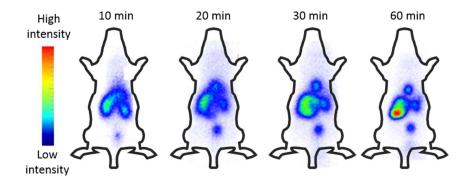
Supporting Information


Drug Conjugation Affects Pharmacokinetics and Specificity of Kidney-Targeted Peptide Carriers

Maria Janzer^{†,‡}, Gregor Larbig[‡], Armin Kübelbeck[‡], Artjom Wischnjow[†], Uwe Haberkorn[†] and Walter Mier[†]

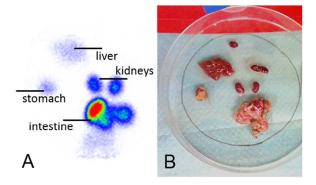
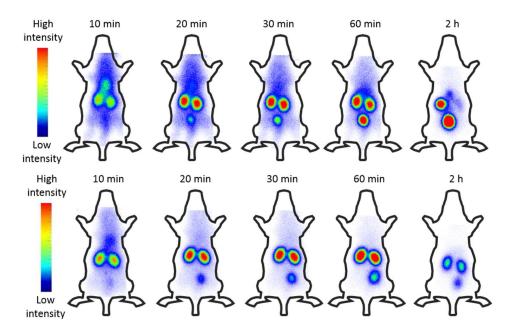
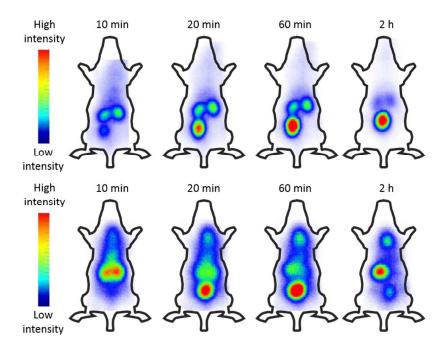

[†] Department of Nuclear Medicine, Heidelberg University Hospital, INF 400, 69120 Heidelberg, Germany[‡] Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany

Table of contents


Figure S1: Time course of the scintigraphic distribution of LA- ¹²⁵ I-y(MARIA) ₃								2
Figure S2: Scintigraphic imaging of organs 60 min after bolus injection of LA- ¹²⁵ I-y(MARIA) ₃								
Figure S3:	Time cou	rse of the scintigrap	phic distribution of (K	KEEE)₃K af	ter conjug	gation with	caffeic acid	3
Figure S4: D-Tyrosine versus L-Tyrosine radiolabeling								<mark>ot defined.</mark> 4
Figure	S5:	Competitive	ligand-receptor	study	of	two	different	peptides
4								


Figure S1: Time course of the scintigraphic distribution of LA-¹²⁵I-y(MARIA)₃ after bolus injection in NMRI mouse. The conjugate shows a changed pharmacokinetic in comparison to bare peptide ¹²⁵I-y(MARIA)₃. Changed excretion route over bile and liver can be assumed (<u>Error! Reference source not found</u>.Figure S2).

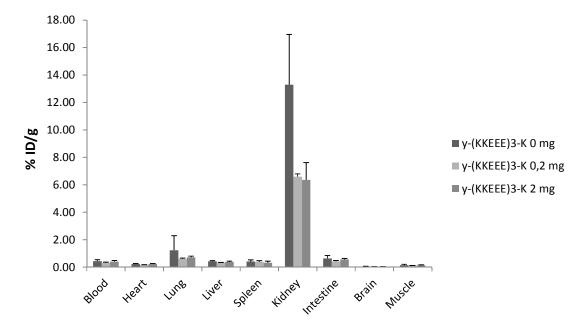

Figure S2: Scintigraphic imaging of organs 60 min after bolus injection of $LA-^{125}I-y(MARIA)_3$ in NMRI mouse. (A) Majority of detected radiation was found in intestine, which indicates a changed excretion route of the peptide via bile into liver and intestine. Less amounts are detected in kidneys, liver and stomach. (B) Corresponding organs.

Figure S3: Time course of the scintigraphic distribution of $(KKEEE)_3K$ after conjugation with the hydrophilic caffeic acid *N*-terminally versus double ε -binding after bolus injection in NMRI mouse. **Upper row:** *N*-terminally conjugated, caffeic acid-¹²⁵I-y(KKEEE)_3K. **Bottom row:** ε -bounded, ¹²⁵I-y (KKK(ε -caffeic acid)(EEEKK)₂K(ε -caffeic acid) showed a higher specificity in comparison to *N*-terminally bounded caffeic acid conjugate, even after double loading.

Figure S4: D-tyrosine versus L-tyrosine radiolabeling. **Upper Row:** The radiolabeling of $(K\epsilon)_{10}y^{-125}I$ via a D-tyrosine results in a tracer with stable accumulation in the kidneys followed by excretion to the bladder. **Bottom row:** In contrast, scintigraphic distribution of $(K\epsilon)_{10}Y^{-125}I$ via radiolabeling of a naturally L-tyrosine leads to distribution in upper body followed by accumulation in stomach and thyroid. This indicates the deiodation of the peptide tracer.

Figure S5: Competitive ligand-receptor study of two different peptides. Figure shows biodistribution study of ¹⁷⁷Lu-DOTATOC, 60 minutes after application into three female NMRI-mice per group. The simultaneous application of the peptide $y(KKEEE)_3K$ lead to a decrease of the renal accumulation of ¹⁷⁷Lu-DOTATOC by ~50%.