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I. MODEL DEVELOPMENT 
 
The following subsections provide additional details of the core assumptions, calculations, and 
methodologies used to formulate the heterogeneous multiphase growth model (HMG model) 
described in the main text.  
 
Nomenclature 
 
Term Definition 

𝑽𝒊 Volume at initiation, also called critical volume (0.9 𝜇𝑚% ≡
0.9	𝑓𝐿)1-2 

𝑽𝒊 Noise Gaussian noise standard deviation (10% for dt = 0.01 min)3 
𝑽𝒂 Cell volume at cell cycle time a 
𝑽𝒂 Noise Gaussian noise standard deviation (5% for dt = 0.01 min)3 

𝝁 Growth rate (min-1) 
𝝉 Doubling rate (min-1), where 𝜏 = 23(5)

7
 

C Genome replication time (min) 
C Noise Gaussian noise standard deviation (5% for dt = 0.01 min)3 
D  Binary fission time (min) 
D Noise  Gaussian noise standard deviation (for dt = 0.01 min) 
Segregation Asymmetry Gaussian noise standard deviation (10% for dt = 0.01 min)3 

describing the asymmetry of binary fission 
Chance of Initiation 
 
Chance of DNA damage 
 
Ratio of DNA damage 
 
 
 
 

Given critical volume reached, probability that the OriC opens 
(1.75 for dt = 0.01 min)3 
Probability that the replicating chromosome experiences any 
DNA damage 
If the replicating chromosome experiences DNA damage, this 
ratio represents the chance that the DNA damage leads to 
degradation of only the replicating strand, divided by the 
chance that such damage leads to degradation of the whole 
chromosome 
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1. Relating experimental and simulated DNA distributions   
 
Experimentally measured DNA distributions reflect accumulated experimental variation 
associated with both labeling (e.g., variable efficiencies of fixation, permeabilization, and binding 
of DAPI to DNA) and detection (e.g., variability in the signal measured by flow cytometry given a 
fixed quantity of DAPI in a single sample). Therefore, even if a population of cells included a 
discrete and uniform amount of DNA per cell, the measured DNA distribution would be “spread” 
by these other sources of variability,4 and this spread must be quantified in order to relate our 
simulation results to measured DNA distributions3, 5. To quantify the spread associated with our 
experimental methods, we chose a sample in which cells were grown to stationary phase, since 
under these conditions, it is reasonable to assume that all chromosomes had completed 
replication and thus actual DNA content per cell represents a discrete number of full genome 
units. The DAPI-associated fluorescence was thus fit to a sum of Gaussians (Figure S5). If the 
cell contains a wild type (WT) version of the RecA gene, then each peak would be assigned a 
value of 1, 2, 4, or 8 genome equivalents of DNA, since all chromosomes are assumed to 
initiate replication at OriC at the same time, and thus the number of completed chromosomes 
should be a power of two 6. However, because the TOP10 bacterial strain used in this study 
contains a mutation in the gene encoding RecA (recA1, see section 3 below)7, the cells have 
aberrant chromosome copy numbers8, and as a consequence, each peak was assigned an 
integer value (1, 2, 3, …) of genome equivalents of DNA.  
 
From these fits, we determined two important parameters. From the means of the Gaussians, 
we generated a calibration curve for relating discrete numbers of chromosomes to flow 
cytometry channels (levels of DAPI-associated fluorescence per cell). Notably, the standard 
deviation of the peaks followed the same pattern observed in previous reports4 (Figure S2); with 
an increasing amount of DNA, the standard deviation of the peaks increases linearly. This 
makes sense physically, since when more DAPI labeling takes place, the variability associated 
with both labeling and quantifying cell-associated DAPI would also increase. These parameters 
enabled us to convert simulated DNA distributions to simulated measured DNA distributions by 
using Gaussian blurring. Due to the potential for variation in measured fluorescence values 
between flow cytometry runs performed on different days, the calibration was repeated on each 
day. 
 
2. Simulation initiation 
 
2.1. Identification of exponential growth 
 
In order to automatically predict DNA distributions given an experimental growth curve, we 
require a method for identifying the exponential (and post-exponential) phases of growth for 
calculating instantaneous growth rates across the different phases of growth to which our model 
applies. To this end, each experimental growth curve (OD vs. time) was fit to a B-spline 
function, including a user-defined smoothing parameter that may be tuned to minimize 
sensitivity to experimental noise while generating a fit that is suitable given the temporal spacing 
between subsequent OD measurements9. This B-spline function (OD = f(t)) was then analyzed 
computationally to define the exponential phase of growth (the first time point, or time interval, 
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over which 89 :;	(< = )
8=9

 is minimized). Given the typical noise associated with OD 
measurements, particularly at low OD values, we manually excluded earlier time points (low OD 
values) from this consideration, and the temporal interval identified as representing exponential 
growth was also confirmed manually (Figure S3). This methodology leads to the definition of 
exponential growth as representing a temporal window over which the minimization condition is 
satisfied (thus, any early inflection point, which also satisfies the minimization condition, is not 
identified as the window of exponential growth). 
 
2.2. Populating the simulation assuming Malthusian growth 
 
To initiate the simulation, we assumed the Malthusian growth model of unrestricted growth. For 
the Malthusian growth law to be valid however, it requires the population to be in balanced 
growth (also called steady state). By growing cells in ideal conditions, i.e. with an abundance of 
space, nutrients, and aeration, it is believed that the cells are not experiencing any growth 
limiting factors, and thus each individual in the population is growing at its maximal rate6, 10. This 
translates to a population of cells that are in the same state, albeit asynchronous vis-à-vis the 
cell cycle. This theory has been used to mathematically describe bacterial growth through each 
stage of the cell cycle, such that given the following probability density function describing the 
age distributions of an asynchronous bacterial population growing exponentially: 
 

𝑛 𝑎 = 2 ∙ ln(2)𝑒EF23(5) 
 
the number of cells within the population inhabiting each cell cycle state can be deduced3, 11. In 
this expression, 𝑛(𝑎) is the probability for a cell to be at age 𝑎, where 0 ≤ 𝑎 ≤ 1, such that 𝑎 = 0 
would correspond to a newly divided cell, and 𝑎 = 1 is the age at which a cell divides11. 
 
If indeed the balanced growth theory holds, it follows that given an exponentially growing 
population, regardless of when a sample is measured within a window of exponential growth, 
the state of the population (distribution of cells inhabiting each cell cycle state) should be 
unchanging. Thus, for each of the four different growth conditions (cells grown in LB or M9 
media and shaken at either 230RPM or 23RPM), we used the method discussed in section 2.1 
to identify the exponential phase of growth (Figure S4). Figure S5 depicts the experimentally 
measured DNA distributions observed across the identified window of exponential growth. 
Although some variation across this period was observed, overall the DNA distributions were 
relatively unchanging, which supports our use of the Malthusian growth condition/assumption to 
initiate the simulator. Note that because the model does not include a mechanism for cell death, 
any periods in which decreasing OD values were experimentally observed were not considered 
in this analysis. 
 
2.3. Cell volume and instantaneous volumetric calculations 
 
To initiate the simulation, we start with a single cell containing a single chromosome that has not 
started replication, and with volume 𝑉F =

JK
5

, and then we advance the model until it reaches 
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5000 cells. Under the assumption of exponential growth, the first step of the HMG simulation 
involves growing a population assuming the Malthusian growth model for each cell, where 
growth rate (𝜇) is extracted from the linear section of growth (see section 2.1 above): 

 𝑉FL8= = 𝑉F 1 + (𝜇 ∗ 𝑑𝑡)  (1) 
 

and 𝑑𝑡 is a discrete time interval. 

For non-exponential growth, the HMG simulation uses the injection growth method to track true 
volumetric changes in a population (see main manuscript). Therefore, it is necessary to convert 
the OD growth curve to its total cell volume equivalent. To perform this task, we use a constant 
relationship reported by Volkmer et al., where regardless of the growth rate, total cell volume of 
a population of bacterial cell is 3.6	𝜇𝐿 ∙ 𝑂𝐷EU ∙ 𝑚𝐿EU 12. Because the model requires the change 
of volume in time, we use the following equation to deduce the change in volume from OD 
growth curves: 

 

 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛	𝑉FL8= = 3.6 ∗ 𝑂𝐷 𝑎 + 𝑑𝑡 ∗ 10% − 3.6 ∗ 𝑂𝐷 𝑎 ∗ 10% (2) 

 

where 𝑂𝐷 𝑎  is the optical density at time 𝑎, and 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛	𝑉FL8=  is expressed in 𝑓𝐿 ∙ 𝑚𝐿EU. 
The reason we convert from 𝜇𝐿  to 𝑓𝐿  is because 𝑉]  is expressed in 𝜇𝑚%  and 𝜇𝑚% ≡ 𝑓𝐿 . 
Furthermore, due to computational limitations, it is only possible to reach a fraction of the 
measured total population volume by our simulation (𝑉 ). Thus it is necessary to normalize the 
total cell volume calculated from the OD to the total volume of the simulation at the start of the 
simulation, where:  

 

 
𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛	𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 =

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛	𝑉
𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛	𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛	𝑉 	

	 
(3) 

 

 Thus to grow an individual cell using the injection method, we use the following:  

 

 
𝑉FL8= =

(𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛	𝑉FL8=/𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛	𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡)
𝐶𝑒𝑙𝑙	𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛(𝑎)

	 
(4) 

	

Where	𝐶𝑒𝑙𝑙	𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛(𝑎) is the number of cells in the simulation at time 𝑎. 

3. Development of recA mutant cell cycle model 
 
3.1. WT RecA function 
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Because chromosome replication is, by nature, error prone, and because cells are constantly 
exposed to stresses that cause DNA damage such as oxidative stress and UV radiation, 
bacterial cells possess different mechanisms to manage damage to their DNA, including 
excision repair, mismatch repair, and the SOS response system13. For repair involving 
templating by homologous DNA sequences, the RecA protein plays a central role in matching 
the damaged DNA to its complementary sequence 13-15. RecA expression not only alleviates 
repression of DNA repair protein expression through a co-proteolytic function that cleaves the 
repressor LexA, but upon coating single stranded DNA, RecA catalyzes the pairing to a 
complementary strand13, 15-16. Since elucidating the detailed mechanisms of bacterial DNA repair 
remains an area of active investigation, we represented the process of DNA repair using a 
simplified mechanism that captures the essence of the current consensus understanding14, 17. In 
this consensus model, when a replicating fork encounters any type of DNA damage, it is 
arrested at the site of the damage14-15, 17. As a consequence of this stalling, a double stranded 
break is created that leads to one of the replicating strands containing an exposed double 
stranded break14-15, 17. Exposure of the double-stranded break leads to recruitment of the 
RecBCD enzyme, whose helicase and nuclease functions degrade the DNA past the source of 
the damage, until the nuclease reaches a Chi sequence14-15, 17. RecA is then recruited, binds to 
a single strand of DNA, and through homologous recombination, initiates a faithful repair of the 
error, resulting in a fully restored version of the chromosome14-15, 17. 
 
3.2. Effect of the recA null mutant on chromosome replication 
 
The gene encoding RecA is often mutated (e.g., recA1) in laboratory strains used for the 
purpose of genetic engineering, since this mutation impairs the ability of the cell to perform 
recombination of inserted plasmid genetic material and thus increases the stability of inserted 
plasmids. Unsurprisingly, such bacterial strains are particularly sensitive to any type of DNA 
damage, and during normal laboratory growth, as much as half of the cells in a population are 
inviable8, mostly due to the occurrence of anucleate cells8, 17. A few key observations indicate 
the consequences of recA mutation. Early studies showed that recA1 cells contained aberrant 
chromosome copy numbers8. In a population of WT cells, most individuals would have 1, 2, 4, 8 
etc… (2n) chromosomes per cell, since a new round of replication initiates simultaneously at all 
OriC locations in a cell once the cell reaches critical mass. On the other hand, recA1 
populations contain cells with 1, 2, 3, 4, 5 etc… copies per cell8.  
 
Substantial work has been devoted to elucidating how the recA1 mutation leads to aberrant 
chromosome replication. Timing and coordination of initiation was shown to not be affected by 
this mutation8, 18. However, recA1 bacteria contain a higher number of free floating nucleotides 
than do their WT counterparts, and this phenotype is exacerbated by faster growth rates19. In 
vitro experiments show that RecA inhibits the nuclease activity of RecBCD, and knock out 
experiments for this protein are more lethal to the cell than are recA knockouts20. If, for any 
reason, the replication fork is arrested long enough, then the arrest leads to double-stranded 
breaks, and RecBCD is recruited and degrades the replicating strand13-14, 17, 21-22. Furthermore, 
there seems to be a RecA-independent damage avoidance mechanism which involves 
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suppression and removal of the damaged strand by RecBCD during replication,23 which leads to 
the collapse of the replicating strand, and the chromosome returns to its original form14, 23. Other 
evidence suggests that recA1 mutant bacteria also experience whole chromosome 
degradation8. Finally, the lack of functional RecA may affect the synchronous segregation of 
chromosomes at division, such that a given complement of chromosomes is divided less evenly 
between daughter cells in recA mutant strains18. 
 
Altogether, these observations led us to summarize these recA-associated mechanisms for 
inclusion in our model in the following way. If the replicating strand encounters DNA damage 
(which it is unable to repair due to the lack of RecA), then a double stranded break occurs. If the 
break occurs upstream of the replication fork, then RecBCD degrades the replicating strand until 
it reaches the end of the other replication fork21, which leads to restoration of the replicating 
chromosome to its original state. If the double-stranded break occurs downstream of the 
replication fork, then RecBCD degrades the whole chromosome. Finally, in recA mutant cells, a 
parameter was included which quantified the degree of asymmetric segregation of 
chromosomes into daughter cells at cell division. 
 
To investigate how we might best describe the effects of recA mutation in our model, given this 
diversity of mechanisms and a lack of quantitative measurements for these processes, we first 
formulated a series of models that did, or did not include a combination of these three 
mechanisms – whole chromosome degradation, replicating strand collapse/degradation, and 
asymmetric segregation.  By attempting to fit each of these models to our experimental data, by 
parametric optimization (data not shown), we observed that the best fits came from a model that 
included whole chromosome degradation and replicating strand collapse/degradation, but did 
not include asymmetric segregation, which is a formulation that is consistent with some recent 
reports8. Therefore, we formulated a concise mechanism to capture the impact of recA mutation 
in our model, which is summarized in Figure S6, and used this formulation for all modeling work 
reported here. In further support of this choice, we observed via a parametric sensitivity analysis 
(Figure S7) that the asymmetric segregation parameter had the lowest impact on the extent to 
which our model could match the experimentally measured DNA distribution associated with an 
exponentially growing population3.  
 
4. Model implementation 
 
For a summary of the model algorithm, please see Figure 2. Here we describe a few such steps 
in detail to clarify how this algorithm was implemented in our HMG simulator. 
 
4.1. Noise parameters and cell cycle parameter stochasticity 
 
Each noise parameter, which we will generically call NoiseParam, (and which includes 𝑉] Noise, 
𝑉F Noise, C Noise and D Noise, expressed in %) is used in the following way: for Parameter X, 
with mean value M, noise is introduced by selecting a random number from a Gaussian 
distribution with mean M and standard deviation 𝜎 , where 𝜎  = M*NoiseParam/100.0. The 
selected random number is then used as a noisy version of Parameter X.  
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4.2.  Stochastic opening of replication forks  
 
The “Chance of Initiation” parameter describes the “degree of synchronous initiation at multiple 
origins”3. This can be described as a cumulative distribution function given a standard normal 
distribution (or in other terms the area under the bell curve). Following this previously developed 
method3, we randomly select a number from a Gaussian distribution with mean 0.0 and 
standard deviation of 1.0, and we then check if this random number is larger or equal to 1.75. 
This means that at every time step, the probability of asynchronous initiation is equal to 0.0401 
given a time step (dt) of 0.01 minutes, and using the following cumulative distribution of a 
standard normal distribution: 
 

𝜙(𝑧) =
1
2𝜋

𝑒Ej9/5
k

El
𝑑𝑡	

	

(5) 
 

 
we calculate the asynchronicity amongst replication forks (approximately 4% )3: 
 

 

𝐴𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑖𝑐𝑖𝑡𝑦 = (1.0 − 𝜙(𝐶ℎ𝑎𝑛𝑐𝑒	𝑜𝑓	𝐼𝑛𝑖𝑡𝑖𝑎𝑡𝑖𝑜𝑛)) ∗ 𝑑𝑡 (6) 
	  

4.3. DNA Damage  
 
A subtlety to be noted is that in practice, to avoid the physically redundant scenario of inducing 
both whole chromosome degradation and replicating strand collapse, we implemented the two 
DNA degradation mechanisms in a mutually exclusive fashion. During chromosome replication, 
a random number is generated according to a Gaussian distribution with mean 0 and standard 
deviation of 1. This random number is compared against the parameter “Chance of DNA 
damage” to determine whether the currently replicating chromosome experiences either of the 
two types of DNA damage. If damage does occur, a second random number is generated from 
a Gaussian distribution with mean of 0 and standard deviation of 1, and this random number is 
compared against the parameter “Ratio of DNA damage”, in order to choose whether the 
chromosome experiences replicating strand degradation or, instead, whole chromosome 
degradation (where if random number < Ratio of DNA damage then a single replication forks 
collapses, and if random number ≥  Ratio of DNA damage then the whole chromosome is 
degraded). Note that our parameters were defined in such a fashion (as random Gaussian 
numbers) to enable comparison with parameters that were previously measured by experiment 
3. To convert such a parameter to the equivalent number defined as a random number sampled 
from a uniform distribution across an interval from 0 to 1, one simply calculates: 
 
 𝐶ℎ𝑎𝑛𝑐𝑒	𝑜𝑓	𝐶ℎ𝑟𝑜𝑚𝑠𝑜𝑚𝑒	𝐷𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛

= 	 1.0 − 𝜙 𝐶ℎ𝑎𝑛𝑐𝑒	𝑜𝑓	𝐷𝑁𝐴	𝐷𝑎𝑚𝑎𝑔𝑒
∗ 1.0 − 𝜙 𝑅𝑎𝑡𝑖𝑜	𝑜𝑓	𝐷𝑁𝐴	𝐷𝑎𝑚𝑎𝑔𝑒 ∗ 𝑑𝑡 

 

(7) 
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Similarly, to determine the chance that a replication fork collapses, one calculates: 
 
𝐶ℎ𝑎𝑛𝑐𝑒	𝑜𝑓	𝑅𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛	𝐹𝑜𝑟𝑘	𝐶𝑜𝑙𝑙𝑎𝑝𝑠𝑒

= 	 1.0 − 𝜙 𝐶ℎ𝑎𝑛𝑐𝑒	𝑜𝑓	𝐷𝑁𝐴	𝐷𝑎𝑚𝑎𝑔𝑒 ∗ 𝜙 𝑅𝑎𝑡𝑖𝑜	𝑜𝑓	𝐷𝑁𝐴	𝐷𝑎𝑚𝑎𝑔𝑒
∗ 𝑑𝑡 

 

(8) 

 
Where 𝜙	is the cumulative distribution of a Gaussian distribution with mean of 0 and 𝜎 of 1 (as 
described in equation 5), and 𝑑𝑡 is the time step per minute. 
 
4.4.  C and D periods  
 
Under exponential growth, simple functions have been derived from experiments to describe 
replication time as a function of growth rate (𝐶 𝜇 = 	𝐶U𝑒Ew97 + 𝐶%), and to describe segregation 
time as a function of growth rate (𝐷 𝜇 = 	𝐷U𝑒Ex97 + 𝐷%), as previously reported3. Here, we 
hypothesized that a similar functional form could be used to describe growth outside of 
exponential growth, and to that end, we subjected these expressions to parametric optimization 
(see section 5.2 below).  
 
5 Optimization strategy 
 
5.1. Objective Function and definition of Similarity Score 
 
To compute the difference between measured DNA distributions and simulated DNA 
distributions, we used a previously reported functional form to define an objective function for 
our optimization11, and we describe this value as a “similarity score”: 
 
 

𝑠 = 	
( 𝑦] − 𝑁])5

𝑚 − 1

y

]zU

 

(9) 

 
Note that because we use this definition as an objective function, better fits between 
experiments and simulations result in lower (smaller) scores). In this expression, for each bin (i) 
of a flow cytometry histogram, 𝑦] is the normalized original number of cells (i.e., the frequency 
represented by this bin), 𝑁] is the normalized calculated number of cells (again, a frequency), 
and 𝑚 is the total number of bins. For a graphical illustration of the scoring, please refer to 
Figures S9, S10, S11, and S12. 
 
5.2 Optimization using a genetic algorithm (GA) 
 
To optimize parameters for the equations describing replication time as a function of growth rate 
(𝐶 𝜇 = 	𝐶U𝑒Ew97 + 𝐶%), and describing segregation time as a function of growth rate (𝐷 𝜇 =
	𝐷U𝑒Ex97 + 𝐷%), and the parameters ‘Chance of DNA damage’ and ‘Ratio of DNA damage’, we 
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used a genetic algorithm (GA) (see Materials and Methods in the main manuscript). To 
effectively search the large potential parameter space, we generated Sobol sequences24 with 
the following boundary conditions: 
 𝐶(𝜇) > 30 minutes 

𝐷(𝜇) > 15 minutes 
𝐶(𝜇) > 𝐷(𝜇) 

𝐶ℎ𝑎𝑛𝑐𝑒	𝑜𝑓	𝐷𝑁𝐴	𝑑𝑎𝑚𝑎𝑔𝑒 < 3.75 
 

 

Using data collected from TOP10 cells grown in LB at 23RPM and 230RPM (as presented in 
Figure 3), optimization of the model yielded the following results (Figure S8): 

𝐶 𝜇 = 250.02 ∙ 𝑒E%^~.~U7 + 60.97 
𝐷 𝜇 = 100.59 ∙ 𝑒EU%�.^�7 + 19.93 
𝐶ℎ𝑎𝑛𝑐𝑒	𝑜𝑓	𝐷𝑁𝐴	𝑑𝑎𝑚𝑎𝑔𝑒 = 	3.907 
𝑅𝑎𝑡𝑖𝑜	𝑜𝑓	𝐷𝑁𝐴	𝑑𝑎𝑚𝑎𝑔𝑒 = 	−0.777 

 
Where C and D are expressed in minutes and growth rate is expressed in min-1. Given the 
definitions described above, the ‘Chance of DNA damage’ parameter obtained through this 
fitting means that any chromosome would have a 0.467% chance of experiencing DNA damage 
during replication (as described in section 4.2). Similarly, this ‘Ratio of DNA damage’ means that 
a replicating chromosome has 0.365% chance of experiencing replicating strand degradation 
and a 0.102% chance of experiencing whole chromosome degradation (as described in section 
4.3) (these mutually exclusive possibilities sum to a 0.467% chance that either occurs). 
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II. SUPPLEMENTAL FIGURES 

 
Figure S1. Comparison of the HMG simulator to a Monte Carlo simulation of the canonical CH 
model during exponential growth. The HMG simulator used a model parameterized using 
growth rate, parameter noise, and C & D parameters previously reported3, and these results are 
plotted alongside the Monte Carlo Simulation results reproduced from that same study. The 
HMG simulator generates comparable results to this canonical model, when specifically 
examining the case of exponential growth, hence validating our injection growth formulation.   
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Figure S2. Computational deconvolution of DNA distributions. This figure illustrates the use of 
the MATLAB package ipf11 to identify a sum of Gaussian distributions that is maximally 
consistent with the DNA distributions measured by flow cytometry of DAPI-labeled cells. The 
upper panel (A) shows the original flow cytometry data (blue dotted line) plotted against a global 
fit (red) that is the sum of the fits of individual Gaussian distributions (green). Because recA 
mutants are known to have aberrant chromosome copy numbers8, the orange circles associated 
with the peaks represent the following chromosome copy numbers (from left to right): 1, 2, 3, 4. 
The sample shown corresponds to cells grown in LB and shaken at 230 RPM, and samples 
were collected for DNA distribution analysis after 24 hours of growth post-inoculation. First order 
polynomials were fit to relate DNA content (B), and peak width (standard deviation) (C), to the 
channel number. Notably, peak width also increases linearly with channel number, which has 
been previously observed5. Peaks labels defined in panel A (I, II, III, IV) are indicated next to 
corresponding data points in panels B and C. 

 

1000 2000 3000 4000 5000 6000
Channel no.

500

1000

1500

2000
Fr

eq
ue

nc
y

I

II

III
IV

I

II

III

IVIV

I

II

III

A

C

Global fit
Individual fit
Original data

B



Supporting Information 
 

12 

 
 
Figure S3. Identification of exponential growth regimes. This figures illustrates our method for 
identifying the exponential growth regime, in this case using cells grown in LB and shaken at 
23RPM. The top panel shows the B-spline fit (blue line) to the original OD measurements (open 
circles). Given this fit, the middle panel shows the natural log of both the original OD 
measurements and the fit. The bottom panel shows the first order differential of the natural log 
of the fit OD growth curve, which is used to identify the period of exponential growth that 
appears as a roughly horizontal line on this bottom panel. Although a naïve interpretation of 
these data would indicate that maximal growth occurs at around 100 minutes post-inoculation, 
we can clearly see from the lower panel that growth is stable between ~200-300 minutes post-
inoculation. Because OD measurements are relatively noisy at low cell densities, we would 
argue that the identified window (shaded in gray) represents true exponential growth, it remains 
possible that our method favors the identification of prolonged steady growth phases over early 
rapid phases of growth. 
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Figure S4. Growth curves. Shown here are raw OD measurements from the different growth 
conditions used throughout this study, using a combination of different carbon sources (LB, M9) 
and shaking rates (230RPM and 23RPM). The shaded areas are the identified exponential 
sections of the growth curves, as described in Figure S3, with the calculated doubling rates (in 
minutes) indicated next to each shaded region. 
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Figure S5. Measured DNA distributions for exponential growth regions identified in Figure S4. 
For each panel, the first, second and third DNA distributions (see key) correspond to the first, 
middle, and final time points within the identified window of exponential growth. Because cells 
are assumed to be in balanced growth during exponential growth, in theory the DNA 
distributions should be unchanging across these windows. These data indicate that the DNA 
distributions are indeed relatively unchanging, supporting the assumption of balanced growth 
within this window, and validating our strategy of initiating (inoculating) our simulations by 
assuming exponential balanced growth during these identified windows.  
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Figure S6. Summary of the simplified description of DNA double stranded damage responses 
used in our simulations to represent the consequence of recA mutation. Green bars are the 
OriC, orange circles are the replication fork bubbles, the purple circle is the RecBCD enzyme, 
each blue line is a single chromosome strand, and each red line represents a newly replicated 
DNA strand. As described in the text, our simulation captures two potential outcomes following 
DNA damage. In the first scenario, a double-stranded break occurs at the replication fork, which 
leads to the collapse of the replication fork (broken orange circle), which is subsequently 
rescued by RecBCD, returning the chromosome to its original form. In the second scenario, the 
double-stranded break occurs downstream of the replication fork, which instead leads to 
degradation of the whole chromosome. 

Replicating chromosome

Whole
chromosome
degradation

Intact chromosome

Replicating
strand

degradation

RecBCD
rescue

RecBCD

Replication
fork

oriC



Supporting Information 
 

16 

 
Figure S7. Total-order index sensitivity analysis for the optimized parameters. These 
sensitivities were calculated based upon an initial ensemble (Sobol sequence) of 12,000 
parameter sets. The error bars represent the 90% confidence intervals. For this analysis, a base 
case was generated by simulating exponential growth, using the following parameters: C: 40.0 
min, D: 20.0 min, Partition Noise: 0.24, Chance of DNA Damage: 3.034, Ratio of DNA damage: 
-1.652. Therefore, the sensitivity indices plotted here represent the degree to which changing 
any model parameter shifts the simulated DNA distribution (under exponential growth) 
compared to the base case. 
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Figure S8: Optimized C and D functions used in the HMG simulations compared with functions 
previously reported in the literature based upon analysis of exponential growth3. 
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Figure S9. DNA distributions for cells growth in LB, shaken at 230RPM. These histograms 
correspond to the data plotted as heat maps in Figure 3. In each panel, the blue histogram 
represents the measured DNA distribution, the green histogram represents the distribution 
generated by simulation using the model of 3, and the red histogram represents the distribution 
generated by simulation with the new model including optimized parameterization. Each panel is 
also annotated with the corresponding similarity scores comparing the measured DNA 
distribution with the distributions simulated via each approach. 
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Figure S10. DNA distributions for cells growth in LB, shaken at 23RPM. These histograms 
correspond to the data plotted as heat maps in Figure 3. In each panel, the blue histogram 
represents the measured DNA distribution, the green histogram represents the distribution 
generated by simulation using the model of 3, and the red histogram represents the distribution 
generated by simulation with the new model including optimized parameterization. Each panel is 
also annotated with the corresponding similarity scores comparing the measured DNA 
distribution with the distributions simulated via each approach. 
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Figure S11. DNA distributions for cells growth in M9, shaken at 230RPM. These histograms 
correspond to the data plotted as heat maps in Figure 3. In each panel, the blue histogram 
represents the measured DNA distribution, the green histogram represents the distribution 
generated by simulation using the model of 3, and the red histogram represents the distribution 
generated by simulation with the new model including optimized parameterization. Each panel is 
also annotated with the corresponding similarity scores comparing the measured DNA 
distribution with the distributions simulated via each approach. 
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Figure S12. DNA distributions for cells growth in M9, shaken at 23RPM. These histograms 
correspond to the data plotted as heat maps in Figure 3. In each panel, the blue histogram 
represents the measured DNA distribution, the green histogram represents the distribution 
generated by simulation using the model of 3, and the red histogram represents the distribution 
generated by simulation with the new model including optimized parameterization. Each panel is 
also annotated with the corresponding similarity scores comparing the measured DNA 
distribution with the distributions simulated via each approach.  
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