: 1QO9, UNIPROT code: ACES_DROME). Amino acids defined as 'loop one' and 'loop two' are highlighted in yellow and blue, respectively.

AaAChE1 hAChE mAChE DMAChE TCAChE	ted in yellow and blue, respectively. DGTDNDPLLITTDKGKVRGLTLEAPSGKKVDAWLGIPYAQPPLGPLRFRHPRPVEK-WTG EGREDAELLVTVRGGRLRGIRLKTPGG-PVSAFLGIPFAEPPMGPRRFLPPEP-KQPWSG EGREDPQLLVRVRGGQLRGIRLKAPGG-PVSAFLGIPFAEPPVGSRRFMPPEP-KRPWSG VCGVIDRLVVQTSSGPVRGRSVTVQG-REVHVYTGIPYAKPPVEDLRFRKPVPAE-PWHG QADDHSELLVNTKSGKVMGTRVPVLSS-HISAFLGIPFAEPPVGNMRFRRPEP-KKPWSG
AaAChE1	VLNATTPPNSCVQIVDTVFGDFPGATMWNPNTPLSEDCLYINVVVPHPRPKNSA-VMLWI
hAChE	VVDATTFQSVCYQYVDTLYPGFEGTEMWNPNRELSEDCLYLNVWTPYPRPTSPTPVLVWI
mAChE	VLDATTFQNVCYQYVDTLYPGFEGTEMWNPNRELSEDCLYLNVWTPYPRPASPTPVLIWI
DmAChE	VLDATGLSATCVQERYEYFPGFSGEEIWNPNTNVSEDCLYINVWAPAKNTTNGLPILIWI
TCAChE	VWNASTYPNNCQQYVDEQFPGFSGSEMWNPNREMSEDCLYLNIWVPSPRPKSTT-VMVWI
AaAChE1	FGGGFYSGTATLDVYDHRTLAS-EENVIVVSLQYRVASLGFLFLGTPEAPGNA
hAChE	YGGGFYSGASSLDVYDGRFLVQAE-RTVLVSMNYRVGAFGFLALPGSREAPGNV
mAChE	YGGGFYSGAASLDVYDGRFLAQVEGA-VLVSMNYRVGTFGFLALPGSREAPGNV
DMAChE	YGGGFMTGSATLDIYNADIMAAV-GNVIVASFQYRVGAFGFLHLAPEMPSEFAEEAPGNV
TCAChE	YGGGFYSGSSTLDVYNGKYLAYTEE-VVLVSLSYRVGAFGFLALHGSQEAPGNV
AaAChE1	GLFDQNLALRWVRDNIHKFGGDPSRVTLFGESAGAVSVSLHLLSALSRDLFQRAILQSGS
hAChE	GLLDQRLALQWVQENVAAFGGDPTSVTLFGESAGAASVGMHLLSPPSRGLFHRAVLQSGA
mAChE	GLLDQRLALQWVQENIAAFGGDPMSVTLFGESAGAASVGMHILSLPSRSLFHRAVLQSGT
DMAChE	GLWDQALAIRWLKDNAHAFGGNPEWMTLFGESAGSSSVNAQLMSPVTRGLVKRGMMQSGT
TCAChE	GLLDQRMALQWVHDNIQFFGGDPKTVTIFGESAGGASVGMHILSPGSRDLFRRAILQSGS
AaAChE1	PTAPWALVSREEATLR-ALRLAEAVNCPHDATKLTDTVECLRTKDP-NVLVDNEWGTL
hAChE	PNGPWATVGMGEARRR-ATQLAHLVGCPPGGTGGNDTELVACLRTR-PAQVLVNHEWHVL
mAChE	PNGPWATVSAGEARRR-ATLLARLVGCPPGGAGGNDTELIACLRTR-PAQDLVDHEWHVL
DMAChE	MNAPWSHMTSEKAVEIGKALINDC-NCNASMLKTNPAHVMSCMRSVD-AKTISVQQWNSY
TCAChE	PNCPWASVSVAEGRRR-AVELGRNLNCNLNSDEELIHCLREKKP-QELIDVEWNVL
AaAChE1	GICEFPFVPVVDGAFLDETPQRSLASGRFKKTDILTGSNTEEGYYFIIYYLTELLRK
hAChE	PQESVFRFSFVPVVDGDFLSDTPEALINAGDFHGLQVLVGVVKDEGSYFLVY-GAPGFSK
mAChE	PQESIFRFSFVPVVDGDFLSDTPEALINTGDFQDLQVLVGVVKDEGSYFLVY-GVPGFSK
DmAChE	SGILSFPSAPTIDGAFLPADPMTLMKTADLKDYDILMGNVRDEGTYFLLYDFIDYFDK
TCAChE	PFDSIFRFSFVPVIDGEFFPTSLESMLNSGNFKKTQILLGVNKDEGSFFLLY-GAPGFSK
AaAChE1	EEGVTVSREEFLQAVRELNPYVNGAARQAIVFEYTDWTEPENPNSNRDALDKMVGDYHFT
hAChE	DNESLISRAEFLAGVRVGVPQVSDLAAEAVVLHYTDWLHPEDPARLREALSDVVGDHNVV
mAChE	DNESLISRAQFLAGVRIGVPQASDLAAEAVVLHYTDWLHPEDPTHLRDAMSAVVGDHNVV
DmAChE	DDATALPRDKYLEIMNNIFGKATQAEREAIIFQYTSWEG-NPGYQNQQQIGRAVGDHFFT
TCAChE	DSESKISREDFMSGVKLSVPHANDLGLDAVTLQYTDWMDDNNGIKNRDGLDDIVGDHNVI
AaAChE1	CNVNEFAQRYAEEGNNVYMYLYTHRSKGNPWPRWTGVMHGDEINYVFGEPLNSDLGYMED
hAChE	CPVAQLAGRLAAQGARVYAYVFEHRASTLSWPLWMGVPHGYEIEFIFGIPLDPSRNYTAE
mAChE	CPVAQLAGRLAAQGARVYAYIFEHRASTLTWPLWMGVPHGYEIEFIFGLPLDPSLNYTTE
DmAChE	CPTNEYAQALAERGASVHYYYFTHRTSTSLWGEWMGVLHGDEIEYFFGQPLNNSLQYRPV
TCAChE	CPLMHFVNKYTKFGNGTYLYFFNHRASNLVWPEWMGVIHGYEIEFVFGLPLVKELNYTAE
AaAChE1	EKDFSRKIMRYWSNFAKTGNPNPSPPNSDFPEWPKHTAHGRHYLELGLNTTYVGRGPR
hAChE	EKIFAQRLMRYWANFARTGDPN-EPRDPKAPQWPPYTAGAQQYVSLDLRPLEVRRGLR
mAChE	ERIFAQRLMKYWTNFARTGDPN-DPRDSKSPQWPPYTTAAQQYVSLNLKPLEVRRGLR
DmAChE	ERELGKRMLSAVIEFAKTGNPAQDGEEWPNFSKEDPVYYIFSTDDKIEKLARGPL
TCAChE	EEALSRRIMHYWATFAKTGNPN-EPHSQESK-WPLFTTKEQKFIDLNTEPMKVHQRLR
AaAChE1	LRQCAFWKKYLPQLVAAT
hAChE	AQACAFWNRFLPKLLSAT
mAChE	AQTCAFWNRFLPKLLSAT
DmAChE	AARCSFWNDYLPKVRSWA
TCAChE	VQMCVFWNQFLPKLLNAT

Selection of template for homology modeling

Figure S20. Superposition of *m*AChE (pdb code 5FOQ⁵; ribbon in orange), *h*AChE (pdb code 4EY4⁶; ribbon in cyan), or *Dm*AChE (pdb code 1DX4⁷; ribbon in magenta). The side chains of the amino acids in the catalytic triad are shown as sticks. AChE from three species were considered as template for the homology modeling, mAChE, hAChE, or DmAChE. After the multiple alignments, the identity of the possible templates mAChE, hAChE, and DmAChE and the sequences to be modelled were 48%, 48%, and 39% for AgAChE1, respectively, and 48%, 48%, and 38% for AaAChE1, respectively based on residues 1-543 in hAChE. One crystal structure from each species were superposed and visually analyzed. The analysis showed that both the general fold and the amino acids lining the active site are highly conserved among the different species. It could however be seen that the two loops at the entrance of the active site differs between DmAChE and the vertebrate AChEs. In more details, 'loop 1' is one residue longer and 'loop 2' is two residues shorter. The multiple sequence alignment showed that for A_gAChE1 and A_aAChE1 'loop 2' contains the same number of residues as DmAChE, but that 'loop 1' is one residue shorter (i.e. three residues shorter than vertebrate AChE). Although showing a lower sequence identity, *Dm*AChE (pdb 1DX4⁷) was selected as the main template, due to the higher similarity of 'loop 1' and 'loop 2'. This template was used to model all residues with the exception of three loops: 102-112, 487-499, and 512-520 (hAChE numbering). It was found that in 1DX4 these loops were either not modelled or that their lengths differed from AgAChE1 and AaAChE1, resulting in mAChE (pdb code 5FOQ)⁵ being considered as a more suitable template for modelling of these residues.

Angles of Tyr337 in homology models of AgAChE1 and AaAChE1

Figure S21. χ_1 (C_{α}-C_{β}) and χ_2 (C_{β} C₁) dihedral angles for the side chain of Tyr337 (*h*AChE numbering) were adjusted to -157.0 and -157.1 degrees and χ_2 (C_{β} C₁) -26.4 and -26.3 degrees for *Ag*AChE1 and *Aa*AChE1, respectively. These angles resemble those in **2**•*m*AChE and have been observed in previously reported protein-ligand complexes of *m*AChE and *h*AChE (for examples see complexes with pdb codes 4ARB⁸ and 4EY7⁶).

Evaluation of AgAChE1 and AaAChE1 homology models

Table S9. Statistics of the stereochemical quality of the generated homology models according to PROCHECK.⁹

Ramachandran plot no. of residues (%)	AgAChE1	AaAChE1
Most favoured regions	364 (81.3)	368 (81.8)
Additional allowed regions	73 (16.3)	73 (16.2)
Generously allowed regions	7 (1.6)	4 (0.9)
Residues in disallowed regions	4 (0.9)	5 (1.1)

Compounds 1 and 2 modelled into the active site of AgAChE1 and AaAChE1.

Figure S22. Superposition of the homology model of AgAChE1 (cyan ribbon) and mAChE (gray ribbon) in complex with **1** (dark gray). The differing loops (loop 1 and loop 2) at the entrance of the gorge of AgAChE1 are marked in magenta.

Figure S23. Homology model of AgAChE1 in cyan (a) and AaAChE1 in pink (b) showing a close up of active site with **1** (purple) modelled with the positively charged piperidine projecting down into the catalytic site (based on **1**•*m*AChE).

Figure S24. Homology models of *Aa*AChE1in pink (a) and of G122S-*Ag*AChE1 in orange (b) showing a close up of active site with **2** (green) modelled with the positively charged piperazine projecting down into the catalytic site (based on **2** aligned on **1**•*m*AChE).

SUPPORTING INFORMATION

Data collection and refinement statistics for 5FUM

pdb entry code	5FUM
Resolution range (Å)	29.08 - 2.5 (2.59 - 2.5)
Space group	P 21 21 21
Unit cell (Å)	$78.7 \times 110.8 \times 227.6$
Total reflections	520714 (51599)
Unique reflections	69320 (6799)
Multiplicity	7.5 (7.6)
Completeness (%)	99.60 (99.28)
Mean I/sigma(I)	14.69 (2.35)
Wilson B-factor ($Å^2$)	51.2
R-merge	0.124 (1.584)
R-meas	0.1333 (0.724)
CC1/2	0.998 (0.885)
CC*	0.999 (0.969)
R-work	0.196 (0.3103)
R-free	0.227 (0.3888)
Number of non-hydrogen atoms	8602
macromolecules	8350
ligands ^a	123
water	129
Protein residues	1068
RMSD from ideal values	
bond lengths (Å)	0.004
bond angles (°)	0.89
Ramachandran favored (%)	95
Ramachandran outliers (%)	0.28
Clashscore	0.72
Average B-factor (Å ²)	62.00
macromolecules	61.60
ligands	87.50
solvent	58.90

Table S10. Data collection and refinement statistics for 5FUM. Statistics for the highest-resolution shell are shown in parentheses.

^aThese include compound **2** (modelled in both the A and the B chain) and fragments of six PEG750MME molecules modelled in the structure.

SUPPORTING INFORMATION

References

1. Berg, L.; Andersson, C. D.; Artursson, E.; Hörnberg, A.; Tunemalm, A.-K.; Linusson, A.; Ekström, F. Targeting acetylcholinesterase: Identification of chemical leads by high throughput screening, structure determination and molecular modeling. *PLoS One* **2011**, *6*, e26039.

2. SIMCA-P+, version 13.0.3; Umetrics AB: Box 7960, Umeå, Sweden, 2013.

3. *Molecular Operating Environment (MOE)*, version 2012.10; Chemical Computing Group Inc.: 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7, 2012.

4. Larkin, M. A.; Blackshields, G.; Brown, N. P.; Chenna, R.; McGettigan, P. A.; McWilliam, H.; Valentin, F.; Wallace, I. M.; Wilm, A.; Lopez, R.; Thompson, J. D.; Gibson, T. J.; Higgins, D. G. Clustal W and Clustal X version 2.0. *Bioinformatics* **2007**, *23*, 2947-2948.

5. Berg, L.; Mishra, B. K.; Andersson, C. D.; Ekström, F.; Linusson, A. The nature of activated non-classical hydrogen bonds: A case study on acetylcholinesterase-ligand complexes. *Chemistry* **2016**, *22*, 2672-2681.

6. Cheung, J.; Rudolph, M. J.; Burshteyn, F.; Cassidy, M. S.; Gary, E. N.; Love, J.; Franklin, M. C.; Height, J. J. Structures of human acetylcholinesterase in complex with pharmacologically important ligands. *J. Med. Chem.* **2012**, *55*, 10282-10286.

7. Harel, M.; Kryger, G.; Rosenberry, T. L.; Mallender, W. D.; Lewis, T.; Fletcher, R. J.; Guss, J. M.; Silman, I.; Sussman, J. L. Three-dimensional structures of *Drosophila melanogaster* acetylcholinesterase and of its complexes with two potent inhibitors. *Protein Sci.* **2000**, *9*, 1063-1072.

8. Berg, L.; Niemiec, M. S.; Qian, W.; Andersson, C. D.; Wittung-Stafshede, P.; Ekström, F.; Linusson, A. Similar but different: thermodynamic and structural characterization of a pair of enantiomers binding to acetylcholinesterase. *Angew. Chem., Int. Ed.* **2012**, *51*, 12716-12720.

9. Laskowski, R. A.; Macarthur, M. W.; Moss, D. S.; Thornton, J. M. PROCHECK: A program to check the stereochemical quality of protein structures. *J. Appl. Crystallogr.* **1993**, *26*, 283-291.