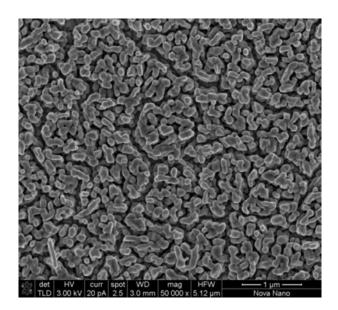
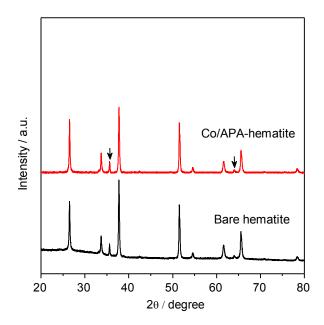
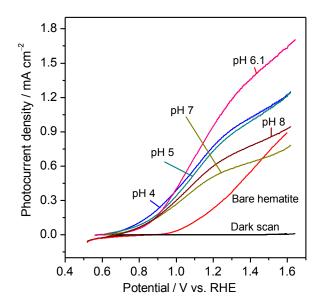
Electronic Supporting Information

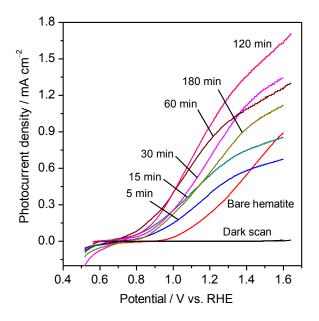
Modification of Hematite Photoanode with Cobalt Based Oxygen Evolution Catalyst via Bifunctional Linker Approach for Efficient Water Splitting

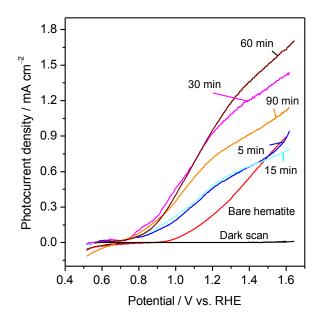
Amira Y. Ahmed, Mahmoud G. Ahmed, and Tarek A. Kandiel*

Department of Chemistry, Faculty of Science, Sohag University, Sohag 82524, Egypt

Email: kandiel@science.sohag.edu.eg


Figure S1. SEM image of hematite film.


Figure S2. XRD diffraction patterns of bare- and Co/APA-hematite photoanodes. The arrow symbol indicates Bragg positions located at 35.7 and 64.05° (2 θ) for (110) and (300) diffraction peaks of hematite, respectively, according to the JCPDS card no. 033-0664. The other peaks indicate Bragg positions for FTO layer on the glass substrate according to the JCPDS card no. 041-1445.

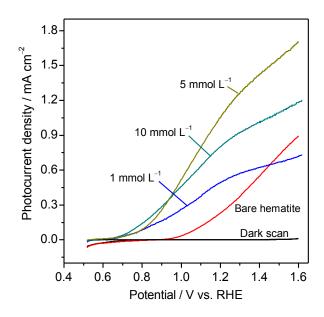

Figure S3. I–V curves for photoelectrochemical water oxidation on bare- and Co/APAhematite photoanodes measured under simulated solar light (1 sun, AM 1.5G) from 1.0 mol L⁻¹ NaOH solution. Modification conditions: hematite films were immersed in 10 mmol L⁻¹ APA aqueous solutions for 120 min at different pH values followed by soaking in 5 mmol L⁻¹ cobalt nitrate aqueous solution for 60 min.

Figure S4. I–V curves for photoelectrochemical water oxidation on bare- and Co/APAhematite photoanodes measured under simulated solar light (1 sun, AM 1.5G) from 1.0 mol L⁻¹ NaOH solution. Modification conditions: hematite films were immersed in 10 mmol L⁻¹ APA aqueous solutions for different time (5 – 180 min) at pH 6.1 followed by soaking in 5 mmol L⁻¹ cobalt nitrate aqueous solution for 60 min.

Figure S5. I–V curves for photoelectrochemical water oxidation on bare- and Co/APAhematite photoanodes measured under simulated solar light (1 sun, AM 1.5G) from 1.0 mol L⁻¹ NaOH solution. Modification conditions: hematite films were immersed in 10 mmol L⁻¹ APA aqueous solutions for 120 min at pH 6.1 followed by soaking in 5 mmol L⁻¹ cobalt nitrate aqueous solution for different time periods (5 – 90 min).

Figure S6. I–V curves for photoelectrochemical water oxidation on bare- and Co/APA- hematite photoanodes measured under simulated solar light (1 sun, AM 1.5G) from 1.0 mol L^{-1} NaOH solution. Modification conditions: hematite films were immersed in 10 mmol L^{-1} APA aqueous solutions for 120 min at pH 6.1 followed by soaking in different concentrations of cobalt nitrate aqueous solution for 60 min.

End of Electronic Supporting Information