A Novel Solution Approach to a Priority-Slot-Based Continuous-Time Mixed Integer Nonlinear Programming Formulation for a Crude-Oil Scheduling Problem

	MILP solution	NLP solution	Optimality gap	Composition discrepancy	
The MILP/NLP method	61.667	No solution	N/A	Yes	
The proposed method	59.583	59.583	0%	No	

Table S1. Objective Values for Solutions Obtained by Different Methods for Example 3

Table S2. Detailed Operations of the Obtained Solution by the Proposed Method for Example 3

Priority-slot	Operation	Device	Oil types and amounts in a device	Oil types and amounts delivered from a device
1	c1→d1	c1	C(50)	C(50)
2	s1→c1	s1	A(41.167)	A(41.167)
3	s1→c2	s1	A(20.833)	A(20.833)
4	v1→s1	v1	A(100)	A(100)
5	s2→c2	s2	B(29.167)	B(29.167)
6	s1→c1	s1	A(45.833)	A(45.833)
7	c2→d1	c2	A(20.833) B(29.167) D(50)	A(20.833) B(29.167) D(50)
8	s1→c2	s1	A(32.738)	A(32.738)
9	s2→c2	s2	B(45.833)	B(45.833)
10	v2→s2	v2	B(100)	B(100)
11	c1→d1	c1	A(50)	A(50)

Table S3. Solution Details for Example 4

Solution method	The number of slots	The number of binary variables	Iteration	Objective obtained by MILP	Objective obtained by NLP	Optimality gap	CPU time (s)
MILP/NLP method	10	80		79.750	79.750	0%	4.063
The proposed	10	80	1	79.750	_	0%	1.762
method		8	2	79.750			
MILP/NLP method	13	104		79.750	79.750	0%	7.459
The proposed	13	104	1	79.750		0%	5.157
method		8	2	79.750			

	2	, una ,					
		The number	Iteration	Objective	Objective	Optimality	CPU time(s)
		of slots		by MILP	by NLP	gap	
	MILP/NLP	21		101.175	101.175	0%	187.375
Example 5	method						
	The proposed	21	1	101.175		0%	184.294
	method						
	MILP/NLP	13		87.400	84.500	3.32%	16.275
	method						
	The proposed	13	1	87.400			13.391
	method		2	86.329		1.79%	0.505
			3	84.329			0.132
Example 6			4	85.836			0.045.
	MILP/NLP	21		87.400	84.500	3.32%	196.357
	method						
	The proposed	21	1	87.400			192.643
	method		2	86.329		1.79%	0.538
			3	84.329			0.141
			4	85.836			0.048
	MILP/NLP	19		132.548	132.548	0%	887.651
Example 7	method						
	The proposed	19	1	132.548		0%	884.482
	method						

Table S4. Comparison on Performance between Different Methods with the Same Number of Slots for Examples 5, 6, and 7

Table S5. Solution Details for Example 8

Method	The number of slots	The number of binary	Iteration number	<i>t</i> *	Objective by MILP	Objective by NLP	Optimality gap	CPU time (s)
MILP/NLP method	18	252			91.575	No		127.358
Proposed	18	252	1	0	91.575	solution	0.6877%	127.358
one		126	2	1.1067	90.945			5.157

Table S6. Solution Details for Example 9

Method	The number	The	Iteration	t*	Objective	Objective	Optimality	CPU
	of slots	number	number		by MILP	by NLP	gap	time(s)
		of binary						
		variables						
MILP/NLP	13	182			8.569	No		13.487
method						solution		
The	13	182	1	0	83.569		2.5045%	13.487
proposed		78	2	2.3748	81.476			2.325
one								

	Scheduling horizon		15 days
Vessel	Arrival time	Composition	Amount of crude oil (Mbbl)
Vessel 1	0	100% A	500
Vessel 2	5	100% B	500
Vessel 2	10	100% C	500
Storage tank	Capacity (Mbbl)	Initial composition	Initial amount of crude oil (Mbbl)
Tank 1	[100,900]	100% D	200
Tank 2	[100,1100]	100% D	200
Tank 3	[100,1100]	100% E	200
Tank 4	[100,1100]	100% F	200
Tank 5	[100,900]	100% H	300
Tank 6	[100,900]	100% H	600
charging tank	Capacity (Mbbl)	Initial composition	Initial amount of crude oil (Mbbl)
Tank 1 (mix X)	[0,800]	100% G	300
Tank 2 (mix Y)	[0,800]	100% E	500
Tank 3 (mix Z)	[0,800]	100% F	300
Tank 4 (mix W)	[0,800]	100% H	300
Crude oil type	Sulfur concentration	Gross margin(\$/bbl)	
Crude oil A	0.035	3	
Crude oil B	0.085	5	
Crude oil C	0.06	6.5	
Crude oil D	0.02	3.1	
Crude oil E	0.05	7.5	
Crude oil F	0.08	3.17	
Crude oil G	0.03	4.83	
Crude oil H	0.095	6.33	
Crude mixture	Sulfur concentration	Demand (Mbbl)	
Crude oil mix X	[0.025,0.035]	[600,600]	
Crude oil mix Y	[0.045,0.065]	[600,600]	
Crude oil mix X	[0.075,0.085]	[600,600]	
Crude oil mix Y	[0.09,0.11]	[600,600]	
Unloading flow rate	[0,500]	transportation flow rate	[0,500]
Distillation flow rate	[20,500]	Number of distillations	7

Table S7. Data for Example 10

Table S8. Solution Details for Example 10

Method	Priority-slots	Number	Iteration	t*	Objective	Objective	Optimality	CPU
	number	of binary	number		by MILP	by NLP	gap	time(s)
		variables						
MILP/NLP	17	340			143.415	No		746.381
method						solution		
The		340	1	0	143.415			746.381
proposed		240	2	1.0	140.1721			129.462
one	17	120	3	6.0	138.4638		7.65%	4.653
		60	4	11.0	136.9415			1.947
		40	5	11.32	132.4433			0.592

APPENDIX

A. SOS mathematical model based on priority-slot for crude oil operations scheduling problems

Maximize

$$\sum_{i \in T} \sum_{r \in R_D} \sum_{v \in I_r} \sum_{c \in C} G_c \cdot V_{ivc} \tag{7}$$

Subject to

Constraints of time for unloading oil from a vessel: Constraints (8)-(9) are used to enforce that only after

the arrival of crude oil vessels to the dock, a vessel can be unloaded.

$$S_{iv} \ge \underline{S}_v \cdot Z_{iv} \quad i \in T, \ v \in W_U \tag{8}$$

$$S_{iv}_{v \in O_r} \le S_r \quad r \in R_V, \ i \in T \tag{9}$$

Time constraints: Constraints (10) and (11) restrict the beginning time, duration, and the ending time of

operation v.

$$E_{iv} \le H \cdot Z_{iv} \quad i \in T, \ v \in W \tag{10}$$

$$E_{iv} = S_{iv} + D_{iv} \quad i \in T, \ v \in W \tag{11}$$

Cardinality constraints for unloading and distillation operations: Constraint (12) ensures that each vessel must be unloaded its cargo exactly once. In order to decrease the changeover cost of CDU switches, the total number of distillation operations is bounded by Constraint (13) using lower bound N_D and upper bound $\overline{N_D}$.

$$\sum_{i \in T} \sum_{v \in O_r} Z_{iv} = 1 \quad r \in R_V$$
(12)

$$\underline{N_D} \le \sum_{i \in T} \sum_{v \in W_D} Z_{iv} \le \overline{N_D}$$
(13)

Unloading sequence constraints: Constraints (14)-(15) define the unloading sequence of crude oil vessels

that must be unloaded in order of their arrival time to the dock.

$$\sum_{i \in T} \sum_{v \in O_{r_1}} E_{iv} \le \sum_{i \in T} \sum_{v \in O_{r_2}} S_{iv} \quad r_1, r_2 \in R_V, \ r_1 < r_2$$
(14)

$$\sum_{j \in T, j < i} \sum_{v \in O_{r_1}} Z_{jv} \le \sum_{j \in T, j \le i} \sum_{v \in O_{r_2}} S_{iv} \quad i \in T, \ r_1, r_2 \in R_V, \ r_1 < r_2$$
(15)

Continuous distillation constraint: The continuousness of CDU distillation is ensured by Constraint (16).

Since each CDU can be charged by only one charging tank, continuous distillation can be defined by the total distillation time equating the whole scheduling horizon *H*.

$$\sum_{i \in T} \sum_{v \in I_r} D_{iv} = H \quad r \in R_D$$
(16)

Assignment constraint: Constraint (17) enforces that at most one operation must be assigned to each priority-slot.

$$\sum_{v \in W} Z_{iv} \le 1 \quad i \in T \tag{17}$$

Symmetry breaking constraint: Constraint (18) is used to eliminate non-occupancy of a priority-slot for

avoiding slot redundancy.

$$\sum_{v \in W} Z_{iv} \ge 1, \quad i \in T \tag{18}$$

Non-overlapping constraints: Constraints (19)-(21) ensure that two operations v_1 and v_2 must not be

simultaneously fulfilled.

$$E_{i_1v_1} + E_{i_1v_2} \le S_{i_2v_1} + S_{i_2v_2} + H \cdot (1 - Z_{i_2v_1} - Z_{i_2v_2})$$

$$i_1, i_2 \in T, i_1 < i_2, v_1, v_2 \in W, NO_{v_1v_2} = 1$$
(19)

$$E_{i_1v_1} \le S_{i_2v_2} + H \cdot (1 - Z_{i_2v_2}) \ i_1, i_2 \in T, i_1 < i_2, v_1, v_2 \in W, NO_{v_1v_2} = 1$$

$$(20)$$

$$E_{i_1v_2} \le S_{i_2v_1} + H \cdot (1 - Z_{i_2v_1}) \ i_1, i_2 \in T, i_1 < i_2, v_1, v_2 \in W, NO_{v_1v_2} = 1$$

$$\tag{21}$$

Constraints (22)-(23) bound crude oil volume transferred by operation v using lower bound V_v^t and upper

one
$$\overline{V_v^t}$$
.
 $V_{iv}^t \le \overline{V_v^t} \cdot Z_{iv} \quad i \in T, \ v \in W$
(22)

$$V_{iv}^t \ge V_v^t \cdot Z_{iv} \quad i \in T, \ v \in W$$
(23)

Constraints (24)-(26) enforce material balance for transferring operation.

$$V_{iv}^t = \sum_{c \in C} V_{ivc} \quad i \in T, \ v \in W$$
(24)

$$L_{irc} = L_{0rc} + \sum_{j \in T, j < i} \sum_{v \in I_r} V_{ivc} - \sum_{j \in T, j < i} \sum_{v \in O_r} V_{ivc} \ i \in T, r \in R, c \in C$$
(25)

$$L_{ir}^{t} = \sum_{c \in C} L_{irc} \quad i \in T, \ v \in W$$
(26)

Constraints (27) bound the flowrate by FR_v and $\overline{FR_v}$.

$$\underline{FR}_{v} \cdot D_{iv} \le V_{iv}^{t} \le \overline{FR_{v}} \cdot D_{iv} \quad i \in T, \ v \in W$$
(27)

Property constraint: Constraint (28) bounds property k of the blender transferred by operation v, and calculates property k of the blender from property x_{ck} of crude oil c by the assumption that the mixing procedure is linear.

$$\underline{x_{vk}} \cdot V_{iv}^t \le \sum_{c \in C} x_{ck} V_{ivc} \le \underline{x_{vk}} \cdot V_{iv}^t \quad i \in T, v \in W, k \in K$$
(28)

Constraints (29)-(32) ensure material balance for inventory of tanks.

$$L_r^t \le L_{ir}^t \le \overline{L_r^t} \quad i \in T, \ r \in R_S \cup R_C \tag{29}$$

$$0 \le L_{irc} \le \overline{L_r^t} \quad i \in T, c \in C, r \in R_S \cup R_C \tag{30}$$

$$\underline{L}_{\underline{r}}^{t} = L_{0r}^{t} + \sum_{i \in T} \sum_{v \in I_{r}} V_{iv}^{t} - \sum_{i \in T} \sum_{v \in O_{r}} V_{iv}^{t} \le \overline{L}_{r}^{t} \quad r \in R_{S} \cup R_{C}$$

$$(31)$$

$$0 \le L_{0rc} + \sum_{i \in T} \sum_{v \in I_r} V_{ivc} - \sum_{i \in T} \sum_{v \in O_r} V_{ivc} \le \overline{L_r^t} \quad r \in R_S \cup R_C, c \in C$$

$$(32)$$

Constraint (33) is a demand constraint, which define lower and upper bounds, \underline{D}_r and \overline{D}_r , to restrict the

total volume of feedstock charged by each charging tank during the whole scheduling horizon H.

$$\underline{D_r} \le \sum_{i \in T} \sum_{v \in O_r} V_{iv}^t \le \overline{D_r} \quad r \in R_C$$
(33)